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Abstract. Explorations in a system given to me by László Babai, and con-
clusions about the importance of base and divisibility in that system.
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1. Getting started

In this paper, we will work within the following system (and, eventually, gener-
alizations of it), conceived by Péter Frankl:
Starting with 1
we double to 2
then 4

8
16

So far this seems rather dull - we all understand and are quite familiar with
the doubling function; but now that we’ve hit two digits, we add a second action:
digital permutation.
So from 16
doubling gives 32 while permuting gives 61
then 32 becomes 64 or permutes to 23 and 61 doubles to 122
64 doubles to 128 or permutes to 46 while 122 permutes to 212 or 221.
Note that the double of 23 and the permutation of 64 are both 46.

In the full statement of the system, restricting permutations such that they
cannot change string length - not allowing the movement of a 0 to the front of the
number, adds further interest: we can then ask questions about possible travel time
within a given string length. However, while also interesting, this restriction is not
necessary for the main results of this paper and will not be greatly examined here.

2. Getting your feet wet

2.1. Drops. Routes to a few numbers
When first introduced to this system, I was asked the following to inspire explo-

ration: can you reach 2007? and can you reach 2008? The following answers the
later (former to follow later in the paper), so if you’d like to think about it yourself
first, please do so now.

Easiest, of course, is to reach a specific power of two - simply doubling n times
leads to 2n. 2008, being a multiple of the relatively large prime 251, is clearly not
a power of 2... however, it is exactly this factor which makes 2008 so lucky - 251
permutes to 512 = 29, and with one permutation we have found exactly our route:

1
doubles to 2
then 4

8
16
32
64
128
256
512

permutes to 251
doubling again 502

1004
and finally, 2008

This time, we were lucky - some numbers require many odd combinations of
permuting and doubling, while this one was relatively easy to reverse-engineer.
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Note, however, that involving many permutations is not the same as requiring them;
for example, we could instead reach 2008 in the following, far more convoluted but
essentially similar manner:

1
doubles to 2

4
8
16
32

permutes to 23
doubles to 46
permutes to 64
doubles to 128
permutes to 281
doubles to 562
permutes to 256
doubles to 512
permutes to 251
doubles to 502
permutes to 520
doubles to 1040
permutes to 4100
doubles to 8200
permutes to 2008
What a surprise! Actually, this is not particularly surprising - the key thing to
notice here is that odd digits are achieved when a digit ≥ 5 is doubled, producing
a ‘digit’ ≥ 10 and so overflowing into the digit immediately to the left. Careful
permutation can leave all ‘influencing digits’ in their same orientation; before a
doubling, any overflowing digit will be placed to the right of the digit it would
overflow into in the original string, and the rest of the permutation has no further
restriction. Slightly more surprising is the following path:

1
doubles to 2

4
8
16
32
64
128
256

permutes to 265
doubles to 530
permutes to 350
doubles to 700
then 1400

2800
permutes to 2008
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so not only paths that differ from the original by overflow-restricted permutation
are capable of reaching the desired goal!

At this point, you may be wondering why this section is subtitled ‘Routes to a
few numbers,’ when so far all the routes have led to the same number. Well, I lied
- this section does not include routes to a few numbers, but neither does it include
routes to just one; carefully described in the first sentence of the second paragraph
are routes to infinitely many. Having more than fulfilled the stated goal of this
section, we will move on.

2.2. Splashes. A quick list (with proof) of small achievable numbers
1, clearly as the starting number, can be reached.
2, 4, and 8, simple doubles in the system before any permutation is allowed

and therefore while it is completely determined and very well-understood, are also
clearly achievable.

Lemma 2.1. Any route can only increase its string length - this system does not
allow for decrease in the number of digits.

Proof. Two functions are available to us: doubling and permutation.
Doubling, by definition, is an increase by the number again - never will a doubled
natural number grow smaller.
Permutation can lead to smaller numbers, true, but the statement of the system
specifically disallows movement of a 0-digit to the front.
Permutation is restricted from changing string length, and doubling can only in-
crease it; therefore, decrease is impossible. �

8 doubles to 16 and here, finally, with two digits and the capability to permute
we gain some freedom in our system, but by Lemma 2.1, as we’ve already passed
the one-digit numbers, 3, 5, 6, 7, and 9 are unachievable.

10, although technically 2 digits, also falls into this trap - permutation would
bring its 0 to the front and is not allowed, while to double to it you’d have to first
reach 5, already shown to be impossible, and so it is unachievable.

Lemma 2.2. Odds are achievable only through permutation, not doubling.

11, then, can only be reached by permutation; but 11 only permutes to 11,
unachievable save possibly by permutation and therefore not at all.

With 12 it seems we have slightly more luck - although 6 is unachievable and so
we must permute to reverse-engineer a path, at least we have that option. However,
12 permutes to 21, odd and so only achievable by permutation - 21 is achievable if
and only if 12 can be reached by doubling, which it cannot.

Corollary 2.3. Two-digited numbers with odd first digits are achievable if and only
if they are achievable by doubling.

Proof. A two-digited number has but one alternative permutation: the switching of
its two digits. The movement of an odd first digit to the last digit, then, will leave
this number odd, only achievable by permutation by Lemma 2.2 and so leading us
back to the original number. Permutation leads us around in circles, and so is not
a useful tactic - only doubling is available. �

10 through 19 all fall victim to this issue - by Corollary 2.3 they are only achiev-
able through doubling, but by Lemma 2.2 the odds in the bunch already aren’t
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achievable in this manner either, and those that are even are then left to deal with
the issue of being twice a one-digit number, many of which are unachievable. Only
16, the double of 8 and already well-established as so, is an achievable teen.

20, like 10 and in fact any two-digit multiple thereof, is restricted from permu-
tation, but being the double of 10 which is unachievable, it also is.

21 is odd - by Lemma 2.1 we must permute to it, but 12 is unachievable so 21
is, too.

22, like 11 and two-digit multiples of it, permutes only to itself, and so must be
reached by doubling - but 11, half of 22, is unachievable.

23 is a permutation of 32, achievable as it is a power of 2 - this gives us a taste
of how the rest of this examination under 100 should go: 1, 2, 4, 8, 16, 23 are our
list of achievable numbers so far, with nothing between these achievable as proved
above using these principles of how permutations, doubling, odds, and previously
found achievable/unachievable numbers interact. We find that 24, in one direction
the double of 12 and in the other the permutation of 42 which is double 21, is
unachievable. 25, odd, must be permuted to 52 which can halve to 26 and again
to 13 - unachievable, or instead permute to 62 and halve to 31, also all odd-digited
and also unachievable. We can continue examination through to 99 in this manner.

These principles can be used to examine higher-length strings of digits as well,
but become less useful the more digits are in play: Corollary 2.3 is generalizable
to n-digit numbers where the first n− 1 digits are odd, at which point we can mix
it with Lemma 3.2 to find that all numbers with all odd digits are unachievable
- however, while in two digits this takes out 1

4 of the possibilities, at three digits
we’re down to 1

8 , while in the thousands it only handles 1
16 of the numbers out

there. Luckily, Lemma 2.1 implies for any digit-length range that we only have to
worry about a finite list of possible influences: none of the countably many natural
numbers greater than the next power of 10 can come back around in some route to
reach one of the numbers in that particular stretch.

2.3. Puddles. Bases 2, 4, 8, ..., 2n

So far we’ve been working solely in base 10, but why limit ourselves to this?
Perhaps expanding our view can add further insight into both the generalized and
the original systems.

Unfortunately, will all other original rules in place, the first place you’d think to
look - base 2, being the smallest nontrivial base and so perhaps easiest to handle, by
nature of the system’s built-in reliance on 2 is completely determined! For example:
1
10
100
1000
10000
... and so on. Of course, doubling in base 2 is just like multiplying by 10 in our
more familiar base 10 - it just adds a 0 to the end of the string. With only one
nonzero digit to work with, we cannot permute and so have no choice but to double
again, the whole way through.
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Base 4, while slightly more promising, is ultimately not at all better.
1
2
10
20
100
200
1000
... et c. Similarly base 8 brings us through 1, 2, then 4 before wrapping back
around with 0 at the end - base 2n is problematic, in that it is always under these
rules entirely determined: moving through powers of 2 in a base which is a power
of 2 means only ever one digit is nonzero - there’s too much divisibility in play for
permutations to ever get a chance.

3. Getting somewhere

3.1. Base 3. Why 10 isn’t special
Having now explored infinitely many nonintersecting bases, we start to feel rather

awesome for happening to have 10 fingers instead of perhaps 8 or 16... but we must
not let this feeling get the best of us, for base 10, although it may be seeming it
right now, is not at all the only interesting case. Already in base 3, the next one up,
we encounter a diverse universe not determined solely by doubles and at a glance
very different from the base we know and love.

Oh, and - for interest’s sake, let’s generalize even further, looking not just at 1
as our start but any natural number. It doesn’t really help us - this is not a trick
to make base 3 seem more interesting than 2; rather, it allows us to show just how
powerful the following finding is.

Theorem 3.1. Save the starting number or permutations thereof, odd numbers are
unachievable in base 3.

Remark 3.2. To start, of course, this means we have to know what it means to be
odd in base 3. In base 10, odd numbers are quickly identified by a glance at their
last digit - 1, 3, 5, 7, or 9 means odd, while the evens imply even. We could easily
assume this to be a definition of odd, the two facts are used so interchangeably in
base 10, but what’s really going on here has far less to do with the last digit in a
given base and far more to do with the implications of digital placement.

In any base, the 1s place will, of course, affect parity. What leaves base 3 seeming
so odd to us is that, while in base 10 we then have the 10s place, the 100s place,
the 1000s place and so on - all powers of 10 and therefore even numbers, in base
3 instead we go on to the 3s place, the 9s place and the 27s place - all powers of
3, and so all odd. In base 10 we need only worry about the 1s place because every
other digit gets multiplied by 2 (and 5, at least), rendering it even. In base 3, each
multiplier is odd, and so oddness is determined by the number of places at which
odd numbers are contributed - the number of odd digits.

Proof. In any base, doubling leads to evens - by Lemma 2.2, in seeking achievable
odds we need only concern ourselves with permutation.

In base 10, random permutation moving the parity-inducing digit to a different
place replaces it with an unrelated digit, switching parity unpredictably. In base 3,
however, each digit is already contributing to parity: an odd digit, switched to a
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different place, is now associated with an odd multiplier, while before it was... also
associated with an odd multiplier - there is no change to parity from this move.
Similarly, an even digit switches from an odd multiplier to an odd multiplier, which
doesn’t matter anyhow as it’s even and so will contribute similarly to the parity no
matter what multiplier it is paired with. In base 3, permutation preserves parity.

After at least one doubling, then, any number in this system in base 3 is guaran-
teed to be even - doubling makes it even by definition, and by the above argument
permutation will leave it there; our only resort would be to attempt another dou-
bling, which if anything makes it ‘more’ even! The only achievable odds are those
possibly reachable before any doubling - the starting number, which if already even
leave us with none, and if odd its permutations. �

3.2. Odd Base. Why 3 isn’t special
At this point, a rare few are probably now upset at having 10 fingers instead

of the obviously mathematically deeper and far more wonderful 3 - for them we
have both good and bad news. The good: we’re not actually using the ‘3’ness of 3
anywhere in this proof; this theorem holds for infinitely many bases! The bad: 10,
being even, is not one of them.

Theorem 3.3. Save the starting number or permutations thereof, odd numbers are
unachievable in odd base.

Proof. The key step in Theorem 3.1 - that every multiplier contributes equally to
a number’s parity, relies not on some property specific to 3, but rather only that
3 is odd! For all odd n, n2, n3, ..., nk (k ∈ N) are also odd (this can be quickly
proved using induction and the fact that the product of two odds is also odd); for
example 1, 3, 9, 27, .... These multipliers, then, all interact equally with the digital
coefficients; it does not matter, when examining only parity, with which power of
n each digit is associated.

As the number itself is the sum of the multiplied digits and multipliers, the
number of odd digits entirely determines the number’s parity: conveniently, odd
implies odd and even even. Permutation, simply moving the digits around without
further alteration, does not change this! So in any odd base, parity is preserved by
permutation; after at least one doubling, odds are unachievable. �

Remark 3.4. In any base, similar principles can be applied - separate permutations
on the sets of digits associated with odd and even multipliers respectively will
preserve parity; we’ve already explored the consequences of this in odd base. Evens,
such as base 10, have but one odd multiplier - the 1s place, while all else is even;
permutation restricted to the non-1 places, then, will preserve parity in even base.

3.3. Base 10. Exploration/explanation of 3s and 9s
Sadly, 10 is not odd, and so while Theorem 3.3 seems very powerful, it is com-

pletely useless to the original problem. What’s not useless, however, is again the
principle behind the proof. In odd base, divisibility by two has the special property
that it is preserved by digital permutation - base 10 has numbers that do this, too!
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The well-known divisibility rules of 3 and 9 - that a number is divisible by each
of these respectively if and only if the sum of its digits is, too, play on this trick:

Theorem 3.5. Divisibility by 3 or 9 is preserved by permutation in base 10.

Remark 3.6. Similar to examining what it meant to be odd in an odd base, we now
look at what it means to be divisible by 3 or 9 in base 10 - how is each multiplier
contributing? For these purposes, we want to ‘deconstruct’ our place multipliers in
a clever manner, examining their relative ‘3-ness’ and ‘9-ness’.

For example, when multiplying by 10, we can consider ourselves to be multiplying
instead by 9 + 1. The resulting number, then, is divisible by 9 if and only if the
original was - we have the multiplier contributing a neutral 9 piece and the original
number back. If instead we were multiplying by 11 = 9 + 2, the resulting number
would be divisible by 9 if twice the original was. Of course, as 9 is odd, 9|2x if and
only if 9|x, but this turns out not to even be necessary - we need only distinguish
between different remainders of placeholders when divided by 3 or 9.

Proof. Case for 3, by induction.
Hypothesis: If 3|(10k − 1), then 3|(10k+1 − 1).
Base case(s):
3|(1− 1) = 0
3|(10− 1) = 3 ∗ 3
Inductive step: Assume 3|(10k − 1).

10k+1 − 1 = 10(10k)− 1
= (3 ∗ 3 + 1)10k − 1
= (3 ∗ 3)10k + 10k − 1
= 3(3 ∗ 10k) + (10k − 1)

3|3(anything) and 3|10k − 1 by the inductive hypothesis, so 3 divides this sum;
3|(10k+1 − 1). By the above remark, every place multiplier contributes equally to
the divisibility by 3 of a number, and so permutation preserves this property. �

Proof. Case for 9, by nearly the same argument.
Hypothesis: If 9|(10k − 1), then 9|(10k+1 − 1).
Base case(s):
9|(1− 1) = 0
9|(10− 1) = 9
Inductive step: Assume 9|(10k − 1).

10k+1 − 1 = 10(10k)− 1
= (9 + 1)10k − 1
= 9 ∗ 10k + 10k − 1
= 9(10k) + (10k − 1)

9|9(anything) and 9|10k − 1 by the inductive hypothesis, so 9 divides this sum;
9|(10k+1 − 1). Again, each place multiplier contributes equally to the divisibility
by 9 of a number - permutation does not affect the outcome. �

Remark 3.7. 9|2007, and so 2007 cannot be reached from starting number 1.

3.4. Base n. Complete generalization
We started this paper in a highly restricted system - one specific base, one specific

starting number, and two generally well-understood actions that just have not been
very well-observed interacting. We generalized to any base. We generalized to any
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starting number. Why are we restricting ourselves to simply doubling, when we
could triple, quadruple, or multiply by any integral constant?

Nowhere in our proofs of 3 and 9’s specialness in base 10 do we use the fact that
we double - the only thing counted upon is that nondivisibility will be preserved
under the actions of this system. So long, then, as our constant is relatively prime
to the divisor in question, it will also not interfere with the divisibility, leaving a
route’s divisibility determined entirely by the starting number.

Also not widely used in the above proofs are anything special to 3 or 9 - just
that they have this nifty factoring trick in base 10. This is highly modifiable.

Lemma 3.8. In base n, factors of n− 1 are preserved under permutation.

Proof. By induction.
Hypothesis: If m is a factor of n− 1 such that m|(nk − 1), then m|(nk+1 − 1).
Base case(s):
m|(1− 1) = 0
m|(n− 1) by definition.
Inductive step: Assume m|(nk − 1).

nk+1 − 1 = n(nk)− 1
= ((n− 1) + 1)nk − 1
= (n− 1) ∗ nk + nk − 1
= (n− 1)(nk) + (nk − 1)

m|(n− 1)(anything) by definition and m|nk − 1 by the inductive hypothesis, so m
divides this sum; m|(nk+1 − 1). Then each place multiplier contributes equally to
the number’s divisibility by m, and so permutation preserves divisibility by m. �

This means that, with odd multiplier in an odd base, we are no longer restricted
to evens or even just to odds, but rather that the parity of the starting number
determines parity of the entire route. In base 10, for any multiplying constant not
divisible by 3, again divisibility of the starting number determines divisibility of the
route, this time dividing into three possible categories: not divisible by 3, divisible
by 9, and divisible by 3 but not 9. In base 16, where 15 is divisible by 3 and 5, we
now get four: neither divisible by 3 nor 5, divisible by 3 and not 5, divisible by 5
and not 3, and divisible by both (by 15). Other bases (n) are similarly divided by
factors of n− 1.

Theorem 3.9. In base n, given a multiplying constant relatively prime to divisors
of n− 1, the ‘divisibility class’ of any number along a route is entirely determined
by the starting number.

Proof. All the necessary steps for this have already been outlined in this section.
By Lemma 3.8, permutation will preserve divisibility.
The multiplying constant can only add divisibility by its own factors - one rela-

tively prime to the divisors in question, then, will not alter the relative divisibility
or nondivisibility of numbers farther along the route.

Starting numbers and the ensuing routes, then, are partitioned into divisibility
classes by these factors of n−1 - one for each different combination of prime factors,
as each new addition separates those routes from the previously conceived ones. �

I can’t help you if you’re still upset about how many fingers you have - I think 16
is much cooler, too, and I’m sure many computer scientists would agree for entirely
unrelated reasons.


