
Introduction to the Topology of Continuous Dynamical Systems

Andries Smith

1. Continuous General Dynamical Systems

Let (X, d) be a nonempty metric space with the usual basis,
B = {Bε(x) |x ∈ X, ε ∈ R+}

1.1. Definition. A continuous dynamical system in the state or phase space
X is a function Φ : X × R → X, written Φ(x, t) = y, or Φt(x) = y for t ∈
R, y, x ∈ X, where Φ has the following properties:

1. Continuity in X × R:

lim
t→t0,x→x0

Φ(x, t) = Φ(x0, t0)

2. Initial condition: for any p ∈ X,

Φ(p, 0) = p

3. Group property: for any t1, t2 ∈ R and any p ∈ X,

Φ(Φ(p, t1), t2) = Φ(p, t1 + t2)

or with a different notation

Φt1(Φt2(p)) = Φt1+t2(p)

This Φt is called the evolution operator. The parameter t ∈ R is called
time. Fixing t, we note that Φt is a mapping of X into itself. The evolution
operator therefore defines a one-parameter family of mappings X → X. The
second notation highlights that the composition of these mappings has the
some of the structure of the group (R,+):

Proposition 1. The family of mappings G = { Φt | t ∈ R } under compo-
sition is a homomorphic image of (R,+), and hence a group.

Proof. Let a map f : R → X be defined by t 7→ Φt. Then clearly f is a
surjective homomorphism. �

[Note that Φt can also be seen as defining a group action of (R, +) on X,
where t acts as the map x 7→ Φt(x).]

Theorem 1. (The Integral Continuity Condition) For any point x ∈ X, any
T , ε ∈ R, T > 0, ε > 0, there exists a δ ∈ R such that

Φ(Bδ(x), t) ⊆ Bε(Φ(x, t))

for all t ∈ [0, T ].

Proof. Assume let ε > 0, T > 0, and assume there does not exist such a δ.
Take δn → 0, a sequence in R. We have assumed there is, for each n, some yn
such that d(x,yn) < δn and a tn ∈ [0, T ] such that d(Φ(x, tn),Φ(yn, tn)) > ε.
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By the sequential compactness of [0, T ], there is a convergent subsequence
tnk → t0. Clearly, yn → x and therefore ynk → x. But then by continuity,

lim
k→∞

Φ(ynk , tnk) = Φ(x, t0), lim
k→∞

Φ(x, tnk) = Φ(x, t0)

These two limits give ε ≤ 0, a contradiction. �

Equivalently, the result of this theorem states that for any given t, Φ(x, t)
is a continuous function of the initial condition x.

Proposition 2. The mappings in the group G are self-homeomorphisms of
X.

Proof. Let Φt ∈ G. Then Φt ◦Φ−t = Φ−t ◦Φt = Φ0 = IdG, so Φt has a two-
sided inverse and is hence a bijection. Moreover, all Φt in G are continuous
on X, and hence Φt is a homeomorphism. �

Some notation: for A, ⊆ X, T ⊆ R,

Φ(A, T ) =
⋃

x∈A, t∈T
Φ(x, t)

(G,+) a group, H, K ⊆ G,

H +K =
⋃

k∈K,h∈H
h+ k

Fixing a point x0 ∈ X, the set Φ(x0,R) is called x0’s orbit or trajectory,
while the function Φ(x0, t) is called the motion of x0. This function may or
may not be injective. If it is, the motion is called singular. Motions which
are not injective are contrarily nonsingular. Suppose Φ(x0, t) is nonsingular.
It is possible that Φ(x0, t) = x0 for all t ∈ R, in this case, x0 is called a rest
(critical, equilibrium, or stationary) point.

A nonsingular motion of a non-rest point must be periodic. To see this,
note that for such a nonsingular motion, there must exist some t1 and t2,
with, say, t2 > t1, such that

Φ(x0, t1) = Φ(x0, t2)

Let t2 − t1 = τ . Then by the group property,

Φ(x0, τ+t) = Φ(x0, t2−t1 +t) = Φ(Φ(x0, t2),−t1 +t) = Φ(Φ(x0, t1),−t1 +t)

= Φ(x0, t1 − t1 + t) = Φ(x0, t)

Proposition 3. if Φ(x0, t) is nonsingular and x0 is not a rest point, there
is a smallest τ > 0, called the period, for which

(1.1) Φ(x0, t) = Φ(x0, τ + t)

Proof. Let τ1 satisfy (1.1). If there is some τ2 satisfying (1.1) such that
τ2 < τ1, then either there exists some τ3 satisfying (1.1) such that τ3 < τ2 or
not. Continuing, we end up with either some smallest τj > 0 satisfying (1.1)
or an infinite strictly decreasing sequence τn of elements satisfying (1.1). By
the boundedness of [t, τ1] ∈ R, τn converges, say to τ . Clearly τ < τi for
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any τi satisfying (1.1). Since Φ(x0, t+ τn) is a constant for all τn, and since
by continuity Φ(x0, t + τn) → Φ(x0, t + τ), Φ(x0, t + τ) = Φ(x0, t + τn) =
Φ(x0, t), and so τ satisfies (1.1).

Now we show τ > 0.
Suppose to the contrary that τn → 0. By the continuity of Φ, for any ε

there exists a δ such that

Φ(x0, [0, δ)) ⊆ Bε(x0)

Since τn → 0, there exists a τi < δ. By the periodicity of Φ, this implies

Φ(x0, t) ⊆ Bε(x0)

for all t ∈ R. Since ε > 0 is arbitrary, this implies Φ(x0, t) = x0 for all t ∈
R, a contradiction. �

This gives a complete classification of motions of points in X. Note that the
trajectory or image of a periodic motion is homeomorphic to S1. However,
the image a singular motion is not necessarily homeomorphic to R; precisely
when this occurs will be investigated later.

Proposition 4. Let x, y ∈ X. Then y ∈ Φ(x,R) if and only if Φ(x,R) =
Φ(y,R)

Proof. This follows from the fact that orbit membership is an equivalence
relation under any group action. �

A corollary of the previous proposition is that distinct trajectories never
intersect. Note that this corollary furthur implies no motion can enter a rest
point for a finite value of time.

More generally, the motion of any point defines the motion of all points
in its trajectory: letting y = Φ(x, t0) ∈ Φ(x,R), the motion of y is defined
by Φ(y, t) =Φ(x, t0 + t).

1.2. Definition. A set A ⊆ X is invariant if it is mapped into itself by all
maps of the family G. In other words, Φ(A, t) ⊆ A for all t ∈ R, or,

Φ(A,R) ⊆ A

Φ−t is in G, so that Φ−t(A) ⊆ A. Applying Φt to this containment, we get

Φt(Φ−t(A)) = IdG(A) = A ⊆ Φt(A)

Which gives Φ(A,R) = A. It is a consequence of general properties of bijec-
tions that an arbitrary union and intersection of invariant sets is invariant.

Theorem 2. A ⊆ X is invariant if and only if it is a union of entire
trajectories, i.e.

A =
⋃
i∈I

Φ(xi,R), xi ∈ X
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Proof. Clearly, an entire trajectory is invariant subset, and so any union of
entire trajectories is an invariant subset.

Conversely, suppose A is invariant. Let x ∈ A. Since Φ(A,R) = A, in
particular Φ(x,R) ⊆ A, and so A contains the entire trajectory of each x ∈
A and is hence is a union of entire trajectories. �

Note that a dynamical system on a space X defines a dynamical system
on every invariant subset A.

1.3. Definition. A set A ⊆ X is positively invariant or negatively invariant
if, respectively,

Φ(A,R+) ⊆ A, Φ(A,R−) ⊆ A

Theorem 3. Let x ∈ X. If for all ε > 0, there exists a subset some trajec-
tory which is the image of a connected subset of R and which is completely
contained in the ε-neighborhood of x, i.e. if there exists a y ∈ X and [0, T ]
∈ R such that

Φ(y, [0, T ]) ⊂ Bε(x)

then x is a rest point.

Proof. Assume x is not a rest point. Since the trajectory of x cannot enter
a rest point, for any [0, T ] there is some t0 ∈ [0, T ] such that Φ(x, t0) = x0

6= x. Let

m =
d(x0, x)

2
> 0

By the continuity of Φt0 on X, there is a δ’ such that

(1.2) Φ(Bδ′(x), t0) ⊆ Bm(x0).

We let δ = min (δ′, m). Clearly (1.2) holds if we replace δ’ with δ. Then
by the triangle inequality, Bδ(x) ∩ Bm(x0) = ∅. Therefore, for any ε < δ,
all y ∈ Bε(x) have Φ(y, to) ∈ Bm(x0), which implies Φ(y, to) /∈ Bδ(x). We
have thus found an ε such that no connected subset of the domain of any
trajectory is entirely contained in the ε-neighborhood of x, and hence the
conditions of the theorem do not hold, a contradiction. �

Corollary 1. If limt→+∞Φ(x, t) = p, then p is a rest point.

Proof. Translating the meaning of this limit by the group property, we get
that for any ε, there is a t0 such

Φ(Φ(x, t0),R+)) ⊆ Bε(p)

Then p is a rest point by Theorem 2. �

The same result clearly also holds for limt→−∞Φ(x, t) = p.

Proposition 5. If every ε-neighborhood of a point x ∈ X has a point y ∈
X such that the motion Φ(y, t) has an arbitrarily small period, then x is a
rest point.
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Proof. By continuity of Φ(x, t), there exists a [0, T ] such that for ε′ > 0,

Φ(x, [0, T ]) ⊆ Bε′(x)

By the Integral Continuity Condition, there is a δ > 0 such that for y ∈
Bδ(x), t ∈ [0, T ],

Φ(y, t) ⊆ Bε′(Φ(x, t))

. We may assume δ < ε′. Then by the triangle inequality,

d(Φ(y, t), x) < 2ε′, t ∈ [0, T ]

We may assume by the conditions of the theorem that y has an arbitrarily
small period, say τ < T . Then letting 2ε′ = ε, we have Φ(y,R) ⊆ Bε(x), so
x is a rest point by the previous theorem. �

Theorem 4. Every positively invariant set A ⊆ X which is homeomorphic
to a closed ball in Rn contains a rest point.

Proof. We identify A with a closed ball in Rn by the homeomorphism. Since
A is positively invariant, Φt, t > 0 is a map of A into A which has a fixed
point by Brouwer’s theorem. For a sequence of functions Φtk , tk → 0, let this
fixed point be xk. Then by sequential compactness, there exists a convergent
subsequence xkl → x ∈ A, and x is then a rest point by Proposition 5. �

1.4. Definition. Two dynamical systems, Φ: X × R → X and Ψ: Y × R
→ Y are said to be isomorphic or topologically equivalent if there exists a
homeomorphism f : X → Y such that

f(Φ(x, t)) = Ψ(f(x), t)

If the map f is not a homeomorphism but at least continuous, then the
systems are homomorphic dynamical systems.

It is easy to see that a homomorphism (and hence an isomorphism) of dy-
namical systems maps trajectories to trajectories, rest points to rest points,
periodic motions to periodic motions, and invariant sets to invariant sets. In
particular, these facts allow the complete classifcation of the isomorphism
type of a dynamical system with X = R by its rest points and the ’direction’
of the interval trajectories.

2. Limiting Properties and Stability

2.1. Definition. A point p ∈ X is an ω or α-limit point of a motion Φ(x, t),
respectively, if there exists a sequence tk tending to positive or negative
infinity, respectively, such that Φ(x, tk) → p.

Equivalently, p is an ω(α)-limit point of Φ(x, t) if for any ε > 0 and T ∈
R, there is a t′ > T (t′ < T ) such that Φ(x, t′) ∈ Bε(p).

[Note that all points of nonsingular motions are both ω and α-limit
points.]
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2.2. Definition. The dynamical limit sets of a point x ∈ X, written Ωx

and Ax are the sets of all ω and α-limit points, respectively, of the motion
Φ(x, t).

Theorem 5. For any x ∈ X, Ωx and Ax are invariant.

Proof. We prove the theorem for Ωx. The proof for Ax is analogous. Let x
∈ X, tk → +∞, Φ(x, tk)→ p, and t0 ∈ R. Φt0 is a continuous map, so that
in the image Φ(X, t0), Φ(Φ(x, tk), t0) converges to Φ(p, t0), which gives, by
the group property, Φ(x, t0 + tk) → Φ(p, t0). But then T + t0 → +∞, so
Φ(p, t0) ∈ Ωx.

Hence Φ(p,R) ⊆ Ωx, finishing the proof. �

Some more notation:

ΣA = Φ(A,R), Σ+
A = Φ(A,R+), Σ−A = Φ(A,R−)

∆x = Ωx ∪Ax
Clearly, ω and α-limit points of a motion are limit points of the trajecto-

ries, and hence ∆x ⊆ Σx, etc. In fact, it is easy to see that

Σx = Φ(x,R) ∪∆x, Σ+
x = Φ(x,R+) ∪ Ωx, Σ−x = Φ(x,R−) ∪Ax

2.3. Definition. A point x and the motion Φ(x, t) are said to be positively
or negatively Lagrange stable (stable L,+ stable L−), respectively, if Σ+

x or
Σ−x are compact. If Σx is compact, the motion is simply Lagrange stable
(stable L).

Note that rest points and periodic motions are always Lagrange stable,
as is any motion on a compact space, and, if X = Rn, any motion contained
within a bounded subset.

Theorem 6. A motion Φ(x, t) is positively Lagrange stable if and only if
all of the following conditions hold:

1. Ωx is nonempty.
2. Ωx is compact.
3. limt→+∞ d(Φ(x, t),Ωx) = 0.

Proof. Assume Φ(x, t) is postively Lagrange stable. We first show this im-
plies 1, 2, and 3.

1. Let tk → +∞. By compactness of Σ+
x , Φ(x, tk) must have a convergent

subsequence Φ(x, tkl)→ y,, which gives y ∈ Ωx, so Ωx is nonempty.
2. Ωx is a subset of the compact space Σ+

x , so all we have to show is
closure. Let q be a limit point of Ωx. Then any open neighborhood of
q, Bε′(q) contains a y ∈ Ωx, which, as an interior point of Bε′(q), has an
open neighborhood Bε(y) ⊆ Bε′(q). As y is an ω-limit point of a sequence
Φ(x, tk), Bε(y) contains Φ(x, t), t > T for arbitrarily large T . But by the
inclusions above, this means any neighborhood of q contains such a Φ(x, t),
which gives q ∈ Ωx.
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3. Suppose limt→+∞ d(Φ(x, t),Ωx) 6= 0. This gives that there exists a
sequence tk → +∞ such that for some ε > 0,

(2.1) d(Φ(x, tk),Ωx) > ε,∀k ∈ N
Since Σ+ is compact the sequence Φ(x, tk) contains a convergent subsequence
Φ(x, tkl)→ q. But then q ∈ Ωx, a contradiction of (2.1) above.

Now assume 1, 2, and 3, hold. We show the sequential compactness of
Σ+
x . Assume without loss of generality that tk is monotonically increasing.

If it is bounded, it converges, and hence so does Φ(x, tk). If tk → +∞ By 3,
there exists a sequence rk in Ωx such that

lim
k→+∞

d(Φ(x, tk), rk) = 0.

By 2, rk has a convergent subsequence rkn → r ∈ Ωx. But then again by 3,
Φ(x, tk) → r ∈ Σx so x is Lagrange stable.

�

If Ωx or Ax is empty, respectively, then the motion Φ(x, t) is called posi-
tively or negatively departing, and in case ∆x is empty simply departing. If
Ωx is nonempty but Ωx ∩ Φ(x,R+) is empty, the motion is positively as-
ymptotic. Negatively asymptotic is defined analogously, and a motion which
is both positively and negatively asymptotic is asymptotic.

Figure 1. The Van Der Pol dynamical system. The thick
blue line is a periodic, Poisson stable motion. It is also
the positive dynamical limit set of both the interior and
exterior motions, which are both positively asymptotic.
Such a dynamical limit set which is also a periodic motion
is called a limit cycle. The exterior motions are negatively
departing.

The third possibility, that Ωx ∩ Φ(x,R+) (or Ax ∩ Φ(x,R−)) is nonempty,
is the subject of the following definition:
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2.4. Definition. A motion Φ(x, t) is positively or negatively Poisson sta-
ble(stable P,+ stable P−) if, respectively, Ωx ∩ Φ(x,R+) or Ax ∩ Φ(x,R−)
are nonempty. If both of these intersections are nonempty, the motion is
simply Poisson stable (stable P).

Proposition 6. If Φ(x, t) is a positive Poisson stable motion, Φ(x,R) ⊆ Ωx.

Proof. Ωx is invariant, so if y ∈ Ωx, for any t, Φ(y, t) ∈ Ωx ∩ Φ(x,R), Φ(y,R)
∈ Ωx ∩ Φ(x,R), and hence Φ(y,R) = Φ(x,R) ∈ Ωx �

Clearly, all periodic and rest motions are Poisson stable. We now give
an example of a singular Poisson stable motion on the torus, {(θ, φ) | θ, φ ∈
[0, 1] ⊂ R} where (θ + l, φ+ k) = (θ, φ) for any integers l, k. Define

dθ

dt
= 1,

dφ

dt
= a, a ∈ R

This defines a dynamical system Φ((θ, φ), t) = (θ + t, φ + at). It is easy to
see that if a ∈ Q, a = p

q for p, q relatively prime, this motion is periodic with
period q. If a is irrational, the motion is not periodic, because otherwise
the period would give a solution to the equations τ = l, aτ = k for l, k ∈
Z and then a = k

l , a contradiction. In fact, for a irrational this motion
is everywhere dense on the torus, so that ∆(θ,φ) is the entire torus for any
(θ, φ), which gives that the motion is Poisson stable.

If Φ(x, t) is a nonsingular positively Poisson stable motion, we can fix
x and write Φ(x, t) = f(t) for t ∈ R. There exists a sequence tk → +∞,
f(tk) → x. In addition, f(t) has a left inverse; call it g. Note that the
image sequence of this inverse function is just the original sequence tk, i.e.
g(f(tk)) = tk, and it diverges. But g(x) = 0, so g is not continuous and
hence f : R+ → Φ(x,R+) is not a homeomorphism, which motivates the
following theorem. But first we need a lemma.

Lemma 1. If X is a space with connected open basis and f is a continuous
bijection from the half-line to X f : R, → X, then f is a homeomorphism.

Proof. : We show f is an open map.
Let B be a basic open set in R. B is contained in a compact subset, K,

of R. The restriction of f to K is an open mapping onto its image, so that
f(B) is open in f(K). But then there is an open set, U, of X, for which
the intersection U ∩ f(K) = f(B). But in a space with connected basis, the
intersection of a compact set and an open set is open, so that f(B) is open
in X. �

Theorem 7. If x ∈ X, x and Φ(x, t) are positively Poisson stable if and
only if Φ(x,R+) � R+

Proof. We fix x and write Φ(x, t) = f(t) as above. Then f R+ → Φ(x,R+)
is a continuous bijection. If Φ(x,R+) ∼= R+, there exists a homeomorphism
Ψ : Φ(x,R). → R+. This gives Ψ ◦ f : R+ → R+ is a continuous bijection
of the half real line, which implies by the lemma that it is a homeomorphism.
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But then Ψ−1 ◦ Ψ ◦ f = f is a homeomorphism, which is a contradiction.
=Ψ(f(t)) �

2.5. Definition. A point x ∈ X is called wandering if there exists an ε-
neighborhood Bε(x) and a T ∈ R such that for all t > T ,

(2.2) Bε(x) ∩ Φ(Bε(x), t) = ∅
A point is nonwandering if it is not a wandering point.

All singular motions are nonwandering, and if x is positively (or nega-
tively) Poisson stable, it is a fortiori nonwandering, since then there exists
a sequence tk → +∞ with Φ(x, tk) → x. The converse is not true, since
there exist nonsingular, nonwandering motions that are not Poisson stable.
For example, if we ”inserted” a rest point into the periodic motion in Figure
1, the leftover nonsingular motion would be nonwandering (thanks to the
fact that it’s a limit set of nearby motions) but not Poisson stable, since its
own dynamical limit set would just be the inserted rest point.

Proposition 7. The set of wandering points, W, is open.

Proof. Suppose x satisfies (2.3) above. If q ∈ Bε(x), then since it is an
interior point, there is an open neighborhood Bδ(q) ⊆ Bε(x). Yet q with
this Bδ(q) satisfies the conditions in (2.3), so q is also a wandering point.
This gives that the set of wandering points is open. �

Proposition 8. The set of wandering points, W, is invariant.

Proof. Since Φt0 is a bijection for any t0,

Φ(Bε(x), t0) ∩ Φ(Φ(Bε(x), t)t0) = ∅.
which gives that if x is any wandering point, Φ(x, t0) is a wandering point
for any t0, hence the set of wandering points is invariant. �

The set of nonwandering points, M = W c = X \ W, is therefore closed
and invariant.

A point x is wandering in an invariant set A ⊆ X if it is wandering in
(A,d) defined as a dynamical system by the restriction Φ |A : A × R →
A. It is easy to show that all wandering points in X are wandering points
in A. The contrapositive gives that all points that are nonwandering in A
are nonwandering in X. The converse of this statement is not necessarily
true; take for example the point x in Figure 1, which is wandering in L, but
nonwandering in X.

Theorem 8. Let x ∈ X. Every y ∈ Ωx is nonwandering in Σx.

Proof. Since y ∈ Ωx, there exists a sequence Φ(x, tk)→ y, tk → +∞. Let ε
> 0, T > 0. Then there is a point x0 = Φ(x, ti) ∈ Bε(y). In addition it is
clear that y is an ω-limit point of x0, so there is a sequence pk with element
pi such that Φ(x0, pi) ∈ Bε(y), pi > T . This gives

x0 ∈ Bε(y) ∩ Φ(Bε(y), pi), pi > T.
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which means y is nonwandering. �

Corollary 2. If at least one motion in X is either positively or negatively
Lagrange stable, the set of nonwandering points, M, is nonempty.

Corollary 3. In a compact metric space the set of nonwandering points,
M, is nonempty.

Corollary 4. In a compact metric space every motion tends toward the set
of nonwandering points.

Proof. This follows from the fact that all motions in a compact metric space
are Lagrange stable, and the fact that for a Lagrange stable motion Φ(x, t),

lim
t→+∞

d(Φ(x, t),Ωx) = 0

�

2.6. Definition. A set A ⊆ X is minimal if it is nonempty, closed, and
invariant and contains no nonempty, closed and invariant proper subset.

Examples of compact minimal sets include periodic and rest trajectories,
while the trajectory of any departing motion is a noncompact minimal set.

Theorem 9. Every closed, invariant, compact set A contains a minimal
subset.

Proof. If A contains a proper closed invariant subset, call it F1. Otherwise
set F1 = A. If F1 contains any closed invariant proper subset, call it F2,
otherwise set F1 = F2. We continue to get a nested sequence of closed,
invariant subsets; A ⊇ F1 ⊇ F2 . . .

Let

Fα =
∞⋂
k=1

Fk

Fα is clearly closed, invariant, and is nonempty by the finite intersection
property of A. We continue the procedure above to get a transfinite nested
sequence of closed, invariant subsets;

(2.3) A ⊇ F1 ⊇ F2 ⊇ . . . ⊇ Fα ⊇ Fα+1 . . . ⊇ Fβ ⊇ . . .
Since A is a compact metric space, it has a countable basis. By the Baire-
Hausdorff theorem, this well-ordered sequence of nested closed sets has at
most a countable number of elements, and so the successive elements must
coincide after some Fγ . Then Fγ ⊆ A is a minimal set. �

Note that in a compact metric space X, the set of nonwandering points
is closed, invariant, and nonempty. We can repeat the above argument for
M, and add the requirement that each motion in Mi+1 be nonwandering in
Mi, since each Mi is itself a compact invariant set and a dynamical system
under Φ. This results in an Mγ , and since Mγ+1 = Mγ , Mγ is nonwandering
in itself. Mγ is also the maximal such set (because a subset nonwandering
in itself would have to be open in Mγ).
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2.7. Definition. The set Mγ (or simply Z) is called the center or set of
central motions of a dynamical system.

Theorem 10. Z contains an everywhere dense set of Poisson stable points.

Proof. Let x0 ∈ Z, ε ∈ R+. We show Bε(x0) contains a Poisson stable point.
It follows from the fact that x0 is nonwandering that there exists a t1 > 1
and an ε1 with ε1 <

ε
6 such that by the triangle inequality,

Φ(Bε1(x0), t1) ⊆ B ε
2
(x)

In particular,

Φ(Bε1(x0), t1) ⊆ Bε(x)

Since x0 nonwandering in Z, there is a point x1 ∈ Z, with

x1 ∈ Φ(Bε1(x), t1) ∩Bε1(x)

We then ”start over” with x1 in the role of x. Since x1 is a wandering point,
there is a t2 < -2 and an ε2 with

ε2 <
d(Φ(Bε1(x), t1)c, x1)

6

such that

Φ(Bε2(x1), t2) ∩Bε2(x1) 6= ∅

Then there is some x3 in the intersection above, and

x3 ∈ Φ(Bε2(x1), t2) ⊆ Φ(Bε1(x), t1) ⊆ Bε(x)

Continuing indefinitely we obtain two divergent sequences {t2k} and {t2k+1},
a sequence εk → 0, and an infinite sequence of nested, closed neighborhoods.
Since compact spaces are complete, there is some unique q such that

q =
∞⋂
k=1

Bεk(xk−1)

Then for any δ, there is an n such that for all k > n

Φ(Bεk(xk−1), tk) ⊆ Bεn(xn−1) ⊆ Bδ(q)

Since q ∈ Bεn(xn−1), in particular Φ(q, tk) ⊆ Bδ(q) for all k > n. Since tk
diverges in both directions, this gives q ∈ Ωq ∩ Aq ∩ Φ(q,R), so that q is
Poisson stable. �

Corollary 5. Z is the closure of the set of all Poisson stable points.
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3. Differential Equations as Dynamical Systems

The general form of for a system of differential equations f : G→ Rn (G
⊆ Rn), which define a dynamical system Φt(x1, . . . , xn) by their solutions
is:

(3.1)
dxi(t)
dt

= fi(x1, . . . , xn), 1 ≤ i ≤ n

Where f is a continuous function on G, which is closed and bounded. The
autonomy of f is necessary if x(t) is to induce the group property. In fact,
letting x(t) be a solution, x(t0) = x0 ∈ Rn, x(t0 + t) is a solution only if

dxi(t0 + t)
dt

=
xi(y)
dy

dy

dt
= fi(x1, . . . , xn, t), 1 ≤ i ≤ n

where y = t0 + t. this is equivalent to

fi(x1, . . . , xn, t) = fi(x1, . . . , xn, t0 + t), 1 ≤ i ≤ n

and since t0 was arbitrary, fi(x1, . . . , xn, t) must be a constant function of t
for all i, i.e. f must be autonomous.

The conditions for the existence of a solution to (3.1) with domain all of
R are given by

Theorem 11. If the functions fi in (3.1) are continuous on Rn and

fi(x1, . . . , xn) = O(|x1|+ ...|xn|)

then parametrized solution x : R → Rn exists on all of R

The proof will only be outlined: it depends on the construction of arbi-
trarily close approximations, called ε-solutions, by Euler polygons.

3.1. Definition. A parametrization x(t) : R→ Rn with x(0) = x0 is called
an ε- solution of (2.1) on [a, b] ⊆ R if each xi(t) is continuous, sectionally
smooth, and satisfies:

xi(t) = pi(x0) +
∫ t

t0

fi(x1, . . . , xn)dt+
∫ t

t0

Θi(t)dt, |Θi(t)| < ε

where the error function Θ : R → Rn is piecewise continuous, and pi : Rn
→ R is the i-th projection function.

We use these ε-solutions to give a sequence of uniformly bounded, equicon-
tinuous functions xεn which converge, by Arzelà’s theorem, to a continuous
function x(t) satisfying (3.1). The condition on the asymptotic behavior of
f is negligible due to the fact that a differential equation on G can simply
be extended to an equation which is continuous and bounded on Rn.

A clear requirement for Φt to be well defined is that the trajectories
be distinct, or equivalently that the sets of pairs (t, x(t)) defining distinct
solutions intersect trivially (these sets will be equivalence classes, after all).
This is equivalent to the uniqueness of the solution x(t) passing through an
arbitrary point y ∈ Rn. The conditions for this is given by:
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Theorem 12. If the functions fi in (3.1) are Lipschitz on G, then there
exists a unique solution in G satisfying a given initial condition.

For this and the previous proof, see [1]. We have seen any solution x(t)
of (3.1) will be continuous and satisfy the group property. Letting x(t) be
the solution defined by the initial condition x(0) = x ∈ Rn, Φ(x, t) = x(t)
defines a dynamical system.
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