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Abstract

Riemann surface are 2-manifolds with complex analytical struc-
ture, and are thus a meeting ground for topology and complex anal-
ysis. Cohomology with coefficients in the sheaf of holomorphic func-
tions is an important tool in the study of Riemann surfaces. This
algebraic structure is interesting, because it encodes both analytical
and topological properties of a Riemann surface.

1 Preliminaries

Before beginning my discussion of Riemann surfaces, I would like to remind
the reader of some important definitions and theorems from topology and
complex analysis. These should, for the most part, be familiar concepts; I
have gathered them here primarily for reference purposes.

1.1 Topology

Definition 1.1.1 (Open Map). Let X and Y be topological spaces. A map
f : X → Y is called open if for all open sets U ⊆ X we have that f(U) is
open.

Definition 1.1.2 (Open Cover). Let X be a topological space. An open
cover of A ⊆ X is a collection U of open sets such that A ⊆

⋃
U∈U U . An

open cover V is called finer than U if for all V ∈ V there exists a U ∈ U such
that V ⊆ U . This is denoted V < U .
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Definition 1.1.3 (Locally homeomorphic). Let X and Y be topological
spaces. We say X is locally homeomorphic to Y if for all x ∈ X there exist
open sets U ⊆ X and V ⊆ Y such that x ∈ U and U is homeomorphic to V .

Definition 1.1.4 (n-manifold). An n-manifold is a Hausdorff topological
space with a countable basis that is locally homeomorphic to Rn.

Definition 1.1.5 (One Point Compactification). Let X be a locally compact
Hausdorff space that is not compact. The one point compactification of X
is the unique compact topological space X ′ ⊃ X such that X ′ \X is a single
point.

Recall that the one point compactification of X can be constructed in the
following way. Let ∞ /∈ X. Now let X ′ = X ∪ {∞} and let

{U ⊂ X ′ | U open in X or X \ U is compact }

be a basis for the topology on X ′.

1.2 Complex Analysis

Definition 1.2.1 (Holomorphic Function). Let U ⊆ C be open. A function
f : U → C is called holomorphic if it is complex differentiable on U .

Definition 1.2.2 (Biholomorphic Function). Let U ⊆ C be open. A function
f : U → V ⊆ C is called biholomorphic if it is a holomorphic bijection with
a holomorphic inverse.

Definition 1.2.3 (Meromorphic Function). Let U ⊆ C be open. A function
f : U → C∪ {∞} is said to be meromorphic if X = f−1(∞) is a discrete set
such that f is holomorphic on U \X and limz→x |f(z)| = ∞ for all x ∈ X.

Definition 1.2.4 (Doubly Periodic). A function f : C → C is called doubly
periodic if there exist w1, w2 ∈ C such that w1 and w2 are linearly indepen-
dent over R and f(z) = f(z ± wi) for all z ∈ C and i ∈ {1, 2}. w1 and w2

are called the periods of f .

Theorem 1.2.5 (Open mapping). If f : C → C is a non-constant holomor-
phic map, then f is an open map.
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2 Riemann Surfaces

2.1 Definitions

Definition 2.1.1 (Complex Atlas). Let X be a 2-manifold. A complex
atlas on X consists of an open cover {Ui}i∈I and a collection of associated
homeomorphisms {φi : Ui → Vi ⊆ C}i∈I with the following property:

φi ◦ φ−1
j is biholomorphic on φj(Ui ∩ Uj) ∀ i, j ∈ I (1)

The homeomorphisms belonging to a complex atlas are called charts. Two
charts are called compatible if they satisfy property (1). Two complex atlases
are considered equivalent if their union is itself an atlas.

Definition 2.1.2 (Riemann Surface). A Riemann surface X is a connected
2-manifold with a complex structure given by an equivalence class of atlases
on X.

Remark. Interestingly the stipulation that a manifold have a countable ba-
sis is unnecessary when considering Riemann surfaces, because the added
rigidity that comes with the complex structure is enough to ensure that the
topology has a countable basis. However this is not true when considering
higher dimensional complex manifolds.

2.2 Examples

The following examples provide a more concrete representation of the struc-
ture of Riemann surfaces. They also afford an opportunity to explore the
relationship between the study of Riemann surfaces and that of complex
analysis.

Example 2.2.1 (Riemann Sphere). Topologically the Riemann sphere is
the one point compactification of C. Its complex structure is defined by the
following two maps:

id : C → C and f(z) =

{
1/z z ∈ C∗

0 z = ∞

The Riemann sphere is often denoted P1.
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Proposition 2.2.2. The Riemann sphere defined in Example 2.2.1 is a Rie-
mann surface.

Proof. In order to show that P1 is actually a Riemann surface one must prove
(a) that it is a connected 2-manifold and (b) that f and id are compatible.

(a) Clearly id is a homeomorphism, and f is a surjective bijection. For
f to be a homeomorphism, it must also be continuous and open. f |C∗ is
continuous so we need only consider open sets containing 0. Let U ⊆ C be
an open set such that 0 ∈ U . Also let Br ⊆ U be an open ball of radius r > 0
centered at 0. By the definition of f we have that f−1(Br) = {z ∈ C | |z| >
1/r} ∪ {∞}. This set is open in P1, because {z ∈ C | |z| ≤ 1/r} is compact.
This implies that f−1(U) = f−1(U \ {0}) ∪ f−1(Br) is an open set, because
f |C∗ is continuous. Therefore f is continuous.

In order to show that f is open, consider an open set V ⊆ P1. By the
definition of P1 we have that V c = P1 \ V is compact in C. This implies
that there exists r > 0 such that V c ⊆ {z ∈ C | |z| < r}. Thus we
have that A = {z ∈ C | |z| > r} is contained in V . By the definition
of f , f(A) = {z ∈ C | |z| > 1/r} which is an open set in C. Therefore
f(V ) = f(V \ {∞})∪ f(A) is open, because f |C∗ is an open map. Thus f is
a homeomorphism.

{C}∪{C∗∪{∞}} is an open cover of P1. Thus P1 is locally homeomorphic
to C. Recall that the topological structure of C is that of R2. This implies
that the Riemann sphere is locally homeomorphic to R2.

Now I will show that the Riemann sphere is Hausdorff. Let z, w ∈ P1

such that z 6= w. If z, w 6= ∞, then z, w ∈ C. In this case z and w can be
separated, because C is Hausdorff. If z = ∞, then let U = {u ∈ C | |w−u| <
r} where r ∈ R such that r > 0. U is an open set such that w ∈ U and its
closure U is a compact set such that ∞ /∈ U . This implies that V = P1 \ U
is an open set such that ∞ ∈ V and U ∩ V = ∅. Therefore all z, w ∈ P1 can
be separated, and thus P1 is Hausdorff.

Lastly I will prove that P1 is connected. P1 = C ∪ (C∗ ∪ {∞}) Both C
and C∗ ∪ {∞} are connected. These two sets have nonempty intersection.
This implies that their union is connected. Thus P1 is connected. Therefore
P1 is a connected 2-manifold.

(b) Clearly C∩(C∗∪{∞}) = C∗ and f−1(z) = f(z) = 1/z is holomorphic
on C∗. Thus id ◦ f−1 = f ◦ id−1 is holomorphic on C∗. Therefore P1 is a
Riemann surface.
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Remark. The Riemann sphere is important in complex analysis, because it
can be viewed as the range of meromorphic functions.

Example 2.2.3 (Torus). Let w1, w2 ∈ C be linearly independent over R.
Also let Γ = {nw1 +mw2 ∈ C | n,m ∈ Z}. Topologically the torus is defined
as T = C/Γ with the quotient topology. In order to understand the complex
structure on T we consider an atlas of charts. Let U1, U2 and U3 be defined
in the following way.

U1 = {x1w1 + x2w2 ∈ C | x1, x2 ∈ (0, 1)}
U2 = {x1w1 + x2w2 ∈ C | x1, x2 ∈ (−1/2, 1/2)}
U3 = {x1w1 + x2w2 ∈ C | x1, x2 ∈ (−1/4, 3/4)}

Also let pi : Ui → p(Ui) ⊆ T, i ∈ {1, 2, 3} be restrictions of the quotient
map p : C → C/Γ. The charts are then the maps p−1

i , i ∈ {1, 2, 3}.

Proposition 2.2.4. The torus T as defined in Example 2.2.3 is a Riemann
surface.

Proof. As in Proposition 2.2.2 We must show that (a) T is a conected 2-
manifold and (b) that p−1

i are compatible for all i ∈ {1, 2, 3}.
(a) First I will show that T is locally homeomorphic to C. I claim that

{p(Ui)}i∈{1,2,3} is an open cover of T and that pi, i ∈ {1, 2, 3} are homeomor-
phisms. The first claim is a simple result of two facts: p is an open map and
{x1w1 + x2w2 | x1, x2 ∈ [−1/4, 3/4]} ⊆

⋃
i∈{1,2,3} Ui. In order to prove the

second claim I only need to show that pi, i ∈ {1, 2, 3} are injective as they are
continuous, open and surjective by definition. Let v, z ∈ U1 such that v 6= z.
This implies that there exist x1, x2, y1, y2 ∈ (0, 1) such that v = x1w1 + x2w2

and z = y1w1 + y2w2. We have that |x1 − y1| < 1 and |x2 − y2| < 1 as they
are all elements of the interval (0, 1). One of these values must be nonzero,
because v 6= z. This implies that x1 − y1 /∈ Z or x2 − y2 /∈ Z. Therefore
(x1− y1)w1 + (x2− y2)w2 /∈ Γ. This in turn means that p1(v) 6= p1(w). Thus
p1 must be injective. Similarly pi is injective for all i ∈ {1, 2, 3} Therefore
the pi are homeomorphisms, and as a result T is locally homeomorphic to C.

Next I will show that T is Hausdorff. Let z, v ∈ T such that v 6= z. We
have that z ∈ p(Ui) and v ∈ p(Uj) for some i, j ∈ {1, 2, 3}. Let z′ = p−1

i (z)
and v′ = p−1

j (v). Given that C is a two dimensional real vector spaces
and {w1, w2} is a linearly independent set, {w1, w2} must form a basis of
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C. Therefore there are unique real numbers x1, x2, y1, y2 ∈ R such that
z′ = x1w1 + x2w2, and v′ = y1w1 + y2w2. Without loss of generality assume
that x1 /∈ Z. Let δ > 0 be the distance from x1 to Z, and Bz be the open
ball of radius δ/2 centered at z′. Clearly the closure Bz and Γ are disjoint
sets. If v′ ∈ Γ, then v and z are separated by the sets p(Bz) and p(C \ Bz).
If v′ /∈ Γ, then yk /∈ Z for some k ∈ {1, 2}. Let ε > 0 be the distance from
yk to Z and Bv be the ball of radius ε/2 centered at v′. Given that v 6= z
and C is Hausdorff, it follows that there exist open neighborhoods U of z′

and V of v′ such that U ∩ V = ∅. In this case z and v are separated by the
sets p(U ∩ Bz) and p(V ∩ Bv). Thus any pair of distinct points in T can be
separated.

Now I will show that T is connected. The quotient map p is by definition
continuous, and C is connected. This implies that p(C) = T is connected.
Therefore T is a connected 2-manifold.

(b) It is now my task to demonstrate that p−1
i and p−1

j are compatible for
all i, j ∈ {1, 2, 3}. Given that pi and pj are by definition restrictions of the
same map, it follows that p−1

i ◦ pj must be the identity on p−1
j (Ui ∩ Uj) for

all i, j ∈ {1, 2, 3}. Thus pi and pj must be compatible for all i, j ∈ {1, 2, 3},
as the identity is a biholomorphic map.

Functions on a torus can be extended to functions on C by composing
with the quotient map. The resulting function is by definition doubly periodic
with respect to w1 and w2. Conversely it is an easy exercise to show that any
doubly periodic function can be considered a function on the torus where w1

and w2 are the periods of the function. Thus tori are the domains of doubly
periodic functions and the study of doubly periodic functions is exactly the
study of functions on tori.

Remark. Both of the examples given here are compact Riemann surfaces, but
a Riemann surface need not be compact. Both compact and non-compact
Riemann surfaces can be used in the study of complex analysis.

2.3 Holomorphic Functions

Definition 2.3.1 (Holomorphic Function). Let X and Y be Riemann sur-
faces. A function f : X → Y is called holomorphic if for all charts φ : U1 →
V1 on X and ψ : U2 → V2 on Y the following holds:

ψ ◦ f ◦ φ−1 is holomorphic on φ(U1 ∩ f−1(U2)) (2)
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We can consider C as a Riemann surface by simply recalling that its topo-
logical structure is that of R2 and giving it the complex structure associated
to the atlas of identity maps. Taking X,Y = C in Definition 2.3.1 simply
gives us that f : C → C is holomorphic as a map of Riemann surfaces ex-
actly when it is holomorphic in the usual sense. If we allow X to be any
Riemann surface, but take Y = C, then Definition 2.3.1 says that f : X → C
is holomorphic if and only if f ◦ φ−1

i is a holomorphic function in the usual
sense for all charts φi on X.

Remark. We write O(X) for the set of holomorphic functions from X to C.

Theorem 2.3.2 (Open Mapping). Let X and Y be Riemann surfaces. If
f : X → Y is a non-constant holomorphic map, then f is an open map.

Proof. Let f : X → Y be a non-constant holomorphic function. Also let
φ : U1 → V1 and ψ : U2 → V2 be charts on X and Y respectively. By
the definition of a holomorphic function on a Riemann surface we have that
g = ψ◦f◦φ−1 is a holomorphic function in the usual sense on φ(U1∩f−1(U2)).
As f is non-constant and φ and ψ are homeomorphisms, we have that g is
non-constant. Therefore by Theorem 1.2.5 g is open. This implies that
ψ−1g ◦ φ is also open as the composition of open maps gives an open map.
Thus f |U1 must be an open map. Therefore f is open on the domain of
any chart on X. This implies that f must be open on the arbitrary union
of domains of charts on X, because the arbitrary union of open sets is still
open. Thus f must be open on all of X.

Theorem 2.3.3. Let X be a compact Riemann surface. If f : X → C is
holomorphic, then f is constant.

Proof. Let f : X → C be a holomorphic function, and assume f is not
constant. This implies that f is an open map by Theorem 2.3.2. This in
turn implies that f(X) is open. Therefore f(X) must also be compact,
because X is compact and f is continuous. Thus f(X) is closed, because
C is Hausdorff. Therefore f(X) is both open and closed. Thus f(X) = C,
because C is connected. This implies however that C is compact which is a
contradiction. Therefore f must be constant.

2.4 Sheaves

Definition 2.4.1 (Presheaf). Let (X, T ) be a topological space. A presheaf
of vector spaces on X is a family F = {F(U)}U∈T of vector spaces and a
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collection of associated linear maps, called restriction maps,

ρ = {ρU
V : F(U) → F(V ) | V, U ∈ T and V ⊆ U}

such that
ρU

U = idF(U) for all U ∈ T

and

ρV
W ◦ ρU

V = ρU
W for all U, V,W ∈ T such that W ⊆ V ⊆ U

Given U, V ∈ T such that V ⊆ U and f ∈ F(U) one often writes f |V rather
than ρU

V (f).

Remark. A presheaf is usually just denoted by the name of its family of vector
spaces, so the presheaf described above would be denoted F .

Definition 2.4.2 (Sheaf). Let F be a presheaf on a topological space X. We
call F a sheaf on X if for all open sets U ⊆ X and collections {Ui ⊆ U}i∈I

such that
⋃

i∈I Ui = U , F(U) satisfies the following two properties:

For f, g ∈ F(U) such that f |Ui
= g|Ui

for all i ∈ I, it is given that f = g.
(3)

For all collections {fi ∈ F(Ui)}i∈I such that fi|Ui∩Uj
= fj|Ui∩Uj

for all i, j ∈ I there exists f ∈ F(U) such that f |Ui
= fi for all i ∈ I.

(4)

Definition 2.4.3 (Sheaf of holomorphic functions, O). Let X be a Riemann
surface. The presheaf O of holomorphic functions on X is made up of the
complex vector spaces of holomorphic functions. For all open sets U ⊆ X,
O(U) is the vector space of holomorphic functions on U . The restriction
maps are the usual restrictions of functions.

Proposition 2.4.4. If X is a Riemann surface, then O is a sheaf on X.

Proof. Clearly O is a presheaf, so it is only necessary to show that it satisfies
properties 3 and 4. Property (3) follows directly from the definition of a
restriction of a function; two functions that agree on all the Ui must agree
on U and hence be the same function.

In order to show that O satisfies property (4) I will construct the desired
function from an arbitrary collection. Let U be an open subset of a Riemann
surface X and U = {Ui}i∈I be an open cover of U such that Ui ⊆ U for
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all i ∈ I. Also let {fi ∈ O(Ui)}i∈I be a collection of holomorphic functions
such that fi|Ui∩Uj

= fj|Ui∩Uj
for all i, j ∈ I. Now I must show that there is

a function f ∈ O(U) such that f |Ui
= fi for all i ∈ I. For x ∈ U define

f(x) = fi(x) where i ∈ I such that x ∈ Ui. To show that f is well defined
consider x ∈ U and i, j ∈ I such that x ∈ Ui and x ∈ Uj. Clearly x ∈ Ui∩Uj.
This implies that fi|Ui∩Uj

(x) = fj|Ui∩Uj
(x) by the definition of the fi. This

in turn implies fi(x) = fj(x), because the restriction map is the standard
function restriction. Therefore f is a well defined function. As all the fi are
holomorphic, it follows that given any x ∈ U there exists a neighborhood of
x, namely some Ui ∈ U , where f is holomorphic. Therefore f ∈ O(U).

2.5 Cohomology

Definition 2.5.1 (Cochain). Let X be a Riemann surface and U = {Ui}i∈I

be an open cover of X. Also let F be a sheaf of complex vector spaces on X
and n ∈ N ∪ {0}. The nth cochain group of F with respect to U is defined
as follows:

Cn(U ,F) =
∏

(i0,...in)∈In+1

F(Ui0 ∩ · · · ∩ Uin)

An n-cochain is simply an element of the nth cochain group. Cn(U ,F) is a
complex vector space under component-wise addition and scalar multiplica-
tion.

Definition 2.5.2 (Coboundary map). Let X,U ,F and n be defined as in
Definition 2.5.1. The nth coboundary map is given by

δn : Cn(U ,F) → Cn+1(U ,F)

such that (fi0,...,in)i0,...,in∈I ∈ Cn(U ,F) maps to (gi0,...,in+1)i0,...,in+1∈I ∈ Cn+1(U ,F)

where gi0,...,in+1 =
n+1∑
m=0

(−1)mfi0,...,bim,...,in+1
|U0∩···∩Un+1

Lemma 2.5.3. For all n ∈ N we have that δn ◦ δn−1 = 0.

Proof. Let X be a Riemann surface, n ∈ N and h ∈ Cn−1(X). Also let
f = δn−1(h) and g = δn(f). This gives us that

fi0,...,in =
n∑

k=0

(−1)khi0,...,bik,...,in
|U0∩···∩Un
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and

gi0,...,in+1 =
n+1∑
m=0

(−1)kfi0,...,bim,...,in+1
|U0∩···∩Un+1

=
∑
k<m

0≤m≤n+1
0≤k≤n

(−1)m+khio,...,bik,...,bim,...,in+1
|U0∩···∩Un+1 +

+
∑
m≤k

0≤m≤n+1
0≤k≤n

(−1)m+khio,...,bim,...,bik+1,...,in+1
|U0∩···∩Un+1

=
∑
k<m

1≤m≤n+1
0≤k≤n

(−1)m+khio,...,bik,...,bim,...,in+1
|U0∩···∩Un+1 +

+
∑
m<k

0≤m≤n
1≤k≤n+1

(−1)m+k−1hio,...,bim,...,bik,...,in+1
|U0∩···∩Un+1

= 0

Therefore δn(δn−1(h)) = δn(f) = g = 0.

Definition 2.5.4 (Cocyle, Coboundary). Let X,U ,F and n be defined as
in Definition 2.5.1. The space of n-cocyles is defined as

Zn(U ,F) = Ker(δn)

The space of n-coboundaries is defined as

Bn(U ,F) = Im(δn−1)

Definition 2.5.5 (Cohomology, Hn(U ,F)). Let X,U ,F and n be defined as
in Definition 2.5.1. The nth cohomology with coefficients in F with respect
to the cover U is then defined as

Hn(U ,F) = Zn(U ,F)/Bn(U ,F) (5)

The cohomology group defined above is dependent on the open cover U .
To construct a cohomology group that varies only with the choice of sheaf
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and Riemann surface one takes a limit using increasingly fine covers. Due to
the cumbersome nature of the notation I will only give the limit definition for
the first cohomology group. The given method can however be easily extend
to higher cohomology groups.

Definition 2.5.6 (Refining map). Let X be a Riemann surface and U =
{Ui}i∈I be an open cover of X. Also let V = {Vj}j∈J be an open cover of X
such that V is finer than U . A refining map is a map τ : J → I such that
Vj ⊆ Uτj for all j ∈ J .

Definition 2.5.7 (Refinement induced maps). Let X,U and V be as in
Definition 2.5.6. Also let F be a sheaf on X. A refining map τ : J → I
induces a map

tUV : Z1(U ,F) → Z1(V ,F) such that

(fi,l) ∈ Z1(U ,F) maps to (gj,k) ∈ Z1(V ,F)

where gj,k = fτj,τk|Vj∩Vk
for all j, k ∈ J.

This map commutes with the coboundary maps and thus induces a map

tUV : H1(U ,F) → H1(V ,F).

Lemma 2.5.8. The induced map

tUV : H1(U ,F) → H1(V ,F).

is independent of the choice of refining map.

Proof. Let X,U , V and F be as defined in Definition 2.5.7. Also let τ, σ :
J → I be refining maps, and tUV and sUV be the maps that they induce on the
first cohomology groups with coefficients in F . Finally let (fi,l) ∈ Z1(U ,F).
In order to show that tUV((fi,l)) and sUV((fi,l)) are equivalent in H1(V ,F) I
must prove that their difference is in B1(V ,F).

Consider gj,k = fτj,τk|Vj∩Vk
and ḡj,k = fσj,σk|Vj∩Vk

for all j, k ∈ J . Clearly
Vj ⊆ Uτj ∩ Uσj by the definition of a refining map. Define hj = fτj,σj|Vj

for
all j ∈ J . Now on Vj ∩ Vk we have

gj,k − ḡj,k = fτj,τk − fσj,σk by definition
= fτj,τk + fτk,σj − fτk,σj − fσj,σk adding zero
= fτj,σj − fτk,σk because (fi,l) is a cocycle
= hj − hk by definition
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Therefore (gj,k) − (ḡj,k) = δ((hj)), where δ is the coboundary map from
C0(V ,F) to C1(V ,F). Thus (gj,k) − (ḡj,k) ∈ B1(V ,F). By the definition of
the induced maps tUV and sUV we have that tUV((fi,l)) = (gj,k) and sUV((fi,l)) =
(ḡj,k). This of course implies that tUV − sUV ∈ B1(V ,F). Therefore the two
maps are the same.

Lemma 2.5.9. The induced map

tUV : H1(U ,F) → H1(V ,F).

is injective

Proof. Let X,U , V and F be as defined in Definition 2.5.7. Also let τ : J → I
be a refining map and tUV be the induced map on the first cohomology groups.
In order to prove that tUV is injective, it is enough to show that Ker(tUV) = {0}.

Let (fi,l) ∈ Z1(U ,F) be a cycle such that tUV((fi,l)) = 0. This implies that
(fτj,τk) ∈ B1(V ,F). Which in turn implies that there exists a (gj) ∈ C0(V ,F)
such that fτj,τk = gj − gk on Vj ∩ Vk for all j, k ∈ J . On Ui ∩ Vk ∩ Vl we have

gj − gk = fτj,τk by definition
= fτj,i + fi,τk because (f

j ,k) is a cocycle
= −fi,τj + fi,τk because (f

j ,k) is a cocycle

for all j, k ∈ J and i ∈ I. This implies that fi,τj + gj = fi,τk + gk on
(Ui ∩ Vj)∩ (Ui ∩ Vk) for all j, k ∈ J and i ∈ I. Because V is an open cover of
X, {Ui ∩ Vj}j∈J must be an open cover of Ui. Therefore by property (4) of
a sheaf, there exists hi ∈ F(Ui) such that

hi|Ui∩Vj
= fi,τj + gj for all j ∈ J.

For each i ∈ I let hi ∈ F(Ui) be the element described above. On Ui∩Ul∩Vj

we then have

fi,l = fi,τj + fτj,l because (fi,l) is a cocycle
= fi,τj − fl,τj because (fi,l) is a cocycle
= fi,τj + gj − fl,τj − gj adding zero
= hi − hl by definition

for all i, l ∈ I and j ∈ J . Therefore by property (3) of a sheaf, we have that
fi,l = hi−hl on Ui∩Ul for all i, l ∈ I. This implies that (fi,l) = δ((hi)) where
δ is the coboundary map from C0(U ,F) to C1(U ,F). This in turn implies
that (fi,j) = 0 in H1(U ,F). Therefore Ker(tUV) = {0}, and tUV is injective.
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Definition 2.5.10 (Cohomology, H1(X,F)). Let X be a Riemann surface,
F be a sheaf on X and U be the set of all open covers of X. Define a
relation ∼ on the disjoint union of H1(U ,F) where U ∈ U in the following
way. Given U ,V ∈ U, α ∈ H1(U ,F) and β ∈ H1(V ,F) we say α ∼ β if
there exists W ∈ U such that W < U , W < V and tUW(α) = tVW(β). This
is an equivalence relation by Lemmas 2.5.8 and 2.5.9. The first cohomology
group of X with coefficients in the sheaf F is defined as the set of equivalence
classes of ∼ with addition given by adding representatives.

H1(X,F) =

(∐
U∈U

H1(U ,F)

)/
∼

For the zeroth cohomology the limit definition is not necessary this is due
to the following theorem.

Theorem 2.5.11 (Zeroth Cohomology). If X is a Riemann surface and F
is a sheaf on X, then H0(U ,F) ∼= F(X) for all open covers U of X.

Proof. Let X be a Riemann surface, F be a sheaf on X and U = {Ui}i∈I be
an open cover of X. Consider

H0(U ,F) = Z0(U ,F)/B0(U ,F)

By definition B0(U ,F) = 0, because there are no nontrivial −1-cochains.
Therefore

H0(U ,F) = Z0(U ,F) = Ker(δ0 : C0(U ,F) → C1(U ,F))

Let (fi) ∈ Z0(U ,F). This implies that fi = fj on Ui∩Uj for all i, j ∈ I by the
definition of δ0. Therefore by property (4) of a sheaf there exists f ∈ F(X)
such that f |Ui

= fi for all i ∈ I. By property (3) of a sheaf this f is unique.
Thus there is a bijection from Z0(U ,F) to F(X). Property (3) of a sheaf
gives us that this is an isomorphism. Therefore H0(U ,F) ∼= F(X).

Remark. Due to theorem 2.5.11, we can simply define H0(X,F) to be F(X).

Corollary 2.5.12. If X is a compact Riemann surface, then H0(X,O) ∼= C.

Proof. Let X be a compact Riemann surface. By Theorem 2.3.3 f is constant
for all f ∈ O(X). This implies that C ∼= O(X) ∼= H0(X,O), by Theorem
2.5.11.
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The limit definition of cohomology is good, because it provides a structure
that is only dependent on the choice of sheaf and Riemann surface. However
calculations straight from the definition can be very cumbersome. Happily
there are multiple theorems that make the task of computing cohomology
groups much more approachable. I will now give two such theorems without
proof so that I can more easily compute the first cohomology of the Riemann
sphere with coefficients in the sheaf of holomorphic functions.

Theorem 2.5.13 (Cohomology of a disk). If D = {z ∈ C | r > |z|} is a
disk of radius 0 < r ≤ ∞ in the complex plane, then H1(D,O) = 0.

Theorem 2.5.14 (Leray). Let X be a Riemann surface and U be an open
cover of X. If H1(U,O) = 0 for all U ∈ U , then H1(U ,O) ∼= H1(X,O).

Remark. A more general version of this theorem holds for all cohomology
groups with respect to a sheaf of abelian groups on an arbitrary topological
space.

Theorem 2.5.15 (Cohomology of the Riemann Sphere). H1(P1,O) = 0

Proof. Let U1 = P1 \ {∞} and U2 = P1 \ {0}. Also let U = {U1, U2} and
(fi,j) ∈ Z1(U ,O). Because (fi,j) is a cocycle, we have that f1,1 = f2,2 = 0
and f1,2 = −f2,1. This means that (fi,j) is determined by its value at f1,2. By
the definition of the Riemann sphere, U1 ∩ U2 = C∗. This implies that f1,2

is an element of O(C∗) and hence is a holomorphic function with a Laurent
expansion on C∗. Let

f1,2(z) =
∞∑

n=−∞

cnz
n

be its Laurent expansion. Also let

f1(z) =
∞∑

n=0

cnz
n and f2(z) = −

−1∑
n=−∞

cnz
n.

Clearly fi ∈ O(Ui) for all i ∈ {1, 2}, and f1,2 = f1 − f2. This implies that
(fi,j) = δ((fi)) where δ is the coboundary map from C0(U ,O) to C1(U ,O).
Therefore for all (fi,j) ∈ Z1(U ,O) we have that (fi,j) ∈ B1(U ,O), and thus
H1(U ,O) = 0.

By the definition of the Riemann sphere U1 = C and U2 = C∗∪{∞}. Thus
U2 is biholomorphic to C under the map z 7→ 1/z. Therefore by Theorem
2.5.13

H1(Ui,O) = H1(C,O) = 0 for all i ∈ {1, 2}.
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Thus by Theorem 2.5.14

H1(P1,O) = H1(U ,O) = 0.

2.6 Further Study

This paper has provided an introduction to the study of Riemann surfaces.
As motivation for further study here are two beautiful and powerful theorems
relating to the cohomology of Riemann Surfaces.

Theorem 2.6.1. If X is a compact Riemann surface, then

dimH1(X,O) <∞

.

It turns out that for a compact Riemann surfaceX we have thatH1(X,O) ∼=
Cg where g is the genus of X. This is interesting, because it shows an alge-
braic structure built from analytic objects reflecting a topological property.

Theorem 2.6.2 (Serre Duality). If X is a compact Riemann surface, then
H1(X,O) ∼= H0(X,Ω) where Ω is the sheaf of holomorphic one forms on X.

Remark. A more general version of this theorem holds for any Riemann sur-
face and can be applied to different pairs of sheaves.

This theorem is interesting, because it shows that there is a strong rela-
tionship between holomorphic one forms on Riemann surfaces and holomor-
phic functions. It is also useful for calculating cohomology groups, because
it reduces calculations of the first cohomology to calculations of the zeroth.
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Verlag, Boston, 2001.

[4] L. Ahlfors. Complex Analysis. McGraw-Hill, 1979.

[5] J. Jost. Compact Riemann Surfaces. 2nd Ed. Springer-Verlag, Berlin,
2002.

[6] A. Hatcher. Algebraic Topology. Cambridge University Press, 2002.

16


	Preliminaries
	Topology
	Complex Analysis

	Riemann Surfaces
	Definitions
	Examples
	Holomorphic Functions
	Sheaves
	Cohomology
	Further Study

	References

