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Abstract 

 
 The idea for this paper originated from Professor László Babai’s 

challenge to find a triangle-free graph with chromatic number 4.  Professor 

Babai gave the following hints: the graph would have eleven vertices, the 

graph would be five-fold symmetric, and the graph was called Grötzsch’s 

Graph.  After independently discovering a graph which satisfied all the 

conditions, I checked with Professor Babai, who confirmed that it was 

indeed an isomorphism of Grötzsch’s Graph.  Independent further research 

led me to Grötzsch’s Theorem, which I will state.  The purpose of this 

paper is to demonstrate the need for the condition of planarity in 

Grötzsch’s Theorem, using Grötzsch’s Graph as an example.  This paper 

is conducted from first principles; all terms will be defined along the way.  

No previous experience with graph theory is necessary.   

 

 

 

Section 1: Preliminaries 

 
Definition 1.1: A graph is a pair G = (V, E), where V is the set of vertices and E is the set 

of edges. 

 

Definition 1.2: An edge is an unordered pair of vertices. 

 

Definition 1.3: Two vertices are adjacent if they are joined by an edge.  Two adjacent 

vertices are said to be neighbors. 

 

Definition 1.4: A walk of length k is a sequence of k + 1 vertices vo,…,vk such that vi-1 and 

vi are adjacent for all i.   

 



Definition 1.5: A closed walk of length k is a walk v0,…,vk where vk = vo. 

 

Definition 1.6: A cycle of length k is a closed walk of length k with no repeated vertices 

except that vo = vk.  

 

Definition 1.7: A graph is triangle-free if it does not contain a cycle of length 3.   

 

Definition 1.8: A legal k-coloring of a graph is a function c: V → [k] = {1,…,k} such that 

adjacent vertices receive different colors.  A graph is k-colorable if there exists a legal k-

coloring.  The chromatic number χ(G) of a graph is the smallest k such that G is k-

colorable. 

 

Definition 1.9: A planar graph is a graph that can be drawn in the plane so that the lines 

representing the edges do not intersect except at their end vertices.   

 

 

 

Section 2: Grötzsch’s Theorem 

 
With the preceding definitions in mind, we are now able to state Grötzsch’s Theorem 

without any ambiguity.  Grötzsch’s Theorem is named after the German mathematician 

Herbert Grötzsch, who proved it in 1959.  However, the proof of this theorem is outside 

the scope of this paper. 

 

Theorem 2.1 (Grötzsch’s Theorem):  Every triangle-free planar graph is 3-colorable. 

 

The purpose of this paper is to prove that the condition of planarity is necessary for 

Grötzsch’s Theorem to hold.  To do this, we will use a particular graph, known, 

appropriately enough, as Grötzsch’s Graph (see Figure 2.2).  First, we will show that 

Grötzsch’s Graph is triangle-free.  Then, we will prove that it is non-planar, and finally 

we will show that it has a chromatic number of 4.  By showing that there exists a triangle-

free non-planar graph which is not 3-colorable, we will have proven that planarity is 

required for Grötzsch’s Theorem to hold.   

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2: Grötzsch’s Graph 



Section 3: Proof that Grötzsch’s Graph is triangle-free. 

 
In order to prove that Grötzsch’s Graph is triangle-free, we must prove that it does not 

contain a cycle of length 3.  To aid us in this endeavor, observe that Grötzsch’s Graph is 

five-fold symmetric, that is, it is symmetric with respect to a 72° rotation.  Hence, we 

only need to consider three possible starting vertices for any cycle: a vertex on the outer 

boundary, the center vertex, or one of the neighbors of the center vertex.  In order to 

further aid us in the proof, we will assign numbers to each of the vertices in order to 

easily express the cycles as progressions of numbers (see Figure 3.1).   

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1: Grötzsch’s Graph with numbered vertices 

 

 

Theorem 3.2: Grötzsch’s Graph is triangle-free. 

 

 

Proof:  As noted above, we will need to consider three cases.  The proof will follow by 

process of exhaustion. 

 

Case I: The cycle begins at a vertex on the outer boundary.  Without loss of generality, let 

the cycle begin at vertex 1.  From vertex 1, the cycle can proceed to vertex 2, 5, 7, or 10.  

From these vertices, the cycle can then proceed to vertex 3, 4, 6, 8, 9, or 11.  However, 

observe that none of these vertices are adjacent to vertex 1; hence, a triangle cannot be 

formed. 

 

Case II: The cycle begins at a neighbor of the center vertex.  Without loss of generality, 

let the cycle begin at vertex 6.  From vertex 6, the cycle can proceed to vertex 2, 5, or 11.  

From these vertices, the cycle can then proceed to vertex 1, 3, 4, 7, 8, 9, or 10.  Again, 

observe that none of these vertices are adjacent to vertex 6; hence, a triangle cannot be 

formed.   

 

Case III:  The cycle begins at the center vertex.  The first move will be to a neighbor of 

the center vertex.  Since no two neighbors of the center point are adjacent, the second 



move will be to a vertex on the outer boundary.  Since no vertex on the outer boundary is 

adjacent to the center vertex, it follows that no triangle can be formed.   

 

As noted above, Grötzsch’s Graph is five-fold symmetric, so these three cases are 

exhaustive.  Hence, Grötzsch’s Graph is triangle free. 

 

 

 

 

Section 4: Proof that Grötzsch’s Graph is non-planar. 

 
At first glance, it may appear obvious that Grötzsch’s Graph is non-planar: the lines in 

the graph clearly intersect.  However, the definition specifically says that a graph is 

planar if it can be drawn so that the edges do not intersect.  As there are an infinite 

number of ways to draw Grötzsch’s Graph, the definition is not very helpful.  Instead, to 

prove that Grötzsch’s Graph is non-planar, we will use an important theorem in graph 

theory known as Kuratowski’s theorem, after the Polish mathematician Kazimierz 

Kuratowski, who proved it in 1930.  However, to do this we must first establish some 

preliminaries.   

 

Definition 4.1: A complete graph is a graph in which all pairs of vertices are adjacent.  

The complete graph on n vertices is denoted by Kn.   

 

Definition 4.2: A graph H = (W, F) is a subgraph of G = (V, E) if W is a subset of V and 

F is a subset of E.   

 

Definition 4.3: A subdivision H of a graph G is a new graph H obtained by subdividing 

some of the edges of G with additional vertices.  It is also convention to regard G as a 

subdivision of itself. 

 

Definition 4.4: Two graphs are homeomorphic if they are both a subdivision of the same 

graph.   

 

With these preliminaries in mind, we can now state Kuratowski’s Theorem without any 

ambiguity.  As with Grötzsch’s Theorem, the proof of Kuratowski’s Theorem is outside 

the scope of this paper. 

 

Theorem 4.5 (Kuratowski’s Theorem): A graph is planar if and only if it does not 

contain a subgraph homeomorphic to K3,3 or K5.   

 

K3,3 is the complete bipartite graph on two sets of three vertices, which does not concern 

us.  We will focus on K5, the complete graph on five vertices.  The purpose of this section 

is to show that Grötzsch’s Graph is non-planar.  We will do this by finding a subgraph of 

Grötzsch’s Graph that is homeomorphic to K5.  This, by the properties of the 

contrapositive, will prove that Grötzsch’s Graph is non-planar. 

 



Theorem 4.6: Grötzsch’s Graph is non-planar. 

 

 

Proof: We must find a subgraph of Grötzsch’s Graph that is homeomorphic to K5, the 

complete graph on five vertices.  The subgraph that we are searching for is simply the 

subgraph where we omit the central vertex and all its associated edges (see Figure 4.7).  

Let’s compare that with the complete graph on five vertices (see Figure 4.8).  Clearly, our 

subgraph is a subdivision of K5, obtained by inserting a vertex onto each of the edges 

joining the outer points.  K5 in turn is a subdivision of itself, which means that both our 

subgraph and K5 are subdivisions of K5, which by definition means that our subgraph and 

K5 are homeomorphic.  Hence, by Kuratowski’s Theorem, Grötzsch’s Graph is non-

planar. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7: Subgraph of Grötzsch’s Graph Figure 4.8: The complete graph on  

  without the central vertex                                         five vertices  

 

 

 

Section 5: Proof that Grötzsch’s Graph has chromatic number 4.   

 
Since there exist adjacent points in Grötzsch’s Graph, it is clearly not 1-colorable.  In 

order to prove that it has chromatic number 4, we will also have to prove that Grötzsch’s 

Graph is neither 2-colorable nor 3-colorable, but that it is in fact 4-colorable.  To do this, 

I will utilize an isomorphism of Grötzsch’s Graph where adjacent vertices are more easily 

visualized.  In solving Professor Babai’s challenge, this was the graph I came up with. 

 

Definition 5.1: An isomorphism between the graphs G = (V, E) and H = (W, F) is a 

bijection f : V → W which preserves adjacency.   

 

Observe that since isomorphisms preserve adjacency, the coloring properties of a graph 

will be the same as those of its isomorphisms.   



My isomorphism is pictured below (see Figure 5.2).  The vertices of my isomorphism are 

numbered so that they are a bijection of Grötzsch’s Graph using the numbered vertices 

from Figure 3.1.  From this point forward I will refer to my isomorphism as G and refer 

to its vertices by number based off of Figure 5.2.  Observe that G is five-fold symmetric 

and preserves the adjacency of Grötzsch’s Graph.   

 

  

 

 

 

 

 

 

 

 

 

 

Figure 5.2: G, an isomorphism of  Figure 5.3: Grötzsch’s Graph 

 Grötzsch’s Graph with numbered vertices 

 

We will start by proving that G, and therefore Grötzsch’s Graph, is not 2-colorable. 

 

Theorem 5.4: Grötzsch’s Graph is not 2-colorable. 

 

 

Proof:  By contradiction.  Using G, assume that G is 2-colorable.  Fix the color of the 

center vertex (red in Figure 5.5).  All the neighbors of the center vertex must be of a 

different color.  Since we are assuming that we can completely color G with 2 colors, all 

the neighbors of the center vertex must be the same color (blue in Figure 5.5). Hence, 

vertices 1-5 cannot be blue, since they are all adjacent to blue vertices.  We are assuming 

that G is 2-colorable; therefore, vertices 1-5 must be red.  However, without loss of 

generality, let vertex 5 be red. This means that vertices 1 and 4 are adjacent to both 

 red and blue vertices, and therefore can be  

 neither red nor blue, which contradicts the 

 assumption.  Therefore, by contradiction, G is 

 not 2-colorable.  Since G is an isomorphism of  

 Grötzsch’s Graph, it follows that Grötzsch’s 

 Graph is not 2-colorable. 

 

 

 

 

Figure 5.5: Attempted 2-coloring of G 

 



We will now prove that Grötzsch’s Graph is not 3-colorable.  We will do this by 

assuming that Grötzsch’s Graph is in fact 3-colorable, fixing the color of the center 

vertex and exhausting the possible cases for color combinations of the neighbors of the 

center vertex, then showing that contradictions will follow in each case.  We will use the 

isomorphism G in the proof.  Since we are assuming that G is 3-colorable, there are four 

possible cases for the coloring of the center neighbors: all of the neighbors are the same 

color, four are of one color and one of is a different color, three consecutive neighbors are 

of one color and the other two are of a different color, and three neighbors of one color 

are split up by two neighbors of a different color.  These cases are illustrated below (see 

Figure 5.6).  Observe that it does not matter which specific vertices are assigned which 

colors, since G, and Grötzsch’s Graph, are five-fold symmetric. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.6: The possible color configurations of the center and center neighbors under the 

assumption of 3-colorability (not specific to vertices). 

 

Theorem 5.7: Grötzsch’s Graph is not 3-colorable. 

 

 

Proof: Assume that Grötzsch’s Graph is 3-colorable.  Fix the color of the center vertex 

(red in all Figures).  The proof will proceed by exhausting cases for the possible colors of 

the center neighbors.  Each case will proceed by contradiction.   

 

 

 



Case I: The five center neighbors are all the same color (blue in Figure 5.8).  Observe that 

vertices 1-5 cannot be blue, since they are all adjacent to blue vertices.  We are assuming 

3-colorability, hence, vertices 1-5 must be either red or green.  Without loss of generality, 

let vertex 5 be red.  This forces vertices 1 and 4 to be green.  Since vertices 2 and 3 are 

adjacent to vertices 1 and 4, respectively, neither vertex 2 nor vertex 3 can be green.  

Without loss of generality, let vertex 2 be red.  But now observe that vertex 3 is adjacent 

to red, green, and blue vertices, so it must be a fourth color.  But this is a contradiction.  

Now, without loss of generality, let vertex 5 be green.  This forces vertices 1 and 4 to be 

red.  By a similar argument to the above, letting vertex 2 be green forces vertex 3 to be a 

fourth color, again a contradiction.  Hence, by contradiction, G is not 3-colorable in this 

case.   

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.8: Attempted 3-colorings of G in case I. 

 

 

Case II: Four of the center neighbors are one color (blue in Figure 5.9), and one is of a 

different color (green in Figure 5.9).  Without loss of generality, let vertex 9 be the green 

vertex.  We are assuming 3-colorability; hence, vertices 5 and 3 must be red.  This in turn 

forces vertices 1 and 4 to be green.  But now observe that vertex 2 is adjacent to red, 

green, and blue vertices, so it must be a fourth color, which is a contradiction.  Hence, G 

is not 3-colorable in this case. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.9: Attempted 3-coloring of G in case II. 



Case III:  Three consecutive center neighbors are of one color (blue in Figure 5.10), and 

the other two are of a different color (green in Figure 5.10).  Without loss of generality, 

let vertices 7 and 9 be the green vertices.  We are 

assuming 3-colorability; hence vertices 1 and 5 

must be red.  But this is a contradiction, as vertices 

1 and 5 are adjacent and therefore cannot be the 

same color.  Hence, G is not 3-colorable in this 

case. 

 

 

 

Figure 5.10: Attempted 3-coloring of G in case III. 

 

 

Case IV:  Three center neighbors are of one color (blue in Figure 5.11), and they are split 

up by two neighbors of a different color (green in Figure 5.11).  Without loss of 

generality, let vertices 9 and 10 be the green vertices.  

We are assuming 3-colorability; hence vertices 1 

and 5 must be red.  But this is a contradiction, as 

vertices 1 and 5 are adjacent and therefore cannot be 

the same color.  Hence, G is not 3-colorable in this 

case. 

 

 

 

Figure 5.11: Attempted 3-coloring of G in case IV. 

 

The five-fold symmetry of G means that these four cases are exhaustive.  All four cases 

result in contradictions of the main assumption, which is that G is 3-colorable.  Hence, by 

contradiction, G is not 3-colorable.  Since G is an isomorphism of Grötzsch’s Graph, and 

isomorphisms preserve adjacency, it follows that Grötzsch’s Graph is not 3-colorable.   

 

 

 

Theorem 5.12: Grötzsch’s Graph has chromatic number 4.  

 

 

Proof:  Taking Figure 5.11 and adding a fourth 

color (yellow in Figure 5.13), we see that G can 

indeed be legally 4-colored.  This, along with 

Theorems 5.4 and 5.7 imply by definition that G, 

and therefore Grötzsch’s Graph, has chromatic 

number 4.   

 

 

Figure 5.13: 4-coloring of G  



Section 6:  Conclusion 

 
For reference, Grötzsch’s Theorem is reprinted here, along with the three key theorems of 

the paper. 

 

Theorem 2.1 (Grötzsch’s Theorem):  Every triangle-free planar graph is 3-colorable 

Theorem 3.2: Grötzsch’s Graph is triangle-free. 

Theorem 4.6: Grötzsch’s Graph is non-planar. 

Theorem 5.12: Grötzsch’s Graph has chromatic number 4.  

 

Taking the validity of Grötzsch’s Theorem as a given, and having proven that Grötzsch’s 

Graph is triangle-free, non-planar, and has chromatic number 4 (i.e. is not 3-colorable), 

we have shown that planarity is a necessary condition to Grötzsch’s Theorem.  Therefore, 

we have fulfilled the purpose of this paper.   
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