
SURFACE GROUPS

R. ANDREW KREEK

1. Introduction

Definition 1.1. We define a surface group to be the group given the by presentation

Γg = 〈a1, b1, a2, b2 . . . ag, bg|[a1, b1] . . . [ag, bg] = 1〉.

Question 1.2. For what integers g and h is Γh a subgroup of Γg?

As a first step, we observe the connection between the surface group Γg and the closed,
orientable genus-g surface Σg.

Computation 1.3. The fundamental group π1(Σg) of the closed, orientable genus-g surface
Σg is the surface group Γg.

Proof. First, recall Proposition 1.26 from Hatcher’s Algebraic Topology regarding applications
of van Kampen’s Theorem to cell complexes: If we attach 2-cells to a path connected space X
via maps φα, making a space Y , and N ⊂ π1(X, x0) is the normal subgroup generated by all
loops λαφαλ−1

α , then the inclusion X ↪→ Y induces a surjection π1(X, x0) → π1(Y, x0) whose
kernel is N . Thus π1(Y ) ≈ π1(X)/N .

Consider the wedge-sum of 2g circles, labeled a1, a2, . . . , ag, and b1, b2, . . . , bg. This will be
the 1-skeleton of a cell-decomposition of the genus-g surface. By gluing a single 2-cell along the
word a1b1a

−1
1 b−1

1 . . . agbga
−1
g b−1

g , we obtain the closed, orientable genus-g surface. This can be
visualized, as in Figure 1 below, by the familiar identification space of a genus-g surface as a
4g-gon with pairs of edges, and all of the vertices, identified.
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Figure 1. Genus-2 surface as a quotient of an octogon

By van Kampen’s theorem, π1(
∨2g

i=1 S1
i ) of 2g circles is the free group on 2g generators, and

by Proposition 1.26, π1(Σg) is the quotient of π1(
∨2g

i=1 S1
i ) by the normal subgroup generated
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by the word [a1, b1] . . . [ag, bg], which is precisely the surface group Γg. This can be explained
by the observation that the loop [a1, b1] . . . [ag, bg] (or any of its conjugates) is nullhomotopic
as a result of having added the 2-cell. �

2. Preliminaries

Proposition 2.1. Σh is a covering space of Σg if and only if χ(Σg)|χ(Σh).

Proof. It is well known, and easy to verify, that χ(Σg) = 2− 2g.
Suppose χ(Σg)|χ(Σh), then for some n ∈ N, n(2 − 2g) = 2 − 2h, so h = n(g − 1) + 1, and

we see by cutting along the loops L, as in figure 2, and identifying them, that Σh is a covering
space of Σg.
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Figure 2. Σ5 covering Σ2 with 4-fold symmetry

Now suppose that Σh is an n-sheeted covering space of Σg. Recall that if Tg is a triangulation
of the surface Σg, and V , E, and F are the number of vertices, edges, and faces of T respectively,
then we can calculate the Euler characteristic of Σg by χ(Σg) = V − E + F . Let Tg be a
triangulation of Σg. Then Tg “lifts” to a triangulation Th of Σh. Note, by Proposition 1.33,
suppose given a covering space p : (X̃, x̃0) → (X0, x0) and a map f : (Y, y0) → (X, x0) with
Y path-connected and locally path-connected. Then a lift f̃ : (Y, y0) → (X̃, x̃0) of f exists iff
f∗(π1(Y, y0)) ⊂ p∗(π1(X̃, x̃0)). Any contractible space has trivial fundamental group, hence
any map from a contractible space to Σg lifts. Then, for each vertex e0

α in Tg, there are n
pre-images of e0

α in Th. Hence, if V is the number of vertices in Tg, nV is the number of
vertices in Th. Similarly, since the edges and the faces of the triangulation are contractible,
each one lifts to n distinct pre-image edges and and faces. Thus, if Tg has E edges and F faces,
Th has nE edges and nF faces. Thus χ(Σg) = V − E + F , and χ(Σh) = nV − nE + nF =
n(V − E + F ) = nχ(Σg). �

If the covering space Σ̃g of Σg is an “infinite genus” surface, then the statement χ(Σ̃g)|χ(Σg)
is not well defined. In general, for an infinite-sheeted cover, it may not be true that χ(Σ̃g)|χ(Σg).
But this does not create any problems because the fundamental group of an infinite genus sur-
face is not a surface group.

Proposition 2.2. The fundamental group of a non-compact surface is free.

We shall use this fact without proof.
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Figure 3. Example of an infinite-genus surface

3. The Answer

Theorem 3.1. Given integers g and h, Γh < Γg if and only if g − 1|h− 1.

Proof. This proof hinges on the Fundamental Theorem of Covering Spaces, quoted here from
from Hatcher:

Let X be path-connected, and semilocally simply-connected. Then there is a bijection be-
tween the set of basepoint-preserving isomorphism classes of path-connected covering spaces
p : (X̃, x̃0) → (X0, x0) and the set of subgroups of π1(X, x0), obtained by associationg the
subgroup p∗(π1(X̃, x̃0)) to the covering space (X̃, x̃0). If basepoints are ignored, this corre-
spondences gives a bijection between isomorphism classes of path-connected covering spaces
p : X̃ → X and conjugacy classes of subgroups of π1(X, x0).

Now, suppose g − 1|h − 1. Then, 2 − 2g|2 − 2h, so χ(Σg)|χ(Σh) for the genus-g and -
h surfaces Σg and Σh. Hence, by Proposition 2.1, Σh is a covering space of Σg, so Γh =
π1(Σh) < π1(Σg) = Γg.

Next, suppose Γh < Γg. By the Fundamental Theorem of Covering Spaces, there is a
covering space Σ̃g of Σg such that π1(Σ̃g) = Γh. By proposition 2.2, Σ̃g is not an infinite-
sheeted cover since its fundamental group is Γh. Therefore, it must be some closed, orientable
surface with finite genus. However, since only the surface Σh has the fundamental group Γh,
Σ̃g = Σh. Thus, Σh is a covering space of Σg, hence g − 1|h− 1. �
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