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1. INTRODUCTION
Definition 1.1. We define a surface group to be the group given the by presentation
'y = (a1,b1,a2,b2...a4,b4|[a1,b1] ... [ag, by] = 1).
Question 1.2. For what integers g and h is 'y, a subgroup of I'y?

As a first step, we observe the connection between the surface group I'y and the closed,
orientable genus-g surface 3.

Computation 1.3. The fundamental group m1(X,) of the closed, orientable genus-g surface
X, is the surface group I'y.

Proof. First, recall Proposition 1.26 from Hatcher’s Algebraic Topology regarding applications
of van Kampen’s Theorem to cell complexes: If we attach 2-cells to a path connected space X
via maps ¢, making a space Y, and N C 71(X, ) is the normal subgroup generated by all
loops Ao @a A5, then the inclusion X — Y induces a surjection 71 (X, x¢) — 71(Y,x) whose
kernel is N. Thus 71 (Y) =~ 71 (X)/N.

Consider the wedge-sum of 2g circles, labeled a1, as, ..., a4, and by, b2, ..., by. This will be
the 1-skeleton of a cell-decomposition of the genus-g surface. By gluing a single 2-cell along the
word arbray byt .. agbgag_lbgl7 we obtain the closed, orientable genus-g surface. This can be
visualized, as in Figure 1 below, by the familiar identification space of a genus-g surface as a
4g-gon with pairs of edges, and all of the vertices, identified.

FIGURE 1. Genus-2 surface as a quotient of an octogon

By van Kampen'’s theorem, 7r1(\/?i

by Proposition 1.26, m(3,) is the quotient of 7r1(\/?i1 S1) by the normal subgroup generated

1 S1) of 2g circles is the free group on 2g generators, and
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by the word [a1,b1] ... [ag4, bg], which is precisely the surface group I'y. This can be explained
by the observation that the loop [a1,b1]... [ag, by] (or any of its conjugates) is nullhomotopic
as a result of having added the 2-cell. O

2. PRELIMINARIES
Proposition 2.1. ¥, is a covering space of £4 if and only if x(24)|x(Xn).

Proof. It is well known, and easy to verify, that x(£,) = 2 — 2g.

Suppose x(34)|x(Xr), then for some n € N, n(2 —2g) =2 —2h,s0o h=n(g — 1)+ 1, and
we see by cutting along the loops L, as in figure 2, and identifying them, that ¥ is a covering
space of Y.

©

NOE

FIGURE 2. Y5 covering Yo with 4-fold symmetry

Now suppose that ¥, is an n-sheeted covering space of ¥,. Recall that if T is a triangulation
of the surface X4, and V', E, and F are the number of vertices, edges, and faces of T" respectively,
then we can calculate the Euler characteristic of ¥, by x(¥4) =V — E+ F. Let T, be a
triangulation of ;. Then T, “lifts” to a triangulation 7}, of X;. Note, by Proposition 1.33,
suppose given a covering space p : ()?,50) — (Xo,20) and a map [ : (Y,y0) — (X, x0) with
Y path-connected and locally path-connected. Then a lift f: (Y,y0) — ()?,EO) of f exists iff
fe(m(Y,y0)) C p*(m()? ,Zo)). Any contractible space has trivial fundamental group, hence
any map from a contractible space to X, lifts. Then, for each vertex e in T,, there are n
pre-images of €% in T}. Hence, if V is the number of vertices in Ty, nV is the number of
vertices in Tj. Similarly, since the edges and the faces of the triangulation are contractible,
each one lifts to n distinct pre-image edges and and faces. Thus, if T, has I edges and F' faces,
T}, has nE edges and nF faces. Thus x(X,) =V — E+ F, and x(£,) = nV —nE +nF =
n(V —E+F)=nx(Z,). O

If the covering space ¥, of ¥, is an “infinite genus” surface, then the statement y(3,)|x(Z,)
is not well defined. In general, for an infinite-sheeted cover, it may not be true that x(24)|x(Z4).
But this does not create any problems because the fundamental group of an infinite genus sur-

face is not a surface group.
Proposition 2.2. The fundamental group of a non-compact surface is free.

We shall use this fact without proof.



FiGUure 3. Example of an infinite-genus surface

3. THE ANSWER
Theorem 3.1. Given integers g and h, I'y, < Ty if and only if g — 1|h — 1.

Proof. This proof hinges on the Fundamental Theorem of Covering Spaces, quoted here from
from Hatcher:

Let X be path-connected, and semilocally simply-connected. Then there is a bijection be-
tween the set of basepoint-preserving isomorphism classes of path-connected covering spaces
p ()?,550) — (Xo,20) and the set of subgroups of m1(X,xq), obtained by associationg the
subgroup py(my ()N(,Eo)) to the covering space ()?,%0). If basepoints are ignored, this corre-
spondences gives a bijection between isomorphism classes of path-connected covering spaces
p: X — X and conjugacy classes of subgroups of 71(X, xo).

Now, suppose g — 1|h — 1. Then, 2 — 2¢|2 — 2h, so x(34)|x(Zp) for the genus-g and -
h surfaces ¥, and Xj,. Hence, by Proposition 2.1, 3, is a covering space of ¥4, so I', =
wl(Eh) < 771(29) = Fg.

Next, suppose I'y, < I'y. By the Fundamental Theorem of Covering Spaces, there is a
covering space ig of 3, such that Wl(ig) = I'y. By proposition 2.2, ig is not an infinite-
sheeted cover since its fundamental group is I';,. Therefore, it must be some closed, orientable
surface with finite genus. However, since only the surface X, has the fundamental group I'y,
Y, =3%. Thus, ¥, is a covering space of ¥4, hence g — 1|h — 1. O
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