SURFACE GROUPS

R. ANDREW KREEK

1. Introduction

Definition 1.1. We define a *surface group* to be the group given the by presentation

$$\Gamma_g = \langle a_1, b_1, a_2, b_2 \dots a_g, b_g | [a_1, b_1] \dots [a_g, b_g] = 1 \rangle.$$

Question 1.2. For what integers g and h is Γ_h a subgroup of Γ_q ?

As a first step, we observe the connection between the surface group Γ_g and the closed, orientable genus-g surface Σ_g .

Computation 1.3. The fundamental group $\pi_1(\Sigma_g)$ of the closed, orientable genus-g surface Σ_g is the surface group Γ_g .

Proof. First, recall *Proposition 1.26* from Hatcher's *Algebraic Topology* regarding applications of van Kampen's Theorem to cell complexes: If we attach 2-cells to a path connected space X via maps ϕ_{α} , making a space Y, and $N \subset \pi_1(X, x_0)$ is the normal subgroup generated by all loops $\lambda_{\alpha}\phi_{\alpha}\lambda_{\alpha}^{-1}$, then the inclusion $X \hookrightarrow Y$ induces a surjection $\pi_1(X, x_0) \to \pi_1(Y, x_0)$ whose kernel is N. Thus $\pi_1(Y) \approx \pi_1(X)/N$.

Consider the wedge-sum of 2g circles, labeled a_1, a_2, \ldots, a_g , and b_1, b_2, \ldots, b_g . This will be the 1-skeleton of a cell-decomposition of the genus-g surface. By gluing a single 2-cell along the word $a_1b_1a_1^{-1}b_1^{-1}\ldots a_gb_ga_g^{-1}b_g^{-1}$, we obtain the closed, orientable genus-g surface. This can be visualized, as in Figure 1 below, by the familiar identification space of a genus-g surface as a 4g-gon with pairs of edges, and all of the vertices, identified.

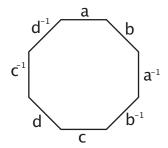


FIGURE 1. Genus-2 surface as a quotient of an octogon

By van Kampen's theorem, $\pi_1(\bigvee_{i=1}^{2g} S_i^1)$ of 2g circles is the free group on 2g generators, and by *Proposition 1.26*, $\pi_1(\Sigma_g)$ is the quotient of $\pi_1(\bigvee_{i=1}^{2g} S_i^1)$ by the normal subgroup generated

Date: August 17, 2007.

by the word $[a_1, b_1] \dots [a_g, b_g]$, which is precisely the surface group Γ_g . This can be explained by the observation that the loop $[a_1, b_1] \dots [a_g, b_g]$ (or any of its conjugates) is nullhomotopic as a result of having added the 2-cell.

2. Preliminaries

Proposition 2.1. Σ_h is a covering space of Σ_g if and only if $\chi(\Sigma_g)|\chi(\Sigma_h)$.

Proof. It is well known, and easy to verify, that $\chi(\Sigma_g) = 2 - 2g$.

Suppose $\chi(\Sigma_g)|\chi(\Sigma_h)$, then for some $n \in \mathbb{N}$, n(2-2g) = 2-2h, so h = n(g-1)+1, and we see by cutting along the loops L, as in figure 2, and identifying them, that Σ_h is a covering space of Σ_g .

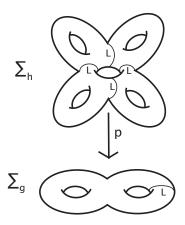


FIGURE 2. Σ_5 covering Σ_2 with 4-fold symmetry

Now suppose that Σ_h is an n-sheeted covering space of Σ_g . Recall that if T_g is a triangulation of the surface Σ_g , and V, E, and F are the number of vertices, edges, and faces of T respectively, then we can calculate the Euler characteristic of Σ_g by $\chi(\Sigma_g) = V - E + F$. Let T_g be a triangulation of Σ_g . Then T_g "lifts" to a triangulation T_h of Σ_h . Note, by Proposition 1.33, suppose given a covering space $p:(\tilde{X},\tilde{x}_0)\to (X_0,x_0)$ and a map $f:(Y,y_0)\to (X,x_0)$ with Y path-connected and locally path-connected. Then a lift $\tilde{f}:(Y,y_0)\to (\tilde{X},\tilde{x}_0)$ of f exists iff $f_*(\pi_1(Y,y_0))\subset p_*(\pi_1(\tilde{X},\tilde{x}_0))$. Any contractible space has trivial fundamental group, hence any map from a contractible space to Σ_g lifts. Then, for each vertex e^0_α in T_g , there are n pre-images of e^0_α in T_h . Hence, if V is the number of vertices in T_g , nV is the number of vertices in T_h . Similarly, since the edges and the faces of the triangulation are contractible, each one lifts to n distinct pre-image edges and and faces. Thus, if T_g has E edges and F faces, T_h has nE edges and nF faces. Thus $\chi(\Sigma_g) = V - E + F$, and $\chi(\Sigma_h) = nV - nE + nF = n(V - E + F) = n\chi(\Sigma_g)$.

If the covering space $\widetilde{\Sigma}_g$ of Σ_g is an "infinite genus" surface, then the statement $\chi(\widetilde{\Sigma}_g)|\chi(\Sigma_g)$ is not well defined. In general, for an infinite-sheeted cover, it may not be true that $\chi(\widetilde{\Sigma}_g)|\chi(\Sigma_g)$. But this does not create any problems because the fundamental group of an infinite genus surface is not a surface group.

Proposition 2.2. The fundamental group of a non-compact surface is free.

We shall use this fact without proof.

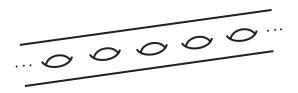


FIGURE 3. Example of an infinite-genus surface

3. The Answer

Theorem 3.1. Given integers g and h, $\Gamma_h < \Gamma_g$ if and only if g - 1|h - 1.

Proof. This proof hinges on the Fundamental Theorem of Covering Spaces, quoted here from from Hatcher:

Let X be path-connected, and semilocally simply-connected. Then there is a bijection between the set of basepoint-preserving isomorphism classes of path-connected covering spaces $p:(\widetilde{X},\widetilde{x}_0)\to (X_0,x_0)$ and the set of subgroups of $\pi_1(X,x_0)$, obtained by associationg the subgroup $p_*(\pi_1(\widetilde{X},\widetilde{x}_0))$ to the covering space $(\widetilde{X},\widetilde{x}_0)$. If basepoints are ignored, this correspondences gives a bijection between isomorphism classes of path-connected covering spaces $p:\widetilde{X}\to X$ and conjugacy classes of subgroups of $\pi_1(X,x_0)$.

Now, suppose g-1|h-1. Then, 2-2g|2-2h, so $\chi(\Sigma_g)|\chi(\Sigma_h)$ for the genus-g and h surfaces Σ_g and Σ_h . Hence, by Proposition 2.1, Σ_h is a covering space of Σ_g , so $\Gamma_h = \pi_1(\Sigma_h) < \pi_1(\Sigma_g) = \Gamma_g$.

Next, suppose $\Gamma_h < \Gamma_g$. By the Fundamental Theorem of Covering Spaces, there is a covering space $\widetilde{\Sigma}_g$ of Σ_g such that $\pi_1(\widetilde{\Sigma}_g) = \Gamma_h$. By proposition 2.2, $\widetilde{\Sigma}_g$ is not an infinite-sheeted cover since its fundamental group is Γ_h . Therefore, it must be some closed, orientable surface with finite genus. However, since only the surface Σ_h has the fundamental group Γ_h , $\widetilde{\Sigma}_g = \Sigma_h$. Thus, Σ_h is a covering space of Σ_g , hence g - 1|h - 1.

References

[1] A. Hatcher. Algebraic Topology. Cambridge University Press. 2002.