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1 Abstract

The intent of this paper is to give the reader, in a general sense, how to go about finding irreducible
representations of the Symmetric Group S,,. While I would like to be thorough toward this end, I fear we
must assume some results from Wedderburn Theory that will be given without proof because although they
are important, proving and discussing these results is not in the scope of this paper. On that note, I'd like
to mention that I make no claim to originality in the paper that follows as my work was heavily guided by
two very excellent books:

e ”"Groups and Representations” by J.L. Alperin and R.B. Bell
e "Representation Theory” by W. Fulton and J. Harris

I would also like to thank my Graduate Mentors Michael Broshi and Sundeep Balaji for recommending texts
and providing helpful suggestions.

2 Preliminaries

To begin, we shall need some preliminary facts and a brief discussion of notation. We will use S,, where
possible in the examples, but where any group G will do we assume that the order of G is finite and that all
CG-modules are finitely generated, C being the field of complex numbers. We will also briefly use M,,(D)
as the set of n X n matrices with entries in the ring D.

Proposition 2.1. Suppose that A is a semisimple Algebra, and let Sy ... S, be a collection of simple A-
modules such that every simple A-module is isomorphic with exactly one S;. Let M be an A-module, then
we can write M = n1S1 & ... & n.S. for some non-negative integers n;. Then the n; are uniquely
determined.

The proof of this proposition follows from the Jordan-Hoélder theorem for modules.

Definition 2.1. An algebra D is said to be a division algebra if the non-zero elements of D form a group
under multiplication.

Theorem 2.2. Let D be a division algebra, and let n € N. Then any simple M,,(D)-module is isomorphic
with D™, and M, (D) is isomorphic as My (D)-modules with the direct sum of n copies of D™. Specifically,
My (D) is a division algebra.

Theorem 2.3. Let r € N. For each 1 < ¢ < r, let D; be a division algebra over F', let n; € N, and let
B; = M,,,(D;). Let B be the external direct sum of the B;. Then B is a semisimple algebra having exactly
R isomorphism classes of simple modules and exactly 2" two-sided ideals. Specifically, these are all the sums
of the form @jeJ B;, where J is a subset of {1,...,n}.



Theorem 2.4. Suppose that the field F is algebraically closed. Then any semisimple algebra is isomorphic
with a direct sum of matriz algebras over F.

These preceding theorems are powerful in their own right, and it is easy to see how useful they are
regarding C-modules. These four theorems entirely comprise the background we will need for this paper.
Thus, without further ado, let’s get started on some real mathematics!

3 Basics of Representation Theory

In this section, I aim to introduce Representation Theory and discuss a few specific theorems that will be
helpful towards the final goal. In addition, I will prove a very useful theorem of Frobenius regarding the
arithmetic function p(n) and the number of irreducible representations of S,,.

Theorem 3.1. 1. There is some r € N and some fi,...,f, € N such that CG = My, (C) & ...® My, (C)
as C algebras.

2. There are exactly r isomorphism classes of simple CG-modules, and if we let Sy,...,S, be representa-
tives of these r classes, then we can order the S; so that CG = f1S1®...® f.S, as CG modules, where
dimeS; = f; for each i.

3. Any CG-module can be written uniquely in the form a1S1 ® ... & a,.S,, where the a; are non-negative
1ntegers.

Proof. 1.: We first make use of the fact that since C has characteristic zero, by a consequence of Maschke’s
Theorem, every non-zero CG-module is semisimple. This statement then follows directly from Theorem 2.4.
2.: Let S; be the space of column vectors of length f; with canonical module structure over My, (C). This
statement now follows from Theorems 2.2 and 2.3. 3.: This is a direct consequence of Proposition 2.1. [

Now we have the number of non-isomorphic simple CG-modules for some group G, which is r. But how
is this number r determined, and how is it related to G? These questions have very satisfying answers, and
they are the subjects of the next theorem.

Theorem 3.2. The number r of simple CG-modules is equal to the number of conjugacy classes of G.

Proof. Let Z be the center of CG. By Theorem 3.1, we can see that Z = Z(M(C) & ... ® M; (C)) and
is therefore also isomorphic with @ Z(Mj,(C)). The center of any My, (C) consists only of scalar matrices,
thus it is also isomorphic with C. In other words, Z = C" and dimcZ =r.

Now consider an element dec Agg of Z. For any h € G, we have {Zg )\gg} h=h {Zg )\gg}, giving

g Mg =22, Agh~tgh = >y Angh-1g since it commutes in CG. Therefore, if we look at the first and last of
the above equalities, we see that Ay = Aj,4;,—1 for every g, h € GG, and so we can conclude that the coefficients
Ag of the elements of Z are constant on conjugacy classes. Then we have a basis for Z with the set of class
sums, which are of the form } gex 9 where K is a conjugacy class of G. Thus, dimc¢Z is equal to the number
of conjugacy classes of G. Since we've already established that dimcZ is equal to the number of simple

CG-modules, the proof is complete.
O

For a moment, we will switch gears to talk about some of the fundamental components of representation
theory and some of their properties which will be useful later on.

Definition 3.1. Let U be a CG-module, where G is finite group. We let each g define an invertible linear
transformation of U that sends u € U to gu. The character of U is the function denoted yy from G — C,
where xpg is just the trace of this linear map defined by ¢g. In other words, if p G — GL(U) is the
representation corresponding to U, then xy(g) is just the trace of the map p(g).



As we observed above in the proof of the theorem, the coefficients A are constant on conjugacy classes.
Similarly, we can see that the linear transformations of any g,h € G defined by ¢ and hgh™! are similar,
thus having the same trace. Like above, therefore, characters of G are constant within conjugacy classes.
Since we’ve shown that there are r simple CG-modules and that each module has a character, we now assign
the names of these characters in a useful way.

Definition 3.2. The characters x1,..., X, are known as irreducible characters of G. When we say that
S1,..., 5, are the r distinct simple CG-modules, we order them such that x; = xs, for each 7. If we let f;
denote the degree of the trivial representation, then we also let x; be its character and we call it the principal
character. x1(g) =1 for all g € G.

The following proposition outlining some properties of characters and representations I give without
proof, though one can be found on p.140 in ” Groups and Representations.”

Proposition 3.3. Let U be a CG-module, let p : G — GL(U) be the representation corresponding to U, and
let g € G be of order n. Then:

p(g) is diagonalizable
xu(g) equals the sum, including multiplicities, of the eigenvalues of p(g).
xu(g) is a sum of xu (1) roots of unity.

4 xu(g™h) = xu(y).

9. Ixv(9)l < xu(1).
6. {x € G|xu(z) = xu(1)} is a normal subgroup of G.

Suppose we have two characters y and ¢ of G. Define new functions xy + ¥ and xu from G to C by
(x+¥)(G) = x(g) +¥(g) and (x¥)(g) = x(9)¥(g) for g € G. Similarly, given a A € C, we can define a new
function Ax : G — C by (Ax)(9) = Ax(g), and consequently we can look at the characters of G as elements
of a C-vector space. An important implication of this is the subject of the following theorem, which will
allow us to prove our first result concerning S,,.

Proposition 3.4. The irreducible characters of G are, as functions from G to C, linearly independent (over

C).

Proof. From Theorem 3.1, we have that CG = My, (C)@...® My (C). Let Sy,..., S, be the distinct simple
CG-modules, and for each ¢ let e; be the identity of My, (C). Fix an ¢. Since for any g € G, xi(g) is the
trace of a linear transformation on .S; defined by g, we can linearly extend x; to a linear map from CG to C
so that x;(a) for a € G is the trace of the linear transformation on S; defined by a. Observe that this linear
transformation on S; given by e; is the identity map, and therefore that x;(e;) = dim¢S; = f;. Further, if
J # 1, then this linear transformation on S; is the zero map, and hence x;(e;) = 0.

Now assume we have some \; ...\, € C such that 25:1 Ajxj(ei) = \if; for each 4; therefore A\; = 0 for
all 7 and the x;’s are linearly independent. O

Now we just need a few more facts before we are ready to proceed with the major result of this section.

e Consider a natural number n. The partition function p(n) is an arithmetic function that counts the
number of different ways to partition the number n into other natural numbers. For example, if n = 2,
then there are two partitions: 2 and 1+1. Thus p(2) = 2. p(3) = 3 corresponding to 14+1+1, 2+1,
and 3 (note that 241 and 142 are considered the same partition). A fair amount of research has been
devoted to this function and finding its exact value, but this does not concern us here.



e We take it for granted that the reader is familiar with the symmetric group 5,,, and the concept of a
conjugacy class. The conjugacy classes for S,, are the sets of permutations with similar cycle notation.
For example, the permutations (12)(345) and (123)(45) would be in the same conjugacy class despite
the difference in cycle order (this is due to the fact that disjoint cycles commute). However, the
permutations (12)(34) and (1234) are not in the same conjugacy class.

e Finally, we note that conjugacy classes of S,, are bijective correspondence with partitions of n. This is
accomplished by sending a partition a; + ...+ a; to a permutation whose cycle lengths are aq,...,a;.
For a quick proof, consider if two non-isomorphic partitions map to the same conjugacy class. Then
the two partitions induce the same cycle lengths, which means that one must be a rearrangement of the
other, so they are the same partition. Now consider some conjugacy class with cycle lengths b4, ..., b;.
The partition b; + ...+ b; maps to it. Throughout this process we assume that where a partition has
a +1, this corresponds to an element that is unpermuted by an element of its corresponding conjugacy
class. For example, in S, the cycle (12) does not permute the number 3, so it corresponds with 2 + 1
as a partition, whereas it corresponds with 2 in S,.

Theorem 3.5. Fiz some n € N. The number of irreducible characters of Sy, is equal to p(n).

Proof. We first have to note that since CG is a semi-simple algebra, any CG-module is a direct sum of the r
distinct simple CG-modules. Therefore, the list of irreducible characters we get from the r simple modules
is complete; there are no more irreducible characters. From Prop 3.4 we know that there are no less, and
from Theorem 3.2 we know that, since each irreducible character corresponds to a simple CG-module, the
number of irreducible characters is equal to the number of conjugacy classes, which in turn is equal to p(n).

O

4 Techniques for Finding and Evaluating Characters

Before we begin our investigation of the characters of S,, we must introduce a few more properties of
characters and the way in which this information is commonly displayed, the character table. In addition,
we will begin to focus our attention more towards S,, and less on the ambiguous group G. Since for any group
there are the same number of irreducible characters as conjugacy classes, and each character is constant on
a conjugacy class, the values of each character on each conjugacy class are stored in an r X r array known
as a character table. It is called X', and looks something like the following:

1 & . g
1| 1 1 1 1
X2 | 2 x2(g2) - xa(gr)
Xr fr Xr (92) cee Xr (gr)

Here we’re using f; to represent the degrees of G and x; is, of course, the trivial representation.
We now return to some properties of characters that will help us to calculate explicit values in a character
table.

Definition 4.1. We noted earlier that characters are constant on conjugacy classes, and they therefore
belong to a set of functions known as class functions. If we let @ and (3 be two class functions, then we define
their inner product to be the complex number

(@, 8) = &7 Xgec @(9)B(g)
(1)



This has the following properties that one might expect:
e (a,a) >0 for all o, and (a, ) =0 iff @ = 0.

B8) = (8, «) for all «, (.

(
(a,
(Aa, 8) = AMa, B) for all o, 8 and for all A € C

o (a1 +ag,f) = (a1, ) + (az, B) for all ag, ag, .

We state the following Lemma without proof to use in the next theorem.
Lemma 4.1. If U is a CG-module, then dimcU% = ﬁ > gec Xu(9)-
Theorem 4.2. For any CG-modules U and V, we have (xu, xv) = dimcHomca(U,V).

Proof. First of all, we observe that Homcg(U,V) is a subspaces of the CG-module Hom(U,V). If ¢ €

Homcg(U,V) and g € G, then (g¢)(u) = gp(g u) = gg~tp(u) = o(u) for any u € U. Thus we have
¢ = ¢ for all g € G, which shows that ¢ € Hom(U, V)%, where Hom(U, V)% = {p € Hom(U,V)|gp = ¢

for all g € G}. If we assume the reverse above, we can see that Homcg(U, V) = Hom(U,V)¥. Therefore

dimcHomeg(U, V) = dimcHom (U, V)¢ = I%;‘ > gec XHom(U,v)(9) = ﬁ >gec xu(@)xv(g) = (xv,xv)
(2)

by the Lemma above. The significance of this theorem is that now we know the inner product of two

characters is real-valued and it allows us to prove the following important theorem.
O

Row Orthogonality Theorem 1. (x;,x;) = d;; for any i and j.

Proof. Let Sy, ...,Sy be the distinct simple CG-modules. By Theorem 4.2, we know that (x;, x;) = dimcHomcg(S;,S;)
for any ¢ and j. For each 4, we have Homcg(S;, Si) = Endea(S;) = C since S; is a simple CG-module. If
i # j then Homea(S;, Sj) = 0 because non-zero homomorphisms between simple CG-modules are isomor-
phisms. O

Remark 4.1. In other words, we have the following useful equalities:

5ij = |%| dec Xi(g)Xj( ) |G\ Zt 1 kth(gt)Xt(gt)

where the g; represent the conjugacy classes and the k; are the orders of the corresponding conjugacy classes.
If we interpret the rows of the character table as vectors, then, we can see that they are orthonormal with
respect to the above inner product when considered as vectors in C". We will not prove it here, but it is in
fact true that row orthogonality and column orthogonality are equivalent in this case.

Proposition 4.3. If o is a linear character of G and x s an irreducible character of G, then ax is an
irreducible character of G.

Proof. Since « is linear, it follows from Proposition 3.3 that a(g) is a root of unity for any g € G, and in
particular that 1 = |a(g)| = a(g)a(g) for every g € G. We now have,




(ax, ax) = g7 X gec 29X (9)(9)x(9) = &1 Xyea X(@)x(9)a(9)alg) = G X gea X(9)x(9) = (X, X)-
And since y is irreducible, (x, x) = 1 which means that ay is also irreducible. O

Remark 4.2. We already know about the trivial representation y;, but now we will briefly mention a
second linear (that is, f; = 1) character belonging to all S,,. Not surprisingly, perhaps, it is known as the
alternating character and it’s values are 1 or -1, depending on whether a permutation is odd or even. To be
more precise, it is the result of modding out by A,, for the same n, but computing based on sgn(o) is just
as easy. Now we are finally ready for an example.

Example 4.1. Consider the group S3. Extracting from above, we see that the conjugacy classes are the
identity, the transpositions, and the 3-cycles. Since every group has the two linear characters mentioned
above, we begin by inserting their values into the table

1 3 2

1 (12) (123)
x1 | 1 1 1
x2 | 1 -1 1
X3

Now we invoke a corollary of Theorem 3.1 which states that the sum of the squares of the degrees of G is
the order of G. Therefore, since |S3| = 6, we must have 1+ 1+ f = 6, so it must be that f;3 is 2. We make
use of column orthogonality to get:

0=30, fa((12)) =11+ 1+ (=1) + 2x3((12))
so we see from this that x3((12)) = 0, and
0=3"70, fixi((123) = 1-1+1-1+2y3((12))

from which we see that x3((123)) = —1. Thus the full character table of S5 is

1 3 2
1 (12) (123)
xi|1 1 1
Y2 |1 -1 1
xs|2 0 -1

Remark 4.3. For a more satisfactory explanation of the third irreducible character above, we’ll briefly
discuss what is sometimes known as the ”original fixed-point formula.” It states that if V' is the permutation
representation associated to the action of the group G on some finite set X (in our case the set {1,...,n},
then xv (g) is the number of elements of X fixed by g. This makes sense if we remember that a character is
defined to be the trace of a linear transformation on V, so its value is actually determined by the number of
unpermuted elements of X. To see how this applies, we first note that C> = U @V, where V is the character
we're trying to calculate and U is the trivial character’s module. Since the permutation representation as
presented has values (3,1,0), and xy is (1,1,1), we can subtract these to find xy = (2,0,-1). Thus we now
have 3 easily calculable characters for each S,.

We note a quick corollary to row orthogonality before moving on to the next example.
Corollary 4.4. A representation (therefore its character) V is irreducible if and only if (xv,xv) = 1.

Example 4.2. Based on the available information, here’s what we would expect the table of Sy to look like
with the first 3 characters:



1 6 8 6 3
Sy |1 (12) (123) (1234) (12)(34)
x1 |1 1 1 1 1
x2 | 1 -1 1 -1 1
X3 | 3 1 0 -1 -1
X4
X5

We can check that yj3 is irreducible using the inner product, and indeed this is so. To proceed, we once again
look at the sum of the squares of the degrees. Since |Sy4| = 24, we want the sum of the degrees of the five
representations to be 24. The sum of the degrees of the known characters is 11, so we need another 13 for
the last 2 characters. Thus, one has degree 2 and the other degree 3. To find the character of degree 3, we
can simply tensor o and x3 to get another irreducible representation, x4 which equals (3,-1,0,1,-1). As for
the last character, we know its degree (2), so we can get the rest of the information from row and column
orthogonality. Thus, the completed table for S4 looks like:

1 6 8 6 3
Sy |1 (12) (123)  (1234) (12)(34)
xi |1 1 1 1 1
Yo |1 -1 1 -1 1
xs |3 1 0 -1 -1
xa |3 -1 0 1 -1
s |2 0 -1 0 2

The character values for S; can be found in essentially the same way as above. In fact, knowing S,
can give you all the values for S,,+1. Unfortunately, this is a very inefficient method for computing values.
However, there is a useful way of finding them for the symmetric group using what are known as Young
diagrams. It is an ingenious blend of algebra and graph theory that represents the final step in the completion
of these tables. Its downside is the depth and complexity required for its formulation, which unfortunately
is beyond the scope of this paper. I would recommend to interested readers that they look at this subject in
more detail in ”"Representation Theory” where a full treatment is presented.



