THE WEIL CONJECTURES FOR CURVES

SAM RASKIN

ABSTRACT. This paper is a report for the 2007 University of Chicago REU. It is based
on a series of lectures given by Sasha Beilinson in the spring of 2007. We give an
introduction to the Weil conjectures for varieties over finite fields and prove them for
curves using basic techniques of algebraic geometry. The author would like to express
his gratitude to his friend and mentor Mitya Boyarchenko for the crucial guidance he
provided this summer.
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1. ZETA FUNCTIONS AND WEIL CONJECTURES

1.1. Introduction. We begin with an overview of the properties of general zeta functions.
Let X be a scheme of finite type over Z throughout this section and let | X| denote the
set of closed points of X. If x € |X|, we write k, for the residue field of X at x. Note
that k, is finite because of the following version of the Nullstellensatz “over Z”:

Lemma 1.1. If A is a field which is finitely generated as a ring, then A is finite.

Proof. We thank Akaki Tikaradze for showing us the following slick argument. If A has
characteristic p > 0, then A is finitely generated as an algebra over I, and we can apply
the usual Nullstellensatz. Otherwise the natural homomorphism Z — A is injective,
so A is torsion-free, and hence flat, as a Z-module. Moreover, the natural morphism
Spec(A) — Spec(Z) is of finite type; being flat, it is therefore open. But this is a
contradiction: since A is a field of characteristic zero, the image of this morphism must
consist only of the generic point of Spec(Z). O

Because of this fact, we can make the following definition:
1
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Definition 1.2. The zeta function of X is the formal product:

((X,s) = H (1- |kx|_8)_1

z€|X|

Here, s is a complex variable, and each factor (1 — |k,|™*)! in the product above is

viewed as a meromorphic function of s. A priori, it is not clear how to make sense out
of this formal product. There are two approaches to this. On one hand, the product is
known to converge when the real part of s is large enough (cf. Proposition 1.6 below).
On the other hand, if X is a scheme of finite type over a finite field F,, then a change of
variables t = ¢~° transforms ((X, s) into a formal power series in the variable ¢.

Ezamples 1.3. (1) If X = Spec(Z), then ((X,s) is just the classical Riemann zeta
function. More generally, if O is the ring of integers of a number field K, then
((Spec(Q), s) is the Dedekind zeta function of K.

(2) If X is a scheme of finite type over F,, then one usually makes the change of
variables t = ¢~° and defines:

((X,5) = Z(X,q7%) = Z(X,0) = [] (1 -0

z€|X]|

Here, if |k,| = ¢", we define deg(z) = n. By Lemma 1.4, the infinite product on
the right hand side gives a well defined formal power series in the variable ¢ with
rational coefficients. This is a useful change of variables in view of Proposition
1.5, which shows that the zeta function of X is closely related to the generating
function for the numbers | X (Fy»)| of points of X over finite extensions of F,. This
result was in fact the original motivation for introducing the zeta functions of
algebraic varieties over finite fields (cf. [We49)]).

Lemma 1.4. If X is a scheme of finite type over Fy, then | X (Fgp)| = O(q™9™X) as
n — oo. A fortiori, for any N € N, the number of x € | X| with deg(x) < N is finite.

Proof. 1t is clear that we may assume that X is reduced and irreducible (cf. the proof of
Proposition 1.6 below). In this case, by Noether’s normalization lemma, there is a finite

morphism U —— Aﬁzm(X) for U C X a dense open subset. Hence:

|U(F )| < deg() - g dm(X)

Because dim(X \ U) < dim(X), we have the result by induction on dim(X). O

‘s d
Proposition 1.5. We have t - 7 log Z(X,t) = Z | X (Fyn)

n>1

" in Q[t]].
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Proof. We formally compute:

d d deg(xz)\—1
tolog Z(X.t) = t- Yy —log((1 — 1))

tdeg(z)

— Z deg(z) - Ztk-deg(x)

z€|X]| k>1

= Z Z deg(z)t"

z€|X| deg(z)|n

Because | X (F,n)| is exactly the number of closed points of X of degree dividing n, with
" O

each such point z counted deg(x) many times, this last sum is Z | X (Fyn)
n>1

1.2. The zeta function as an analytic function. Since we are mainly interested in
the zeta functions of varieties over finite fields, we will only give a full proof of the next
result in this special case.

Proposition 1.6. On compact subsets of U = {s € C|Re(s) > dim(X)}, the product
defining ((X, s) converges absolutely and uniformly, and hence defines an analytic function
on U (which justifies the terminology “zeta function”).

Proof. We reduce first to the case where X is integral (this part of the proof works in
general). For, with X,.4 the reduced scheme associated to X, one clearly has:

g(Xv 8) = C(XT@dv 8)'

Therefore, we may assume X is reduced. Furthermore, if X = X; U X, for X; closed
subschemes of X, then with X; N X, the set theoretic intersection of X; and X, with the
inherited reduced subscheme structure:

C(x, ) = S 8) (X 9)

C(Xl N X2> S)

Thus, we may assume that X is irreducible as well. Because X is now assumed to be
reduced and irreducible, it is integral.
Observe that now there are only two possibilities:

(1) X lies over a single closed point of Spec(Z), or else
(2) X is “spread over Z,” that is, the morphism X — Spec(Z) is dominant.

Indeed, if X — Spec(Z) is not dominant, its image is not dense and hence finite; thus it
must consist of only one closed point of Spec(Z) as X is irreducible.
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As mentioned before, we will only prove the result for case (1). Suppose that X lies
above a single closed point p of Spec(Z), that is, that X is a scheme over F, of finite
type. To prove the convergence of ((X,s) for Re(s) > dim(X), it suffices to prove the
convergence of the power series t - % log Z(X,t) for 0 < t < ¢@™X), This is clear because:

dilogZXt Z|X |tn<M Z ndlm(X - M- Z dim(X

n>1 n>1 n>1

where we have used the estimate of Lemma 1.4. O

1.3. The Weil conjectures. In a celebrated paper [We49], A. Weil stated three conjec-
tures describing the properties of the power series Z (X, t) for smooth projective varieties
X over F,. He proved these conjectures in case dim X = 1 earlier [We48|. The first
two conjectures were proved in full generality by M. Artin and A. Grothendieck in the
early 1960s (see [Gr64] and SGA 5); an independent proof (using completely different
techniques) of the first one was also found by B. Dwork [Dw60]. The third conjecture was
proved by P. Deligne about ten years later [De74].

We state these conjectures following Weil [We49)] rather closely. We assume that X is
a projective scheme over Fy such that X Xgpec(r,) Spec(IF,) is irreducible and nonsingular.

1.3.1. Rationality. Z(X,t) is the power series expansion of a rational function of ¢.

Assuming this conjecture, we will, by a slight abuse of notation, write Z(X,t) both for
the formal power series introduced before and for the corresponding rational function.

1.3.2. Functional equation. The function Z(X,t) satisfies an identity of the form
Z(X,q ) = £¢™*°Z(X, ),
where d = dim X and e is the Euler characteristic of X.

We note that, in general, the Euler characteristic of X can be defined as the self-
intersection number of the diagonal in the product X x X. However, we do not have to
go into the details of this definition, since in the rest of the paper we only consider the
case where X is a curve, and then the Euler characteristic of X can be defined in an ad
hoc manner motivated by classical topology: e = 2 — 2g, where ¢ is the genus of X.

1.3.3. Riemann hypothesis. Letting d = dim X as before, it is possible to write

Py (t)Ps(t) - - - Pag—1(t)
Po(t)Pa(t) - - - Poa(t)

where the P;(t) are polynomials with integer coefficients such that Py(t) = 1 —¢, Pyy(t) =

1 —q%, and, for 1 < j < 2d — 1, one has P;(t) = Hszl(l — aujt), where || = ¢7/2.

Z(X,t) =
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1.4. Meromorphic continuation. We conclude this section with a remark which will
not be used anywhere in the text, but is interesting in its own right. Let us return to
the more general setup considered at the beginning of this section: namely, let X be any
scheme of finite type over Spec(Z). In view of Proposition 1.6, the formal product {(X, s)
defines an analytic function in the half-plane {s € C|Re(s) > dim(X)}, and it is natural
to ask whether (X, s) can be meromorphically continued to the whole complex plane. In
the case where X is a smooth projective scheme over [, the answer is positive in view of
the first Weil conjecture (stated in §1.3), which implies that, in fact, (X, s) = Z(X, ¢™*)
for a rational function Z(X,1).

More generally, if the canonical morphism X —— Spec(Z) is not dominant, one can
easily prove, using the ¢-adic cohomology techniques developed in SGA 5, that ((X, s) is
a product of functions of the form Z,(p~*), where each Z,(t) is a rational function and p
runs through the finitely many primes such that pZ is in the image of X — Spec(Z).

On the other hand, for the Dedekind zeta-function (x(s) of a number field K, mero-
morphic continuation is a very classical result (of course, (x(s) is very far from being
expressible in terms of rational and exponential functions).

However, if, say, X is integral, the canonical morphism X — Spec(Z) is dominant,

and dim X > 1, the question of whether ((X,s) admits meromorphic continuation to all
of C still remains open. The best result known to us is that {(X,s) can be analytically
continued to the half-plane {s € C|Re(s) > dim(X) — 3 }.
1.5. Structure of the text. In this paper we present proofs of the Weil conjectures for
smooth projective curves over finite fields. We will begin in §2 by proving the rationality
and functional equation using the Riemann-Roch theorem and Serre duality for curves.
The remainder of the paper will be centered around the proof of the Riemann hypothesis.
The main technique used will be intersection theory on surfaces, reviewed in §5.

2. RATIONALITY AND THE FUNCTIONAL EQUATION

2.1. Setup of this section. Throughout this section we fix a field k and a smooth
projective geometrically connected curve X, over k. Starting with §2.4, we will take k
to be finite. The reader will notice that many of the definitions and results recalled in
this section remain valid after relaxing some of our assumptions, but for consistency, we
decided to work within a single framework.

Recall that to say that X is geometrically connected means that
X = Xo XSpec(k) Spec(k)

is connected. The choice of the notation Xy and X is rather standard in the study of
varieties over finite fields (see, e.g., [De74] or SGA43).
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2.2. Line bundles and divisors. In order to prove the rationality of the zeta function of
a smooth curve over [F;, we will need a few elementary ideas and facts about line bundles
on curves. Recall that the Picard group of X is the set Pic(Xj) of isomorphism classes
of line bundles of X, given a group structure through the tensor product. We write
Div(Xy) for the group of Weil divisors on X, (i.e., formal finite linear combinations of
closed points of the underlying scheme of X, with integral coefficients).

If D € Div(Xy), we denote the degree of D by deg(D) € Z. Let us recall its definition.
If D= er\Xo\ n, - x, where |Xy| is the set of closed points of Xy and n, € Z, then
deg(D) = > n, - deg(z), where deg(z) = [k, : k] and k, denotes the residue field of X
at x (the extension k C k, is finite in view of the Nullstellensatz).

Remark 2.1. Because X is smooth, there is a canonical isomorphism between the groups
of Weil and Cartier divisors on Xj. Furthermore, one has a natural bijection between the
set of effective Cartier divisors on X, and the set of line bundles on X, equipped with a
non-zero global section modulo scaling. For details on these two bijections, see [Mu66], §9.
Under these correspondences, isomorphism of line bundles translates to linear equivalence
of divisors, so Pic(Xj) is isomorphic to Div(Xj)/{divisors linearly equivalent to 0}.

Let us write K(Xy) for the field of rational functions on Xj. Since X is projective,
if f € K(Xp)* and (f) denotes the divisor defined by f, then deg((f)) = 0. Thus, the
degree homomorphism Div(X,) — Z descends to give a homomorphism Pic(Xy) — Z.

Definition 2.2. We set Pic’(Xj) to be the kernel of the latter homomorphism.
2.3. The Riemann-Roch theorem. We keep the assumption of §2.1.

Recall the following theorem of Riemann-Roch-Serre which is crucial in discussing
line bundles on projective curves. If # is a line bundle on Xj, we denote by h'(.¥)
the k-dimension of H*(Xy,.%). Of course, as we only need the zero-th cohomology in
this formulation, the reader uncomfortable with sheaf cohomology may rest assured that
H°( Xy, Z) = T'(Xp,Z). We denote by wyx, the sheaf of differential 1-forms on Xj.

Theorem 2.3 (Riemann-Roch formula). For £ a line bundle on Xy, we have
(L) — K (wx, ® L) =deg( L) +1— g,
where g = h°(wx,) is the genus of Xj.
For the proof, see, for instance, §VIIL.1 of [AK70].
Corollary 2.4. If deg(£) > 2g — 2, then h°(&) = deg(Z) + 1 — g.

Proof. Suppose first that D is a Weil divisor on X, corresponding to a line bundle £. Recall
that if f € K(Xp)*, then deg(f) = 0 because X, is projective. Thus if 0 # f € I'(Xo, &),
then by definition (f) + D > 0, and therefore deg(D) = deg((f) + D)) > 0.
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Because deg(wx,) = 29 — 2, as one easily checks using the Riemann-Roch formula,
setting £ = wy, ® £~ we have deg(€) < 0 which implies that £ has no global sections,
that is, h’(wx, ® £ 1) = 0. The result now follows immediately from the Riemann-Roch
formula. OJ

We need one last result before proving the rationality of Z(X,t):

Proposition 2.5. With the assumption of §2.1, the subgroup Pic®(X,) C Pic(Xy) has
a coset all of whose elements admit representatives by effective divisors in Div(Xy). In
particular, if k is finite, then Pic®(Xy) is finite.

Proof. Let n > 2¢g and consider any divisor D of degree n. By Corollary 2.4, h°(O(D)) =
deg(D)+1—g =n+1—g > 0. However, as noted in the proof of the corollary, if
hO(O(D)) > 0, then D must be linearly equivalent to an effective divisor. Clearly, the set
of all divisors of degree n on Xy modulo linear equivalence is a coset of Pic?(Xj).

The second statement of the proposition follows because if k is finite, then for a fixed
n € N, the number of closed points of X of degree at most n is finite (Lemma 1.4). O

2.4. Rationality. We keep the assumptions of §2.1 and put k = F,.

Theorem 2.6. With the hypotheses above, Z(Xy,t) is a rational function of t.
Proof. Computing formally with the product in the definition of Z, we see that:

Z(Xo,t) = H (l_tdeg(x))—l _ H itk-deg(x)‘

z€| Xo| z€|Xo| k=0
Expanding the product on the right, we see that it is the sum over all possible terms
t2-kideg(®:) where the sum in the exponent is finite and the k; are positive integers. That
is, the sum is equal to Z 4°8(0) where the sum is taken over effective divisors on Xp.
D>0
Now, to each such divisor we may assign a pair (%, ), where v is a global section of .Z.
As the divisors correspond to such a pair up to a scalar multiple of v, we see that our
sum has evolved into the expression:

D —1
>, POXe2) = YT T,
LEPic(Xo),Z>0 ZePic(Xo),2>0 17
With the sum in this form, we may apply the Riemann-Roch theorem and Corollary 2.4
to compute:

(L) _q h(Z) _q

3 T 7770 pdeg(2) 3 47 T 0 jdeg() _
q—1 q—1
0<deg(¥)<2g—2 2g—2<deg(Z)

Z D 1

0<deg(Z)<2g—2

deg(L)+1-g _
. ¢deg(2) q . 4deg(:2)
oy
2g—2<deg(¥)

qg—1
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Let us define
(L) _q
. tdeg(«iﬂ )

9i(t) = > !

0<deg(£)<2g—2

ot)= Y L

2g—2<deg(?)

qg—1

and el 1
EOTI 1 gty

qg—1

By Proposition 2.5, the group Pic(Xy) is finite. Thus, because there are | Pic®(X,)]| line
bundles on X, of degree n, g1(t) is a polynomial of degree 2¢g — 2 and we see that:

n+l—g __ 1 h(t)
g2(t) = | Pic®(Xo)| Y — "= .
P RNrES T-00-a)
The equality is of course justified by the formula for the summation of a geometric
series, which shows as well that the degree of h(t) is 2g. O

The proof given above yields a stronger version of Theorem 2.6:

Theorem 2.7. We have

f(®)
(1=t)(1—qt)’
where f(t) € Q[t] has degree at most 2g and constant term 1.

Z(X07 t) =

2.5. The functional equation. Here our setup is as in §2.4. We will prove the functional
equation for the zeta function (i.e., the second Weil conjecture) for X, by considering the
proof of Theorem 2.6 in greater detail.

Theorem 2.8. Z(Xy,q ') = ¢' 79427297 (X, t).

To motivate the proof of this result, we first make the following observation.

Computation 2.9. We consider for a moment, using the notation of the proof of Theorem
2.6, the polynomial

h(Z) _
a(t) = 3 qq—ill . 4deg(:2)
0<deg(¥)<2g—2
We can involute these line bundles by sending £ to wy, ® Z~!, recalling again that
deg(wx) = 2g — 2. Let us observe what Serre duality tells us happens to a typical
summand of g; upon applying this involution:

g xo® 2 (L) —der(#)-14g _

tdog(wxo L1 . t2g—2—dcg(,§,ﬂ)

qg—1 a qg—1
0(¢ eg ¢ —
_ qh ) — qd gLl . qdcg($)+1—gt2g—2—dcg($)
q—1
0 e _
qg—1t2g—2 . qh &) — qd g(Z)+1-g . (q—lt—1>deg(§f)

1—g
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While the last expression may seem at first foreboding, we note that

qho(fl) -1 _ qho(fl) _ qdeg(fi)—i-l—g N qdeg(fi)-i-l—g -1

qg—1 qg—1 qg—1

and reassuringly observe that the right summand resembles the typical summand of gs.
With this encouragement, we feel prepared to approach the functional equation for Z.

Proof. Using Computation 2.9 and the symmetry of .Z — wx, ® £, we see that the
expression

hO(L) _

Z q 1tdeg$ + Z q

—1
0<deg(Z¥)<g—1 9 g<deg .L<2g—2

RO(Z) _  deg(L)+1—g

q tdeg(.i”)
qg—1

satisfies the functional equation. As noted at the end of the computation, we have Z (X, t)
is the sum of this expression and

deg(ZL)+1-g __ n+l—g __
(£) 1 1.,

tdeg(,&”) — Pi OX qit
P L

n>g

q

1
dea(2)>g q

= | Pic®(Xp)|t9(1 — )" (1 — qt) "

However, it is trivial to check that this last expression satisfies the functional equation,
so we have completed the proof. 0J

The following is an equivalent reformulation of the functional equation:

Corollary 2.10. (a) With notation as in Theorem 2.7, f(t) has degree exactly 2g.
(b) We may write f(t) = H?il(l — w;t), where w; € C are ordered in such a way that
Wiwag1—i = q for all 4.

Proof. By Theorem 2.8:

flat™h) _ TGOS

(I—g 't A -t  (I—t)(1—qt)

This immediately gives t27¢9 f(q~'t!) = f(t). Comparing degrees, we get 2g = deg(f).
Furthermore, these polynomials must have the same sets of roots. The left expression

2g
has roots {%} , so there must be some permutation o € Sy, such that wiweu) = ¢.
Because f has rétilonal (and hence real) coefficients, it has an even number of real roots
which means /g and —,/q appear as roots both an even number of times or both an odd
number of times. Also, the leading coefficient of f equals ¢, so since f has constant term
1, the product of its roots must be positive. Thus, both appear an even number of times.
This allows us the precise formulation about the ordering as given above. O
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3. THE RIEMANN HYPOTHESIS FOR CURVES

3.1. Statement of the result. In this section we remain in the setup of §2.4. Thus X
is a smooth projective geometrically connected curve over F, and X = X, ®p, F,. We
will state more explicitly the third of the Weil conjectures (see §1.3) for X and discuss
an equivalent reformulation thereof.

Because the zeta function Z(Xj, t) has rational coefficients, its zeroes appear in complex
conjugate pairs. It then becomes a natural question to ask whether the pairing given by
Corollary 2.10 is the same as this conjugate pairing, that is, if:

q __
Wi

The answer is positive:

Theorem 3.1. In the notation of Corollary 2.10, |w;| = ¢"/* for all 4.

We prove this result in Section 6. It is called the Riemann hypothesis for curves over
finite fields because of the analogy with the classical case, for, after our change of variables
from Example 1.3(2), this is exactly the claim that every zero of ((Xo, s) has real part 3.

3.2. A reformulation. The proof of the Riemann hypothesis for curves that we give in
Section 6 is based on the following fact.

Proposition 3.2. The Riemann hypothesis holds for Xq if and only if

1 Xo(Fy)| = ¢" + O(¢"?)  asn — cc.

Proof. Suppose first that |w;| = ¢'/? for all i. Consider the equality:

(1—1)(1—qt)
Taking logarithmic derivatives of both sides and multiplying by ¢ yields:

S g =D = 3 [XalE )

n>1 n>1
29
Thus, |Xo(Fp)| =1+ ¢" — Zwi" = ¢" +O(¢"?) as n — oo,
i=1

Conversely, suppose that this estimate holds. The argument above shows that
S22 Wl = 0(q%). We use the following elementary lemma:

Lemma 3.3. If Ay, ..., \p are complex numbers such that | Zle A"l is bounded as a
function of n, then |N\;| <1 for all i.
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Proof. We give a sketch of the proof because the details would be distracting and because

this can be proved by an advanced high school student. Using the pigeonhole principle,
N N

there exist arbitrarily large N such that Re(A\)) > 0 and —% <Im(\V) < Rev) for

2
all 2. However, this implies by an induction argument on k that:

k k
Z)‘ZN > Z Y
=1 =1

Because the left hand side is bounded by assumption, the right hand side must be too.
However, this is the case only if [A\;| <1 for all 4. O

\/Ek

Applying this lemma to \; = w;q~ 2, we see that |w;| < ¢2 for all i. Together with
Corollary 2.10, this yields:

a 3

|wi| = >q

|wag 1

Thus, |w;| = ¢2 for all . O

3.3. Remarks.

(1) One should think of Proposition 3.2 as something of an analogy to the statement that
the classical Riemann hypothesis is equivalent to the estimate:

T odx
m(x) = —— + O(Vxlog(x
@) = [ i + O log(a)
The reason for this is that computing | X (Fyn)| is like counting the number of maximal
ideals in a ring of degree less than n.

(2) Tt is possible to give a more elementary proof of the Riemann hypothesis for curves
(which is also based on Proposition 3.2) than the one we present in Section 6. This
more elementary proof uses only the Riemann-Roch theorem on X itself, as opposed to
the Riemann-Roch theorem on X x X (as in Weil’s original argument), or intersection
theory on X x X (as in Section 6 below).

The idea of a more elementary proof is due to S.A. Stepanov [St69], who proved
the Riemann hypothesis for curves in some special cases. His method was further
developed by E. Bombieri, who gave a complete proof in [Bo74]. However, this method
is much less conceptual than the one due to Weil, so we do not discuss it.

4. OPERATIONS ON DIVISORS

In the next two sections, we will develop pull backs and push forwards on divisors
and then the basics of intersection theory. These will then be applied to the Riemann
hypothesis in concluding final section. A discussion of why these are the natural techniques
to use will be given in the beginning of Section 5, where it is more appropriately located.
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4.1. Pull backs. Consider a finite surjective morphism ¢ : Y — Z between two normal
integral schemes of finite type over a field k. We will eventually associate to it two
operations, the pull back ¢* : Div(Z) — Div(Y') and the push forward ¢, : Div(Y) —
Div(Z), where Div(Y') denotes the group of Weil divisors on Y.

Definition 4.1. Let y € Y be a codimension 1 point! such that ¢(y) = 2 has codimension
1 in Z. This gives us an inclusion of the discrete valuation rings? Oz, — Oy,. Fort
a uniformizer of Oy,,, we define the ramification index at y to be e(y) = v,(t), where
v, 1 Oz, \ {0} — Z is the natural valuation. We set the convention that if ¢(y) has
codimension at least 2, then e(y) = 0.

For y a point of codimension 1, we denote by [y] = {y} the corresponding prime divisor.

Definition 4.2. For z € Z a point of codimension 1, define the pull back of [z] along ¢
by ¢©*([z]) = Zcp(y):z e(y)[y]. Extend this by linearity to give the definition of the pull
back of an arbitrary divisor.

Lemma 4.3. Pull backs take principal divisors to principal divisors and therefore define
a map Pic(Z) — Pic(Y).

Proof. Let f € K(Z)*. Consider the image f of f under the inclusion K(Z) — K(Y)
induced by . We claim that (f) = ¢*((f)). Evidently this statement is true if and only
if it is true locally. (Here, “local” means local both on Y and on Z; we are implicitly using
the fact that pullbacks are defined for any, not necessarily finite, morphism.) Therefore,
we may reduce to the case where Y = Spec(A) and Z = Spec(B) and where ¢ comes
from some homomorphism v : B — A. We may further assume that f has exactly one

zero or pole on Z, say at z, and that there is exactly one y € Y lying over z.

In this situation, ¢ restricts to give a map Oz, — Oy,,. This map is ramified of degree

e(y), which means: i
uy((f)) = vy (i(f)) = e(y) - (v=(f))

This suffices to prove the claim. O
4.2. Push forwards.

Definition 4.4. The degree, deg(y), of the morphism ¢ is the degree of the field extension
K(Y) D K(Z). This number is finite because ¢ is finite by assumption.

Definition 4.5. We define the push forward of a divisor D € Div(Y’) by defining it for
prime divisors and extending linearly. For D a prime divisor on Y, we let p,(D) = 0
if (D) codimension greater than 1 in Y and ¢.(D) = deg(p|p) - ¢(D) if (D) has
codimension one. In a different language, for D = [y] and z = ¢(y), we let p.(D) = 0 if
z has codimension greater than 1 and ¢.(D) = [k, : k,|[2] if z has codimension 1.

IThis means that dim@ =dimY — 1, where @ is the closure of y in Y.
2Recall that normal schemes are in particular nonsingular in codimension 1.
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The constant in this definition is justified by the corollary to the following proposition.

Proposition 4.6. For g € K(Y), we have ¢.((g)) = (Ni)/x2)(9)), where
Nkwykzy : K(Y) — K(Z) denotes the norm map.

Corollary 4.7. Push forwards preserve linear equivalence and therefore descend to give
a map Pic(Y) — Pic(Z).

Proof. That the corollary follows from the proposition is clear.
To prove the proposition, we will need the following lemma.

Lemma 4.8. Let A C B be Dedekind domains with B finite as an A-module and with
fields of fractions K C L. For a prime p C A, let Bp = [[ q°9 be the factorization of Bp

into primes of B. Let f(q) = [B/q: A/p]. Then > e(q)f(q) = [L: K].

Proof. By localizing at A \ p, we may assume A to be a DVR. Then because A is a PID
and B is a finitely generated, torsion free A-module, it is free of rank [L : K]. Thus,
dima/,(B/pB) = [L : K]. By the Chinese remainder theorem, the following map is a
surjection:

B/pB — [ B/a"

Thus, comparing the dimensions of both sides over A/p, we get:

[L:K] = dima,(B/q®)

However, because as A/p-modules B/q“? = (B/q)®¥, we have dim,,,(B/q°?) =
e(q)f(q). 0

We proceed on the proposition by a series of reductions. First we may immediately
reduce to the affine case where Y = Spec(B) and Z = Spec(A) for B a finite A-algebra
and where A and B are domains regular in codimension 1, say with fields of fractions
K and L respectively. We may suppose further that all zeros and poles lie above one
prime p € Spec(A), say at {q} C Spec(B). We then get a map between A, — Bay,
where now B4\, must be finite as an Ay-module as it is a finite algebra over a DV R.
Therefore, B4\, = B’ is a Dedekind domain. In the notation of Lemma 4.8, we have
deg(p|iq) = f(q). We need to show that, where g € L*:

> F(@)vg(9) = vp(Niyxe(9)) (%)

By Lemma 4.8, Ze(q)f(q) =|[L: K].

Consider the case where g € K* so that vy(g) = e(q)vp(g) and Ny, x(g) = g!¥]. Thus:

p(Niyic(9)) = vp(g™ ") = [L - Kop(g) = Y e(a) f(@)vplg) = D f(a)valg)-

q
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Furthermore, notice that because both sides of (%) take powers to sums, if the result is
true for some power of g then it is true for g. Thus, if L/K is purely inseparable, the
result follows.

We now wish to reduce to the case of a separable extension. Because every extension
is the composition of a purely inseparable extension and a separable extension, it suffices
to show that if the result holds for an extension E/K and for L/E, then it follows for
L/K. For notational reasons, this is somewhat easier to show for schemes than for rings.
Let W be the normalization of Y in E, so that ¢ factors through:

y w2z

The computation is now clear, noting that the functorality of push forwards follow directly
from the definition:

(Boa)llg) = Blau((9) = Bl(Nkwyxw)(9))
= (NK(W V/K(Z (NK(Y)/K(W) (g)))
= (Newyr2)(9))-

Next, we wish to reduce to the case where the extension is Galois. This however, is clear
because K C L is contained in a finite Galois extension K C L C M. The statement
follows from an identical argument because it is true for L C M and for K C M.

By [Se79] §1.7, the group G = Gal(L/K) acts transitively on the set {q} of primes of
B’ lying over p. Fix one of them, say qo. Then if o - qo = q for o € G, we have:

Vgo(9) = Voqo(0 - g) = vq(0 - 9)
Therefore:

Zf(CI)Uq(g) = \stab ) |Zf o qo) quo 9)

q

\stab qo )] 4 quo 7:9)

f(40)
|stab( )| CIO(NL/K( ))

f(go0)e(qo)

v (N
tab(ay)] UV EE)

The result now follows as, because as the extension is Galois:

61 = IL+ K1 = 3 elahf(a) = o) a0)
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Combining ¢, and ¢* gives us endomorphisms of Div(Y) and Div(Z). The endo-
morphism of Div(Y) is difficult to describe, but that of Div(Z) admits a very simple
description.

Proposition 4.9. The endomorphism p.o* of Div(Z) acts by D +— deg(p) - D.

Proof. Suppose z is a codimension 1 point of Z. Then:

P07 ([2) = Y ely) degleply) - [2] = e(y) F(y) - [2] = deg(p) - [2]

(y)==

5. INTERSECTION THEORY ON SURFACES

We will require throughout this section that k be an algebraically closed field.

5.1. Relationship to cohomology. Before discussing intersection theory, we will de-
scribe why it is the natural place to look for a set of tools. The thought of the Grothendieck
school was that the Weil conjectures would yield under the development of appropriate co-
homological techniques on algebraic varieties because their analogues for Kédhler manifolds
could be proved by some basic facts about their cohomological structure. This led to the
development of étale cohomology which was able to prove the first two conjectures. How-
ever, that étale cohomology seemed not powerful enough to prove the Riemann hypothesis
for varieties led Grothendieck to initiate the theory of motives with their “standard con-
jectures” which, if proven, would give a conceptual proof of the last Weil conjecture.

Intersection theory reflects something of the cohomological structure of a variety. This
is because it deals in general with algebraic cycles, though we will be concerned only with
divisors, which are the appropriate analogues of cycles of classical topology.

5.2. Basic definitions. We wish to find a definition of the intersection number of two
closed? curves on a smooth, projective surface Y, with the intention of eventually applying
our techniques to the particular surface Y = X xg . @) X. We may immediately extend
any such map to Div(Y') x Div(Y) — Z by linearity. We want a map which is symmetric,
invariant under linear equivalence and which accounts for “multiplicity.” We say two
smooth curves intersect “transversely” at a point if their tangent spaces sum to give the
tangent space of the surface at that point. This will give our conception of two curves
intersecting with multiplicity one. To account for higher multiplicity, we intuitively want
to say that intersection numbers are invariant under slight perturbation. This notion
would say, for example, that the parabolas y = 2? and y = —a? have intersection number
2 because if we slightly perturbed them they would intersect transversely in two places.

3We will assume without further mention that all curves with which we deal are closed.
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Definition 5.1. Two smooth curves C' and D intersect transversely at P € Y if, there
are regular functions f and g defined in a neighborhood of P in Y, so that C' is given
locally near P as the zeros of f and D by ¢, and such that the images of f and g generate
the maximal ideal of Oy p. We simply say that C' and D intersect transversely if they
do so at every point of their intersection.

Remark 5.2. The reader familiar with tangent spaces on algebraic varieties will immedi-
ately recognize that this definition is exactly equivalent to the situation described above.

Proposition 5.3. If C and D intersect transversely, then deg-(O(D)|c) = #(C N D).

Proof. We may clearly assume that C' and D are connected. Since they are smooth by
assumption, it follows that they are irreducible. We will write Oy, p for the local ring of
Y at the generic point of D. In other words, Oy,p is the ring of rational functions on Y
whose only poles are along the divisor D.

Let P be an intersection point of C' and D and let f and g be as in Definition 5.1, so
that in particular f is a uniformizer in Oy p. We have the maps:

Ovp — Oyvp — Ocp
We claim that the image of f under these maps generates the maximal ideal of O¢ p.
Consider the following short exact sequence, where J¢ is the ideal sheaf of C' in Y:
0—TJcp—0Oyp—0cp—0

By the transversality assumption, f and g generate the maximal ideal of Oy p, therefore,
their images generate the maximal ideal of the quotient O¢ p. However, as g is killed by
this quotient, it must be that the image of f generates this maximal ideal.

This is exactly to say that a uniformizer in Oy,p is sent to a uniformizer in O¢ p. In
other words, the k-dimension of the stalk of the quotient Oc/(O(—D)| ) at P equals 1.
Since this quotient is supported precisely at the intersection points of C' and D, it follows

that dego(O(D)]c) = X pecrp 1 = #(C N D). O

Corollary 5.4. If D and D’ are irreducible curves intersecting whose prime divisors are
linearly equivalent and which intersect C' transversely, then #(C' N D) = #(C' N D").

Proof. This follows because O(D) = O(D"). O

Definition 5.5. For C' a smooth curve on Y and D € Div(Y'), the intersection number
of C with D is (C.D) = deg(Oy (D)|c).

Proposition 5.6. With x denoting the Euler characteristic, (C.D) = x(Oy(D)l|¢) —
X(Oc) = x(Oc) = x(Oy(=D)lc)
Proof. By Riemann-Roch, for any line bundle .Z on a smooth projective curve C"

X(Z) = deg(Z) +1—g(C) = deg(L) + x(Oc)

Let £ = Oy (D) and .Z = Oy (—D) to obtain these results, noting that deg(Oy (D)) =
— deg(Oy (=D)). O
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This is useful because it gives us a workable definition for any possibly singular curve

C.

Definition 5.7. For C' a not necessarily smooth curve on Y and D € Div(Y'), the intersec-
tion number of C' with D is (C.D) = x(Oy(D)|c) — x(O¢) = x(Oc) — x(Oy (—=D)|c).
We may extend this definition by linearity to give the definition of intersection number
for any two divisors on Y.

Theorem 5.8. For any two divisors C, D € Div(Y), (C.D) = x(Oy) — x(Oy(=C)) —
X(Oy(=D)) + x(Oy(=C = D)).

Proof. First, consider the case where C'is a curve. Then we have the short exact sequence,
because the functions killed by the restriction map are exactly those with a zero along C"

0— Oy(-C) — Oy — Oc — 0

Because O(—D) is a line bundle, it is a flat Oy module (because flatness is a local property
and Oy |y is clearly flat). Thus, tensoring with O(—D) we see that the following sequence
is also exact:

0— Oy(-C—-D) — Oy(—D) — O(=D)|lc — 0
Together, these imply:
X(Oy) =x(Oy (=C)) =x(Oy(=D)) +x(Oy(=C = D)) = x(Oc) — x(Oy (=D)|c) = (C.D)

With this, it now suffices to show that the map (C,D) — x(Oy) — x(Oy(=C)) —
X(Oy(=D))+ x(Oy(—C—D)) is bilinear. We merely sketch this proof because it requires
the use of ample sheaves and a full discussion of them would be too much of a digression.
The reader is referred to [Mu66] for the necessary details. By Bertini’s theorem, every
divisor on Y is linearly equivalent to the difference of two smooth curves. Therefore, we
are reduced to the case as described in Definition 5.5, at which point it is true because
it is bilinear with respect to D simply because the degree map is a homomorphism, and
then our claim follows because the intersection form is symmetric. 0J

5.3. The Néron-Severi group. In fact, the intersection form immediately gives us a
useful equivalence relation that is weaker than linear equivalence.

Definition 5.9. We say that two divisors are numerically equivalent if their intersection
numbers with any third divisor are equal. We define the Néron-Severi group of Y to
be NS(Y) = Div(Y')/{divisors numerically equivalent to 0}.

Note that the intersection form descends to give a nondegenerate symmetric bilinear
form NS(Y') x NS(Y) — Z. In particular, NS(Y') is a torsion-free abelian group. This
group is in fact finitely generated as in proved in [LN59]. However, we will not need this
result.
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5.4. Relationship to §4.
Proposition 5.10. For C € Div(Y) and D € Div(Z), (C.o*(D)) = (p.(C).D).

Proof. Again, by Bertini’s theorem we may assume by bilinearity that C' and D are
smooth, prime divisors. In this case it is clear because we may compute:

(¢*C.D) =deg(O(¢"C)|p) = deg((¢*O(C))|p)
= deg(¢"O(C )|so(D)
= deg(y|p) - deg(O(C)|p(n))
= (p(C

6. PROOF OF THE RIEMANN HYPOTHESIS FOR CURVES

We return now to the Weil conjectures for curves over finite fields. Let us reinstate the
hypotheses and notation of §2. Let us also dictate that Y = X X gpec(iy) X - We will first
set up the absolute Frobenius morphism on X then give the last results we need before
proving the Riemann hypothesis for Xj.

6.1. The Frobenius morphisms. For A any [ -algebra, let ¢ : A — A be the Frobe-
nius substitution, that is, the homomorphism a — a?. Then ¢ gives us a morphism
Oy, : Xo — Xy in the following manner: on the level of topological spaces, let ®x, be
the identity map and then for any open U C Xy define ®% (U) = ¢.

Definition 6.1. This morphism of schemes is the absolute Frobenius morphism on Xj.
Its extension Frxy = &y, x id to X is the Frobenius endomorphism of X.

Remark 6.2. The absolute Frobenius morphism is defined functorially among schemes
over F,. That is, given any morphism v : Xo — Yy, we have ¢ o ®x, = Py, 0 9.

Note that X (F,) = X,(F,) straight from the universal property defining X. These two
sets have two natural Frobenius actions on them, namely, X (F,) has the action given by
the Frobenius endomorphism and Xy(FF,) has the action induced by the Galois action as
¢* : Spec(F,) — Spec(TF,) is a morphism of schemes over F,,.

Proposition 6.3. These two actions are identical.
Proof. As ¢* = @g.), by Remark 6.2 we have for all z € Homp, _scn(Spec(Fy), Xo):

(o) xid = (z 0 Qg i) X id = (Px, 0 z) x id = Fry o(z X id).
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6.2. Preparatory results. Let Ax and ['ry denote the graphs of the diagonal morphism
and Fr'y respectively in Y.

Lemma 6.4. We have [I'mn ] = ((Frx xidx)*)"[Ax].

Proof. Note first by functorality of pull backs we have ((Fryx xidx)*)" = (Fr'y x idx)*.
Thus, it suffices to show that for an arbitrary endomorphism ¢ : X — X, we have
I'y] = (¢ x idx)*[Ax], where I'y, is the graph of ¢ in Y.

It suffices to prove this locally, so assume that X = Spec(A). Consider a closed point
x € X and take 7 a uniformizer in Ox,. We may assume 7 comes from a global section,
that is, m € A. By pulling back 7 along each of the two projections, we get two sections
m1 and 7o of Y. Then m — my € I'(Y, Oy) generates the ideal of Ay. Pulling back along
¢ x id takes m — g to 9*(m) — my. However, this clearly generates the ideal of I'y. [

Lemma 6.5. For alln € N, we have ([I'ny|.[Ax]) = [X(Fgn)].

Proof. Because Fr'y has vanishing differential, I'ny, and Ax meet transversely at every
point. Furthermore, they must meet only at closed points because they are both irre-
ducible of dimension 1. Thus, it suffices to show that the number of closed points where
they intersect is equal to | X (F,»)|. Because we are dealing only with closed points and
schemes of finite type, by the Nullstellensatz the closed points of Y is just the set theo-
retic product of closed points of X with itself. At this point the result is clear because
Fr'’y () = x if and only if x is fixed by (¢*)" by Proposition 6.3. O

We will also need the Hodge index theorem to proceed. The reader is referred to [Mu66],
§18 for a proof. We recall the statement of the theorem:

Theorem 6.6. The intersection form has index 1 on NS(Y'), that is, we have an internal
direct sum decomposition NS(Y') ®z Q =V & V', such that V has dimension 1 and the
intersection form is positive definite on 'V and negative definite on V'.

6.3. The Riemann hypothesis. We now have all the tools we will need at hand.
Lemma 6.7. We have | X (Fy)| = ¢" + O(q?).

Proof. Let W be the Q-vector space NS(Y') ®7 Q. We have a nondegenerate symmetric
bilinear form (-, -) on W inherited by the intersection form. By Theorem 6.6, it is positive
definite on a vector space of dimension exactly 1.

Let [H] and [V] be the divisors corresponding to the horizontal and vertical axes in
X x X, that is, X x{x¢} and {z¢} x X for some chosen closed point zy of X. These are not
equal in NS(Y') because ([H].[V]) =1 and ([H].[H]) = 0. Therefore, if U = Q[H] ® Q[V]
we get a decomposition W = U @ U’ where U’ is the orthogonal complement to U because
U is finite dimensional. We claim that the bilinear form is negative definite on U’. Its
matrix on U with respect to the basis {[H], [V]} equals:

(Vo)
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This matrix has one positive eigenvalue, so the subspace on which (-, ) is positive definite
is contained in U and therefore U’ is contained in its orthogonal complement, on which
(+,+) is negative definite.

Let T : W — W be the linear transformation D —— (Frx xidx)*D. Then T[H| =
q - [H] and T[V] = [V] as follows immediately from the definition of pull backs. We
know by Lemma 6.4 that T"[Ax| = [['m7 |. Furthermore, because deg(Frx xidx) = ¢, by
Propositions 5.10 and 4.9, we have that for all D, E € NS(Y'):

((Frx xidx)*D.(Frx xidx)*E) = (D.(Frx xidy).«(Fry xidx)*E) = (D.qFE) = q - (D.E)
Thus, for all v,w € W, (Tv, Tw) = q(v, w).
Let us set Ax =u+u' foru=[H]+[V] € U, v € U', and we then compute:
(X (Fgn)| = (Try ] [Ax]) = (IT"Ax,Ax)

= (T"([H] + [V]+ ), [H] + [V] + )
= "+ 1+ (T, u)

However, because (-,-) is negative definite on U’, we may apply the Cauchy-Schwarz

inequality to see that:

(T )| < T T[] = /arw)] = O(g™?)

By Proposition 3.2, this suffices to show the Riemann hypothesis for curves.
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