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1 Introduction

Two men are walking down the street. As they part company, police officers
surround each man, arresting them separately, and they are brought in two
separate cars to two separate police stations. Each man is seated in an
interrogation room and immediately told the following by a detective:

“Look, we know it was you two who robbed the bank yesterday, but we
want the charges to stick. We need you to cooperate with us. If you both
confess, you’ll get 5 years in prison. If you confess and your partner denies,
you’ll get 1 year, he’ll get 10. If you both deny the crime, you’ll both do 2
years. I’ll be back in five minutes, and you better have a decision. Oh, and
just so you know, your partner is getting the same offer.”

The prisoners begin to get nervous.
What would you do? Maybe it depends on how much the prisoners trust

one another, and maybe it depends on how much they hate jail. Well, if you
are worried enough about jail, and don’t care about what happens to your
partner, you might make the perfect player. If you seek to maximize your
gain and minimize your loss, if you are rational and intelligent, and if you
rationality leads you to the conclusion that your ‘opponent’ is rational also,
you might draw yourself this picture:

Then think: If the other prisoner confesses, I would be better off con-
fessing (−5 > −10), and if he denies the crime, I would still be better off
confessing (−1 > −2). So you confess. But the game is symmetric, so the
other guy decides, similarly, to confess. You both confess and are sent to
prison for 5 years. Too bad, certainly you would both have preferred the
(Deny, Deny) outcome. So why could this outcome never be the result of
this game, finitely played? Because if you know (or believe) that the other
player will Deny, you will be very tempted to deviate from the (Deny, Deny)
strategy. So would the other player. This makes you nervous. You decide
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to play it safe and confess. So does he. The strategy (Deny, Deny) is not
stable, while the strategy (confess, confess) is stable. Neither player would
prefer to change his response, given the strategy of the other player. In other
words, at the point (Confess, Confess), player 1 says, given player 2 is playing
“Confess,” I would be only worse off playing “Deny,” so I will stay where I
am.

You have just played through a rather famous scenario in the field of game
theory–The Prisoner’s Dilemma, originally formulated by Merrill Flood and
Melvin Dresher in 1950 [1]. Since then, Game Theory has come very far.
This paper, however, will return to the basics, ultimately chronicling the
evolution of the proof of the Fundamental Theorem of Games: every game
has a solution.

2 The Beginning

One class of games is ‘zero-sum.’ These are simply 2-player games in which
the sum of all payoffs between the players is 0, in particular, a gain of $2 for
one player is the loss of exactly $2 for his opponent. The study of this class
is quite fruitful, but limited in application to parlor games and extremely
simplified international relations. However, it is precisely these games that
gained the attention of the leading mathematicians and economists formu-
lating the Theory of Games. Noting their definition, zero sum games can be
intuitively represented in the form of an m × n matrix, where the payoff to
payer one only is listed for every possible combination of strategies. Then,
clearly, 0 − aij represents the payoff to player 2. Let’s consider the game of
Matching Pennies. Simultaneously, player 1 (P1) and payer 2 (P2) choose
either “heads” or “tails.” Each is in total ignorance of the other’s decision.
After the choices are made, they compare decisions, and P2 pays P1 $1.00 if
they match–if both chose heads or both chose tails. If they do not match, P1

must pay P2 $1.00. But of course, this situation can easily be represented by
the following simple 2× 2 matrix:(

1 −1
−1 1

)

This is P1’s payoff matrix, where the first row and column both represent
the choice of heads, while the second row and column represent the choice of
tails. Entry a11 represents the outcome (Heads, Heads), entry a12 represents
P1 playing Heads and P2 playing Tails. So, where P1 has m possible moves
and P2 has n possible moves, we have the following matrix, in general:
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a11 a12 . . . a1n

a21 a22 . . . a2n
...

. . .
...

...
am1 am2 . . . amn


A few definitions will be useful:

Definition 2.1 A matrix game Γ is given by any m × n matrix A = (aij)
in which the entries aij are real numbers.

Definition 2.2 A mixed strategy for P1 is an ordered m-tuple x = (x1, x2, ..., xm)
for non-negative real numbers xi such that x1 + ... + xm = 1 Similarly,
a mixed strategy for P2 is an ordered n-tuple y = (y1, y2, ..., yn) for non-
negative real numbers yj such that y1 + ...+ yn = 1

It is useful to note that in any game, players can only choose one strategy
(ie, P1 can only choose one of the m rows of the matrix (aij) and P2 can
only choose one of the n columns of the same matrix). A mixed strategy,
however, is like creating a weighted die which, for P1, has m sides and the
weights on each side are dictated by the real numbers xi. P1 chooses a row
by rolling his weighted die. Similarly, P2’s die has n sides, with the weight
yj corresponding to side j, and a roll of his die determines which column he
chooses.

Definition 2.3 A pure strategy for P1 is the mixed strategy which is 1 in
the ith component and 0 everywhere else for i = 1, ...,m, and will be referred
to as the ith pure strategy for P1.

A similar definition holds for the jth pure strategy of P2.

Definition 2.4 The payoff function for Γ is defined to be

E(x,y) =
∑

i,j xiaijyj

where x = (x1, x2, ..., xm) and y = (y1, y2, ..., yn) are mixed strategies.

Definition 2.5 A solution of Γ is a pair of mixed strategies x = (x1, x2, ..., xm),y =
(y1, y2, ..., yn), and a real number v such that E(x, j) ≥ v for the pure strate-
gies j = 1, ..., n and E(i,y) ≤ v for the pure strategies i = 1, ...,m. Then x
and y are called optimal strategies and the number v is called the value of
the game Γ.

In fact, the amount v (the value of the game) is the expectation that
P1 can assure himself no matter what P2 does, while P2 can protect himself
against expectations higher than v no matter what P1 does.

At last, we can begin our investigation of a remarkable fact which was
proven by John von Neumann (arguably, the father of Game Theory) in the
late 1920’s: Every matrix game has a solution[2].
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3 The Fundamentals of Matrix Games

Before we prove this fact, however, we will briefly investigate the case for a
2× 2 zero-sum game (matrix game)

3.1 The 2x2 Case

Theorem 1 Given the 2× 2 matrix

A =

(
a11 a12

a21 a22

)

there exist vectors x = (x1, x2), where x1, x2 ≥ 0 and x1 + x2 = 1, and
y = (y1, y2), where y1, y2 ≥ 0 and y1 + y2 = 1, and a real number v such
that:

(1)
x1a11 + x2a21 ≥ v
x1a12 + x2a22 ≥ v

(2)
a11y1 + a12y2 ≤ v
a21y1 + a22y2 ≤ v

Proof 1 If P2 plays the mixed strategy y = (y1, y2), he can expect to pay
E(1,y) = a11y1 +a12y2 against 1 by P1 and E(2,y) = a21y1 +a22y2 against 2
by P1. Plotting (E(1,y), E(2,y)) in the case where y1 = 1 and y2 = 0, then
in the case where y1 = 0, y2 = 1, we obtain the points (a11, a21) and (a12, a22)
both in R2. The line connecting these points creates P2’s expectation space,
since this gives all expectations under mixed strategies (where y1, y2 ≥ 0,
y1 + y2 = 1). We can notice that P2 is assured of paying no more than the
expectation e ⇔ his expectation point lies in the set Se of all points with
both coordinates less than or equal to e. Since P2 is playing optimally when
we choose a strategy y with the smallest possible e, we translate Se until it
is just in contact with P2’s expectation space. We will call this translated
set Sv. It is clear that condition (2) of the theorem is satisfied.

Suppose we have found a mixed strategy x = (x1, x2) satisfying (1) for
this v. Then, the line x1t1 + x2t2 = v, separates P2’s expectation space from
the the set Sv, because we have x1t1 + x2t2 ≥ v for all points (t1, t2) in P2’s
expectation space by (1) and we have x1t1 + x2t2 ≤ x1v + x2v = v ∀ points
(t1, t2) ⊆ Sv (by definition).
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Now we have found that any optimal x, if it exists, defines a separating
line. Let us assume that at1 + bt2 = c separates P2’s expectation space from
Sv, that is,

(3) aa11 + ba12 ≥ c
(4) aa12 + ba22 ≥ c
(5) at1 + bt2 ≤ c ∀(t1, t2) ⊆ Sv.
Since (v − 1, v) and (v, v − 1) are in Sv, we have
(6) a(v − 1) + bv ≤ c
(7) av + b(v − 1) ≤ c
and, because (v, v) lies on any separating line,
(8) av + bv = c
By subtracting (8) from (6) we see that a ≥ 0, and by subtracting (8)

from (7) we see that b ≥ 0. But a and b cannot both be 0, since they define
a separating line, so we define x1 = a

a+b
, x2 = b

a+b
, so x1, x2 ≥ 0, x1 +x2 = 1.

Then, (3) and (4) give
x1a11 + x2a21 ≥ c

a+b
and

x1a12 + x2a22 ≥ c
a+b

,
which, combined with (8) give the desired inequalities (1).

3.2 Convex Sets

The remainder of this section will assume basic knowledge of linear algebra.
We will be working in the Euclidean vector space Rm. The norm in our
space will be characterized by ‖t‖ =

√
t · t, Where the ‘dot’ product t · u =∑m

i=1 tiui.

Definition 3.1 A hyperplane H(x, a) in Rm is the set of all vectors t such
that x · t = a for a given vector x 6= 0 and a real number a.

Naturally, we can refer to
H+(x, a) = {t|x · t ≥ a}
H−(x, a) = {t|x ·t ≤ a}, as the upper and lower hyperplane, respectively.

Definition 3.2 A subset C of Rn is called convex if whenever t1, ..., tm ∈
C and b1, ..., bm are non-negative real numbers summing to 1, t = b1t1 + ...+
bmtm ∈ C. The vector t is called a convex combination of t1, ..., tm.

We can notice that, geometrically, a convex set contains all line segments
joining two points in the set.

Definition 3.3 The convex hull C(S) of a given set S is the set of all con-
vex combinations of sets of points from S, or, it is the minimal convex set
containing S.
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Theorem 2 Given a closed convex set C ∈ Rn and a vector u 6∈ C, ∃ a
hyperplane H such that:

1) C ∈ H+

2) u ∈ H− but u 6∈ H.

Proof 2 Because we have a distance function, ‖t− u‖, which is continuous
on a closed and bounded set of t ∈ C for which ‖t−u‖ ≤ ‖t0−u‖ for some
fixed t0 in C, the distance attains its minimum in C, so we can choose the
point v ∈ C which is closest to u. To simplify our notation, we will assume
v = 0.

We now consider the hyperplane H(−u, 0). It is clear that condition (2)
of the theorem is met, since −u · u < 0 (we know u 6= 0).

Suppose that (1) does not hold. Then there is a vector t ∈ C for which
−u·t < 0, so for which u·t > 0. Certainly, either u·t ≥ t·t, or 0 < u·t < t·t.
We will call this Case 1 and Case 2, respectively.

Case 1:

u · t ≥ t · t ⇒ ‖t− u‖2 = t · t− 2u · t + u · u = u · u− (u · t− t · t)− u · t <
u · u = ‖u‖2 ⇒ ‖t− u‖ < ‖u‖ = ‖0− u‖,

But this contradicts the fact that 0 is the point of C closest to u.
Case 2:

0 < u·t
t·t < 1 ⇒ (u·t

t·t )t ∈ C, and
‖(u·t

t·t )t− u‖2 = u · u− (u·t
t·t )(u · t) < ‖u‖2 ⇒ ‖(u·t

t·t )t− u‖ < ‖u‖

So (u·t
t·t )t ∈ C, and again is closer to u than 0, a contradiction.

Both possible cases have led to a contradiction, thus our assumption is
incorrect and (1) holds.

Definition 3.4 If H is a hyperplane and C is a convex set such that C is
contained in H+, then H is called a supporting hyperplane for C and H+ is
called a support for C.

Theorem 3 Any closed convex set is the intersection of its supports.

Proof 3 Let
⋂
H+ denote the intersection of all the supports for C. Clearly,

C ⊆ ⋂
H+. However, for any u 6∈ C, there is a support H+ for C which does

not contain u, by Theorem 2. Thus, C ⊇ ⋂
H+ and so we see that C =

⋂
H+.

Corollary 1 Given a closed convex set C such that C 6= Rn, there exists a
support for C which contains a vector in C.
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This corollary follows immediately from Theorem 2.

Definition 3.5 The point u is an interior point of a set S ⊆ Rn if ∃ ε > 0
s.t. ‖v − u‖ < ε⇒ v ∈ S

Theorem 4 Given a set S ⊂ Rn consisting of the vector 0 and n LI vectors
t1, ..., tn, C(S) contains an interior point.

Proof 4 We can note that in fact C(S) is the intersection of its extreme
supports–those which contain n points from the set S. We simply modify
Theorem 3 to see that the result holds.

Theorem 5 Every convex set C ⊆ Rn either contains an interior point or
is contained in a hyperplane.

Proof 5 We can assume that 0 ∈ C, for simplicity. Then, we can chose a
system of LI vectors t1, ..., tm from C such that every set of m + 1 vectors
from C is LD. Then, either:

Case 1:
If m = n, then we are done by the previous theorem.
Case 2:
If m < n, then the subspace Rm generated by t1, ..., tm is ≤ Rn and we

can choose a non-zero vector x such that x · tk = 0 ∀ k = 1, ...,m. But, for
any t ∈ C, we have t = α1t1 + ... + αmtm, since any set of m + 1 vectors
from C is LD, while t1, ..., tm is not. Then x · t = 0 ⇒ C ⊂ H(x, 0).

Theorem 6 Given any convex set C with C 6= Rn, there exists a support
for C.

Proof 6 Consider D, the smallest closed set containing C, that is, D := C.
Omitting details, it is easy to show that if ∃ a sequence u1,u2,u3, ... −→ u
and a sequence v1,v2,v3, ... −→ v, so that u and v are limit points, as
uk −→ u and vk −→ v, auk +bvk −→ au+bv, for a, b ∈ R. So D is convex.
By Theorem 2, we only need to see that D is not all of Rn. By Theorem 5,
however, we can note that if C ⊆ H, a hyperplane, then D must also be in
H, and if C has an interior point u and ∃ v 6∈ C, then for some ε > 0, all
points x ∈ B(2v − u, ε) 6∈ C, thus, 2v − u 6∈ D.

At this time we can note an intuitive definition, given what we have seen
so far:

Definition 3.6 The Hyperplane H(x, a) is said to separate the set C from
the set D if C ⊂ H+ and D ⊂ H−.
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Theorem 7 Let two convex sets C and D be such that:
(1) 0 ∈ C,D;
(2) D has an interior point w;
(3) no point of C is interior to D.
Then ∃ H(x, 0) which separates C from D.

Proof 7 Let E = {at− bu | a, b ≥ 0, t ∈ C, u ∈ D}. E is, by definition, a
convex set. We can also notice that any supporting H(x, 0) for E separates
C from D. Finally, we must see that w 6∈ E.

Suppose w = at− bu, a, b ≥ 0, t ∈ C, u ∈ D. Then

1
1+b

w + b
1+b

u = a
1+b

t.

If a
1+b

≤ 1, then the R.H.S. of the equation above is a convex combination of
0 and t, hence is in C, while the L.H.S. is a convex combination of u ∈ D
and w, which is interior to D, hence the L.H.S. itself is interior to D. But
this is a contradiction to the fact that no point of C is interior to D.

If a
1+b

≥ 1, then, since t ∈ C, and in this case, is also a convex combination
of 0 and a

1+b
t, which is interior to D by the previous argument, so we have

that t is also interior to D. Obviously, a contradiction. So, w 6∈ E.
Then, since E is a convex set, w 6∈ E, and by Theorem 6, ∃ a supporting

hyperplaneH(x, a) for E. But then it must be true thatH(x, 0) also supports
E:

Suppose not, then x ·v < 0 and x ·v ≥ a for some v in E. Then for some
c > 0, c(x · v) + x · v < a. Then x · (cv + v) < a and cv + v = (c + 1)v ∈
E, which is a contradiction.

Thus, H(x, 0) separates C from D

3.3 The Fundamental Theorem for Matrix Games

Theorem 8 Every matrix game has a solution. In other words:

Given any m× n matrix A = (aij), there exist vectors
x = (x1, ..., xm), xi ≥ 0 ∀ i, x1 + · · ·+ xm = 1,
y = (y1, ..., yn), yj ≥ 0 ∀ j, y1 + · · ·+ yn = 1

and a real number v s.t.
(1)
x1a1j + · · ·+ xmamj ≥ v for j = 1, ..., n

(2)
ai1y1 + · · ·+ ainyn ≤ v for i = 1....,m
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Proof 8 Again, we will consider P2’s expectation space in Rm and consider
the set C of all vectors t = y1t1 + ·+yntn where tj = (a1j, ..., amj), all yi ≥ 0,
y1 + · · ·+ yn = 1.

This set C is the convex hull of the points t1, ..., tn. If z = (z1, ..., zm) is
a point in C, we can consider the function ψ(z) = maxi=1,...,m{zi}. ψ(z) is a
continuous function defined on the compact set C ⊂ Rm and hence attains
its minimum at some point t = y1t1 + · · · + yntn ∈ C. Let v = ψ(t). It is
clear that (2) is satisfied for this choice of y and v.

Now we define D to be the set of all t = (t1, ..., tm) such that ti ≤
v for i = 1, ...,m. The set D intersects C at t and has interior points
(clearly). However, no point of C is interior to D by our choice of v. But
these are exactly the conditions we need to employ Theorem 7, so we know
∃ a hyperplane H(x, a) which separates C from D.

In fact, the point v = (v, ..., v) lies in H. To see that this is true, suppose
not, then

x · v < a =⇒ x · (2t− v) = 2x · t− x · v < 2a− a = a

Which contradicts the fact that 2t− v ∈ D. It is true from the definition of
D that x · v 6> a. So we have that x · v = a and v ∈ H.

Now, we let vi be the vector which is v in every component except at
the ith coordinate, where it is v − 1, for i = 1, ...,m. Then vi ∈ D and so
x · vi = (x · v)− xi ≤ a. Therefore, xi ≥ 0 for i = 1, ...,m. Since x 6= 0, we
can define x = (x1, ..., xm) where

xi = xi

x1+···+xm
for i = 1, ...,m.

Then all xi ≥ 0, x1 + · · ·+ xm = 1, and, since C ⊂ H+,

x · tj = 1
x1+···+xm

x · tj ≥ a
x1+···+xm

= v

for j = 1, ..., n, which is condition (1) of the Theorem.

[2] cited for all proofs the above section.

4 A Fixed Point Theorem

Before we are able to prove John Nash’s remarkable generalization of the
previous result, we must familiarize ourselves with a new topic. We will first
prove two lemmas, and from these the Brouwer Fixed Point Theorem will
follow.
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Definition 4.1 Let x1,x2, ...,xn+1 be n+ 1 points in Rk where K ≥ N and
any n such points are linearly independent. Then the n-simplex defined by
x1,x2, ...,xn+1 is the set S of convex combinations of x1,x2, ...,xn+1:

S = {x | x =
n+1∑
i=1

λixi, λi ≥ 0,
n+1∑
i=1

λi = 1}

Definition 4.2 For x ∈ S, we define λi (as above) to be the ith barycentric
coordinate of x

Definition 4.3 The points x1,x2, ...,xn+1 are the verticies of S. We will
label the vertex xi with the number i.

Definition 4.4 For a given x ∈ S, the set {xi | λi > 0} will be called the
carrier of x

Definition 4.5 A face, F , of the simplex S is defined as

F = {x | x =
∑n+1

i=1 λixi, λk = 0 for one k, λi ≥ 0,
∑n+1

i=1 λi = 1}

Definition 4.6 A triangulation, or, simplicial subdivision of S is a finite
family of {Sj} so that

(i) The elements of {Sj} have disjoint interiors
(ii) If a vertex xi of Sj is an element of Sk, then xi is also a vertex of Sk.
(iii)

⋃
Sk = S

Definition 4.7 Let {Sj} be a simplicial subdivision of S, a labeling of each
vertex of each subsimplex with one of the numbers 1, 2, ..., n+ 1 is said to be
admissible if each vertex is labeled with the index of one of the elements of
its carrier.

Theorem 9 (Sperner’s Lemma) Let {Sj} be a simplicial subdivision of
the n-simplex S. If {Sj} is labeled admissibly, ∃ S0 ∈ {Sj} such that S0 is
completely labeled, i.e. with labels of each number 1, 2, ..., n+ 1.

Proof 9 We will, in fact, prove that the number of completely labeled sub-
simplices is odd. We proceed by induction.

Consider n=1: Each vertex of our simplicial subdivision is labeled 1 or 2
(our simplex is a line segment). Let a be the number of subsegments whose
end points are both labeled 1 and let b be the number of subsegments whose
end points are completely labeled, so one end point is labeled 1 and the other
is labeled 2. We will now count the number of endpoints labeled 1, where
each endpoint is counted once for each subsegment of which it is an element.

11



Obviously, this number is 2a + b. Now, we will count again. We have one
“exterior” endpoint labeled 1, the endpoint of the original line segment, and,
if we let c be the number of interior endpoints labeled 1, we see that the total
number of endpoints labeled 1 is 1 + 2c. So, 1 + 2c = 2a+ b. Since 1 + 2c is
odd, b must be odd.

For the remainder of the proof, it may be useful to refer to the figure
below, an admissibly labeled simplicial subdivision of a simplex.

Now, suppose for an (n − 1)-simplex, any admissibly labeled simplicial
subdivision contains an odd number of completely labeled subsimplices.

Consider an admissibly labeled subdivision of an n-simplex. An argument
similar to the case for n = 1 holds here. We let a be the number of sub-
simplices labeled with 1, ..., n but not n + 1, for each of these subsimplices,
there are two faces with the labels 1, ..., n. Let b be the number of com-
pletely labeled subsimplices. Each of these completely labeled subsimplices
has exactly one face with the labels 1, ..., n. So the total number of faces
with the labels 1, ..., n = 2a + b. Now we count again. Let c be the number
of interior faces carrying the labels 1, ..., n, and again, each interior face must
be a face of precisely 2 adjacent subsimplices. Exterior faces can be defined
as those not shared by two adjacent subsimplices, so clearly, each exterior
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face labeled 1, ..., n will be counted once. The number of such faces, however,
must be odd, by the inductive hypothesis, since a face of an n-simplex is an
(n − 1)-simplex. Thus, if we let d be the number of exterior faces carrying
the labels 1, ..., n, we see that 2a+ b = 2c+ d. Because d is odd, b is odd.

Thus, by induction, the number of completely labeled subsimplices is odd.
Since 0 is not odd, the theorem is proven [3],[4]

Theorem 10 (Knaster-Kuratowski-Mazurkewicz (KKM) Theorem)
Let S be an n-simplex. Consider the sets C1, C2, ..., Cn+1 ⊂ S where Cj is
closed, vertex j = xj ∈ Cj, and ∀ x in S, let x ∈ Ci for some i s.t. xi is a
carrier of x. Then

∩n+1
j=1Cj 6= ∅

Proof 10 We can choose a sequence of simplicial subdivisions Λv = {Sk
v |

k = 1, 2, ...} for v = 1, 2, .... Then k indexes the subsimplices within each
subdivision Λv. We construct the sequence Λ1,Λ2,Λ3, ... such that for v < u,
the minimal ε-Ball which contains Sk

u has smaller radius that the minimal
ε-Ball which contains Sj

v for all reasonable values of j, k. In other words, the
‘mesh’ of our sequence Λv will become progressively finer and arbitrarily fine
as v increases. We can now label the vertices of Sk

v by the number j, where
the vertex is an element of Cj for some j s.t. xj is an element of the carrier
of the vertex.

By Sperner’s Lemma, we know that ∃ some S0
v ∈ Λv, so that S0

v is com-
pletely labeled. Let xi

v be the vertex of S0
v with the label i. Then xi

v ∈
Ci ∀ v. But S is compact, so ∃ a convergent subsequence of {xi

v}v=∞
v=1 for

each i. But because the diameter of our subsimplex goes to zero, these sub-
sequences must converge to a common point, x0, ∀ i. Since Ci is closed,
xi

v −→ x0 =⇒ x0 ∈ Ci ∀ i. Thus x0 ∈ ∩n+1
j=1Cj 6= ∅

[3]

Theorem 11 (Brouwer Fixed-Point Theorem) Let S be an n-simplex
and let f : S −→ S, f continuous. Then ∃ x∗ ∈ S s.t. f(x∗) = x∗

Proof 11 Let λj(x) be the jth barycentric coordinate of x. Define

Cj = {x | λj(f(x)) ≤ λj(x)}

In fact, Cj satisfies the assumptions of the KKM theorem above by the
continuity of f (this is easy to check).

Then, applying the KKM theorem to these Cj’s, ∃ x∗ ∈ S s.t. x∗ ∈
∩n+1

j=1Cj. We have, then, by our definition, that

13



λj(f(x∗)) ≤ λj(x
∗) ∀ j

but, since
∑
λj(x

∗) =
∑
λj(f(x∗)) = 1, it must be that λj(x

∗) = λj(f(x∗))
∀ j, or, in other words, x∗ = f(x∗).

[3]

5 The Triviality

It is reported that when young John Nash came to von Neumann with his
proof of the Fundamental Theorem for Non-Zero Sum games, the envious
von Neumann dismissed his result with the phrase, “but it’s a triviality.” So
it may seem to us today. Nonetheless, Nash accomplished what no one else
had, and his contribution to the field of Game Theory certainly rivals that
of von Neumann.

We will adopt John Nash’s notation for elements of games [5]:

Definition 5.1 An n-person game is a set of n players, or, ‘positions’ each
with an associated finite set of pure strategies, and for each player i, there
is a payoff function pi : {n-tuples of pure strategies} −→ R

Definition 5.2 A mixed strategy for player i will be a collection of non-
negative numbers ciα so that

si =
∑
α

ciαπiα , ci ≥ 0,
∑
α

ciα = 1

where si is the mixed strategy of player i and πiα is the αth pure strategy of
player i

We can think of the si’s as points in a simplex with vertices πiα . This simplex
is a convex subset of a real vector space.

The symbols i, i, k will refer to players i, j, k
The symbols α, β, γ will indicate various pure strategies of a player
The symbols si, ti, ri will indicate mixed strategies
We now extend the definition of pi above to the function pi : {n-tuples of

mixed strategies} −→ R, so that pi(s1, s2, ..., sn) will represent the payoff to
player i under the mixed strategies s1 for player 1, s2 for player 2, ..., sn for
player n.

And of course, as in the zero-sum version, a pure strategy α for player i =
πiα is simply a mixed strategy si = 0πi1 +0πi2 + · · ·+1πiα +0πiα+1 + · · ·+0πin .
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We will want to be sure that any mixed strategy is stable, in order to find
an equilibrium, so it will be helpful to introduce the following notation:

Where S = (s1, s2, ..., sn), substitutions will be represented by (S; ti) =
(s1, s2, ..., si−1, ti, si+1, ..., sn). Successive substitutions, ((S; ti); rj) will be
indicated by (S; ti; rj), etc.

Definition 5.3 An n-tuple S is an equilibrium point if and only if:

∀i, pi(S) = max
allr′

is
pi(S; ri)

So that in equilibrium, each player’s strategy is optimal against all others’.

Definition 5.4 A mixed strategy si uses a pure strategy πiα if si =
∑

β ciβπiβ

and ci > 0. If S = (s1, ..., sn) and si uses πiα, we say that S also uses πiα

Definition 5.5 From the linearity of pi(s1, ..., sn) in si,

max
allr′

is
pi(S; ri) = max

α
pi(S; πiα)

We define piα(S) = pi(S; πiα). Then we obtain the following necessary and
sufficient condition for S to be an equilibrium point:

pi(S) = max
α

piα(S)

We can note that the above definition requires that ciα = 0 whenever piα(S) <
maxβ piβ(S), which means that S does not use πiα unless it is an optimal pure
strategy for player i. Thus,

Definition 5.6 If πiα is used in S then

piα(S) = max
β

piβ(S)

is another sufficient and necessary condition for an equilibrium point.

Again, Definitions 5.3, 5.5, and 5.6 all describe an equilibrium point.

Theorem 12 (The Fundamental Theorem) Every finite game has an
equilibrium point.
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Proof 12 We consider our definitions as above, so that piα(S) is the payoff
to player i if he changes to his αth pure strategy πiα and the others continue
to use the mixed strategies from S. We define a set of continuous functions
of S by

ϕiα(S) = max(0, piα(S)− pi(S))

we consider the mapping T : S −→ S ′ which modifies each component of S,
si, so that

si 7−→ s′i =
si +

∑
α ϕiα(S)πiα

1 +
∑

α ϕiα(S)

So we call S ′ the n-tuple (s′1, s
′
2, ..., s

′
n).

We must now show that the fixed points of the mapping T : S −→ S ′ are
the equilibrium points.

We consider any n-tuple S. In S the ith player’s mixed strategy si will
use certain pure strategies. Some of these strategies must be least profitable,
say πiα is such, then piα(S) ≤ pi(S). This will make ϕiα(S) = 0.

If, however, the n-tuple S is fixed under T , the proportion of πiα used in
si must not be decreased by under T . Thus, ∀ β’s, ϕiβ(S) must be zero to
prevent the denominator in our modification from exceeding 1.

We see that if S is fixed under T , for any i and for any β, ϕiβ(S) = 0.
Then, no player can improve his payoff by moving to a pure strategy πiβ . By
definition 5.5, this is exactly the criterion for an equilibrium point.

It is clear that if, conversely, S is an equilibrium point, then all the ϕ’s
become 0, making S a fixed point under T .

Finally, we can note that the n-tuple S lies in the space which is a product
of the simplices with vertices πiα (each player has his own simplex). This
space has dimension d1 + d2 + ... + dn where di represents the dimension of
player i’s simplex. But this space is homeomorphic to a ball of dimension d1+
d2 + ...+dn, where it is clear that Brouwer’s fixed point theorem applies, thus
T has at least one fixed point S, which we have shown to be an equilibrium
point.

[5],[6]
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