
A SOLUTION TO BERLEKAMP’S SWITCHING GAME
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Abstract. This paper studies a game played between two players on an n×n
grid. Using tools from Linear Algebra and Elementary Probability theory, we

can show that the “payout” of the game is asymptotically n
3
2 .
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1. The problem

Before stating the problem, we need some asymptotic notation.

Definition 1.1. Let an, bn be sequences of real numbers, we say that

(1) an = O(bn) if |an/bn| is bounded, i.e.,(∃C > 0, n0 ∈ N)(∀n > n0)(|an| ≤
C|bn|)

(2) an = Ω(bn) if bn = O(an), i.e., if |bn/an| is bounded, (∃c > 0, n0 ∈ N)(∀n >
n0)(|an| ≥ c|bn|)

(3) an = Θ(bn) if an = O(bn) and an = Ω(bn), i.e. (∃C, c > 0, n0 ∈ N)(∀n >
n0)(c|bn| ≤ |an| ≤ C|bn|)

Consider an n × n square grid. Each square can hold a value of ±1. Player 1
starts the game and puts ±1 in each cell. Player 2 selects a set of rows and a set
of columns and switches the sign of each cell in the selected rows and columns. (If
the sign of both the row and the column of a cell has been changed, this double
change means no change for the cell.)

Let S(n) be the sum of all the numbers in the grid after both players have
played. This is the amount Player 1 pays to Player 2. Assuming we have both
players playing with optimal strategy, what can we say about S(n) as n →∞? We
shall see that in fact S(n) = Θ(n3/2).
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2. A few observations

We observe that S is always greater than or equal to 0. If the sum of all the
numbers is non-negative after Player 1 plays, Player 2 can just leave it alone.
However, if the sum is negative, Player 2 can bring it back to positive by switching
the signs of every row. So, now we have a trivial lower bound for S.

We will make a remark about Player 2’s moves, before proceeding to improving
the lower bound.

Remark 2.1. Notice the following:
(1) All possible moves for Player 2 form a group, generated by the row opera-

tions and the column operations.
(2) Each of the row operations and the column operations has order 2.
(3) Any two operations (row or column) commute.

A direct consequence of this is that in consideration of the optimal strategy for
Player 2, it suffices to consider only strategies which consists of two phases: in
the“first phase”, Player 2 switches a set of rows, and in the “second phase”, Player
2 switches a set of columns.

Once Player 2 is done with the “first phase”, it is clear that the best he can do
in the following phase is to switch a column if and only if the sum of entries in
that column is negative. Now, the objective of Player 2 boils down to maximizing
the sum of the absolute value of the sum of entries in the columns. If we write the
numbers in the grid as a n× n matrix, and define Bj =

∑n
i=1 aij to be the column

sum of the j-th column, the objective of Player 2 would be to maximize
∑n

j=1 |Bj |
in “first phase”. Similarly, Player 1’s objective would be to impose an upper bound
on

∑n
j=1 |Bj |.

3. Hadamard matrix and Player 1’s optimal strategy

Before going into a discussion of Player 1’s optimal strategy, we will first study
the properties of a special class of square matrix - the Hadamard matrix.

Definition 3.1. A matrix H is an Hadamard matrix if all its entries are either
1 or -1 (we denote this H = (±1)) and its columns are orthogonal.

Lemma 3.2. If A = (±1) is an n × n matrix, then the following statements are
equivalent.

(1) A is Hadamard
(2) AT A = nI
(3) 1√

n
A ∈ On(R).

Proof. (1) ⇔ (2): Let ai be the ith column vector of A. Then AT A = (aT
i aj), i.e.

the (i, j)th entry of AT A is the dot product of the ith with the jth column vectors
of A. This implies that (2) is true if and only if aT

i ai = n for all i (which is true
because all the entries of A are either 1 or -1) and aT

i aj = 0 for all i 6= j. The
latter is true if and only if all the columns of A are orthogonal, which is precisely
the definition of Hadamard matrix.
(2) ⇔ (3): (2) implies that 1√

n
AT is a left inverse of 1√

n
A. Since determinant is

multiplicative and det(I) = 1, we then know that det(A) 6= 0 and A is invertible.
By the unique existence of inverse, 1√

n
AT is the inverse of 1√

n
A. Notice that the
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two expressions above are transpose of each other, and therefore 1√
n
A ∈ On(R).

The other direction of the implication follows immediately from the definition of
orthogonal matrix. �

Lemma 3.3. If A is Hadamard, then
(

A A
A −A

)
is also Hadamard.

The proof is clear from the definition of Hadamard matrix and left to the readers

as an exercise. Notice that since the matrix
(

1 1
1 −1

)
is Hadamard, this fact allows

us to find an n× n Hadamard matrix for every n = 2k where k ∈ N.

Lemma 3.4. If A = [a1, ..., an] is an Hadamard matrix, then switching the signs
(1 to -1, -1 to 1) of a whole row or a whole column would still give an Hadamard
matrix.

Proof. The case for switching signs in a column is clear by definition of Hadamard
matrix and the fact that inner product is bilinear. By Lemma 3.2, it follows from
(1) ⇔ (3) that A is Hadamard if and only if the rows of A are orthogonal. And
now, the same argument (as in the case of switching signs in a column) gives us
that switching signs in a row would still keep the matrix Hadamard. �

We are only one lemma away from proving that S(n) ≤ cn3/2 for some constant
c. Let’s first remind ourselves of an elementary inequality which we will use in the
proof of the next lemma.

Proposition 3.5. (Cauchy-Schwarz) For a, b ∈ Rn, we have |a · b| ≤ ||a|| ‖b‖.

Now, we are ready to prove the key lemma which relates Hadamard matrix to
the Switching Game (and hence Player 1’s strategy).

Lemma 3.6. (Lindsey’s Lemma) If A is an n × n Hadamard matrix and T is a
k × l submatrix, then |

∑
(i,j)∈T aij | ≤

√
nkl.

To improve the readibility of the proof, we introduce the notion of incidence
vector.

Notation 3.7. Let N be the set {1, 2, ..., n} and K be a subset of it. Then the
incidence vector of set K is the n× 1 column vector IK of 0’s and 1’s where the
ith column is 1 if and only if i ∈ K.

Proof. Let K ⊂ N,L ⊂ N be the set of rows and the set of columns that defines T.
Note that ||IK || =

√
k and ||IL|| =

√
l. Now the sum of all entries of T is IT

KAIL. We
need to estimate |IT

KAIL|. Applying the Cauchy-Schwarz Inequality (Proposition
3.5), setting ~a = IK and ~b = AIL, we have |IT

KAIL| ≤ ||IK || ||AIL|| =
√

k ||AIL||.
By Lemma 3.2, we have 1√

n
A ∈ On(R). Hence ||( 1√

n
A)IL|| = ||IL|| =

√
l and

||AIL|| =
√

nl. This gives us the desired inequality |IT
KAIL| ≤

√
nkl. �

Now, we have finally achieved enough understanding of the Hadamard matrix
to devise a strategy for Player 1 to sufficiently constrain the payout of the game.

Theorem 3.8. For all n ≥ 1, S(n) ≤
√

2n3.
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Proof. For a given n, pick k ∈ N such that 2k−1 ≤ n < 2k. By Lemma 3.3, there
exists an Hadamard matrix of dimension 2k × 2k. Pick one of such and call it A.
Now Player 1 needs only pick any n × n submatrix of A, call it T and copy the
distribution of 1’s and -1’s onto the n×n grid. Then no matter what Player 2 does,
the payout is guaranteed to be ≤

√
2n3. How does this work?

We can view the n × n grid (identified with T) as embedded in A. Now say
Player 2 has decided to switch the signs in Row 1. We can extend this “row move”
of T to a “row move” of A, involving the corresponding row of A which contains
Row 1 of T. By Lemma 3.4, A remains an Hadamard matrix after the move. The
“modified” T would still be an n×n submatrix of an Hadamard matrix, by taking
the same rows and columns as before from the “modified” A. The same argument
would work if Player 2 decides to change multiple rows and columns. Extending
the “row moves” and “column moves” of T to the corresponding ones in A, we
see that the “modified” T remains an n× n submatrix of an Hadamard matrix of
dimension 2k × 2k.

Therefore we may conclude using Lindsey’s Lemma (Lemma 3.6) that after
Player 2’s turn, the sum of the entries in the grid is ≤

√
2kn2 ≤

√
2n3. �

This gives an upper bound for S(n). We proceed to show that this bound is
tight (asymptotically) by demonstrating that the optimal strategy of Player 2 would
guarantee a “payout” which is greater than or equal to cn

3
2 for some c ∈ R.

4. Probabilistic approach and Player 2’s optimal strategy

We are in fact not going to write out explicitly the optimal strategy, as it suffices
to show that there exists a strategy for Player 2 which gives a “payout”≥ cn

3
2 . We

will show this with a probablistic approach (which often yields elegant solutions
in unexpected situations in combinatorics). Let’s recall a result in elementary
probability theory.

Proposition 4.1. Let X be a discrete random variable. Then ∃ k ∈ R such that
k ≥ E(X) and P (X = k) > 0.

We will discuss the implication of this result in light of a particular probabilistic
strategy of Player 2. In the “first phase”, for each of the n rows, Player 2 tosses a fair
coin. If the outcome is Head, he switches the signs in that particular row and does
nothing if the coin-toss turns out otherwise. After this process, fix a j. We have each
of the aij ’s in that column independently and identically distributed(i.i.d.)
as Bernoulli distribution with success probability 0.5 (i.e. Bin(1, 0.5)). It is easy
to see that each entry has exactly 0.5 probability to stay the same, and 0.5 to
be changed; this corresponds to 0.5 for +1 and 0.5 for -1, regardless of what the
initial value is. Different entries at the same column are independently distributed
because they depend on the outcome of different coin-tosses. Note that E(aij) = 0
and V ar(aij) = 1 for all 1 ≤ i, j ≤ n. Now, let’s recall a special case of the Central
Limit Theorem for a sequence of i.i.d. variables.

Theorem 4.2. (Central Limit Theorem for i.i.d. Random Variables) Let X1, X2, ...
be a sequence of independently identically distributed random variables having mean
µ and variance σ2 6= 0. If additionally there exists M ∈ R such that P{|Xi| <
M} = 1, then X :=

∑n
i=1 Xi converges in distribution to N(nµ, nσ2) (Normal

Distribution with mean nµ and variance nσ2)
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Note that |aij | ≤ 1 with probability 1, so Theorem 4.2 applies. We have that
the column sum of the j-th column, Bj =

∑n
i=1 aij , is converging in distribution to

N(0, n), with probability density function (p.d.f.): f(x) = 1√
2πσ

e
(− x√

2σ
)2 . Noticing

that the above p.d.f. is symmetric about 0, we have E[|Bj |] →
∫∞
0

2xf(x)dx as

n →∞. The reader should check that the above integral is equal to
√

2
π

√
n.

Lastly, we need to recall the fact that the expected value operator is linear.

Proposition 4.3. Let X1, X2, ..., Xn be random variables and a1, a2, ..., an be real
numbers. Then we have E[

∑n
i=1 aiXi] =

∑n
i=1 aiE[Xi].

For any two columns i and j, there is no reason why |Bi| and |Bj | are independent.
Nevertheless, the above proposition enables us to sum up their expected values and

have E[
∑n

j=1 |Bj |] =
∑n

j=1 E[|Bj |] = n
√

2
π

√
n =

√
2
π n

3
2 . We have got the “right

number”, but how does this calculation give a lower bound for the payout of Player
2’s optimal strategy? We need Proposition 4.1.

Let X be the random variable which gives the payout of the game if Player 2
follows the “coin-tossing strategy” outlined above. It is clear that X =

∑n
j=1 |Bj |.

Since X can only take on an integer value between −n2 and n2, it is then a discrete
random variable. Then Lemma 4.1 would imply that there exists positive proba-

bility that X ≥ E[X] =
√

2
π n

3
2 . Since X is completely determined by the outcome

of the n coin-tosses, this implies there exists an outcome of the coin-tosses which
gives instructions for Player 2 to achieve a payout at least as much as E[X]. By
definition, the optimal strategy for Player 2 should achieve a payout at least as

much as that achievable using any other strategy, so
√

2
π n

3
2 is a lower bound for

the optimal payout for Player 2.

5. Conclusion

We have demonstrated that if both Player 1 and Player 2 play optimally, we

then have
√

2
π n

3
2 ≤ S(n) ≤

√
2n

3
2 as n → ∞. So as n → ∞, |S(n)/n

3
2 | ≤

√
2 and

|n 3
2 /S(n)| ≤

√
π
2 , which means S(n) = Θ(n3/2).


