A SOLUTION TO BERLEKAMP'S SWITCHING GAME

FAN FEI CHONG

Abstract

This paper studies a game played between two players on an $n \times n$ grid. Using tools from Linear Algebra and Elementary Probability theory, we can show that the "payout" of the game is asymptotically $n^{\frac{3}{2}}$.

Contents

1. The problem 1
2. A few observations 2
3. Hadamard matrix and Player 1's optimal strategy 2
4. Probabilistic approach and Player 2's optimal strategy 4
5. Conclusion 5

1. The problem

Before stating the problem, we need some asymptotic notation.
Definition 1.1. Let a_{n}, b_{n} be sequences of real numbers, we say that
(1) $a_{n}=O\left(b_{n}\right)$ if $\left|a_{n} / b_{n}\right|$ is bounded, i.e., $\left(\exists C>0, n_{0} \in \mathbb{N}\right)\left(\forall n>n_{0}\right)\left(\left|a_{n}\right| \leq\right.$ $\left.C\left|b_{n}\right|\right)$
(2) $a_{n}=\Omega\left(b_{n}\right)$ if $b_{n}=O\left(a_{n}\right)$, i.e., if $\left|b_{n} / a_{n}\right|$ is bounded, $\left(\exists c>0, n_{0} \in \mathbb{N}\right)(\forall n>$ $\left.n_{0}\right)\left(\left|a_{n}\right| \geq c\left|b_{n}\right|\right)$
(3) $a_{n}=\Theta\left(b_{n}\right)$ if $a_{n}=O\left(b_{n}\right)$ and $a_{n}=\Omega\left(b_{n}\right)$, i.e. $\left(\exists C, c>0, n_{0} \in \mathbb{N}\right)(\forall n>$ $\left.n_{0}\right)\left(c\left|b_{n}\right| \leq\left|a_{n}\right| \leq C\left|b_{n}\right|\right)$

Consider an $n \times n$ square grid. Each square can hold a value of ± 1. Player 1 starts the game and puts ± 1 in each cell. Player 2 selects a set of rows and a set of columns and switches the sign of each cell in the selected rows and columns. (If the sign of both the row and the column of a cell has been changed, this double change means no change for the cell.)

Let $S(n)$ be the sum of all the numbers in the grid after both players have played. This is the amount Player 1 pays to Player 2. Assuming we have both players playing with optimal strategy, what can we say about $S(n)$ as $n \rightarrow \infty$? We shall see that in fact $S(n)=\Theta\left(n^{3 / 2}\right)$.

[^0]
2. A FEW observations

We observe that S is always greater than or equal to 0 . If the sum of all the numbers is non-negative after Player 1 plays, Player 2 can just leave it alone. However, if the sum is negative, Player 2 can bring it back to positive by switching the signs of every row. So, now we have a trivial lower bound for S .

We will make a remark about Player 2's moves, before proceeding to improving the lower bound.

Remark 2.1. Notice the following:
(1) All possible moves for Player 2 form a group, generated by the row operations and the column operations.
(2) Each of the row operations and the column operations has order 2.
(3) Any two operations (row or column) commute.

A direct consequence of this is that in consideration of the optimal strategy for Player 2, it suffices to consider only strategies which consists of two phases: in the "first phase", Player 2 switches a set of rows, and in the "second phase", Player 2 switches a set of columns.

Once Player 2 is done with the "first phase", it is clear that the best he can do in the following phase is to switch a column if and only if the sum of entries in that column is negative. Now, the objective of Player 2 boils down to maximizing the sum of the absolute value of the sum of entries in the columns. If we write the numbers in the grid as a $n \times n$ matrix, and define $B_{j}=\sum_{i=1}^{n} a_{i j}$ to be the column sum of the j-th column, the objective of Player 2 would be to maximize $\sum_{j=1}^{n}\left|B_{j}\right|$ in "first phase". Similarly, Player 1's objective would be to impose an upper bound on $\sum_{j=1}^{n}\left|B_{j}\right|$.

3. Hadamard matrix and Player 1's optimal strategy

Before going into a discussion of Player 1's optimal strategy, we will first study the properties of a special class of square matrix - the Hadamard matrix.

Definition 3.1. A matrix H is an Hadamard matrix if all its entries are either 1 or -1 (we denote this $H=(\pm 1)$) and its columns are orthogonal.

Lemma 3.2. If $A=(\pm 1)$ is an $n \times n$ matrix, then the following statements are equivalent.
(1) A is Hadamard
(2) $A^{T} A=n I$
(3) $\frac{1}{\sqrt{n}} A \in O_{n}(\mathbb{R})$.

Proof. (1) $\Leftrightarrow(2)$: Let \underline{a}_{i} be the $i^{t h}$ column vector of A. Then $A^{T} A=\left(\underline{a}_{i}^{T} \underline{a}_{j}\right)$, i.e. the $(i, j)^{t h}$ entry of $A^{T} A$ is the dot product of the $i^{t h}$ with the $j^{t h}$ column vectors of A. This implies that (2) is true if and only if $\underline{a}_{i}^{T} \underline{a}_{i}=n$ for all i (which is true because all the entries of A are either 1 or -1) and $\underline{a}_{i}^{T} \underline{a}_{j}=0$ for all $i \neq j$. The latter is true if and only if all the columns of A are orthogonal, which is precisely the definition of Hadamard matrix.
$(2) \Leftrightarrow(3):(2)$ implies that $\frac{1}{\sqrt{n}} A^{T}$ is a left inverse of $\frac{1}{\sqrt{n}} A$. Since determinant is multiplicative and $\operatorname{det}(I)=1$, we then know that $\operatorname{det}(A) \neq 0$ and A is invertible. By the unique existence of inverse, $\frac{1}{\sqrt{n}} A^{T}$ is the inverse of $\frac{1}{\sqrt{n}} A$. Notice that the
two expressions above are transpose of each other, and therefore $\frac{1}{\sqrt{n}} A \in O_{n}(\mathbb{R})$. The other direction of the implication follows immediately from the definition of orthogonal matrix.

Lemma 3.3. If A is Hadamard, then $\left(\begin{array}{cc}A & A \\ A & -A\end{array}\right)$ is also Hadamard.
The proof is clear from the definition of Hadamard matrix and left to the readers as an exercise. Notice that since the matrix $\left(\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right)$ is Hadamard, this fact allows us to find an $n \times n$ Hadamard matrix for every $n=2^{k}$ where $k \in \mathbb{N}$.

Lemma 3.4. If $A=\left[\underline{a}_{1}, \ldots, \underline{a}_{n}\right]$ is an Hadamard matrix, then switching the signs (1 to -1, -1 to 1) of a whole row or a whole column would still give an Hadamard matrix.

Proof. The case for switching signs in a column is clear by definition of Hadamard matrix and the fact that inner product is bilinear. By Lemma 3.2, it follows from $(1) \Leftrightarrow(3)$ that A is Hadamard if and only if the rows of A are orthogonal. And now, the same argument (as in the case of switching signs in a column) gives us that switching signs in a row would still keep the matrix Hadamard.

We are only one lemma away from proving that $S(n) \leq c n^{3 / 2}$ for some constant c. Let's first remind ourselves of an elementary inequality which we will use in the proof of the next lemma.

Proposition 3.5. (Cauchy-Schwarz) For $a, b \in \mathbb{R}^{n}$, we have $|a \cdot b| \leq\|a\|\|b\|$.
Now, we are ready to prove the key lemma which relates Hadamard matrix to the Switching Game (and hence Player 1's strategy).

Lemma 3.6. (Lindsey's Lemma) If A is an $n \times n$ Hadamard matrix and T is a $k \times l$ submatrix, then $\left|\sum_{(i, j) \in T} a_{i j}\right| \leq \sqrt{n k l}$.

To improve the readibility of the proof, we introduce the notion of incidence vector.

Notation 3.7. Let N be the set $\{1,2, \ldots, \mathrm{n}\}$ and K be a subset of it. Then the incidence vector of set K is the $n \times 1$ column vector I_{K} of 0 's and 1's where the $i^{\text {th }}$ column is 1 if and only if $i \in K$.

Proof. Let $K \subset N, L \subset N$ be the set of rows and the set of columns that defines T. Note that $\left\|I_{K}\right\|=\sqrt{k}$ and $\left\|I_{L}\right\|=\sqrt{l}$. Now the sum of all entries of T is $I_{K}^{T} A I_{L}$. We need to estimate $\left|I_{K}^{T} A I_{L}\right|$. Applying the Cauchy-Schwarz Inequality (Proposition 3.5), setting $\vec{a}=I_{K}$ and $\vec{b}=A I_{L}$, we have $\left|I_{K}^{T} A I_{L}\right| \leq\left\|I_{K}\right\|\left\|A I_{L}\right\|=\sqrt{k}\left\|A I_{L}\right\|$.

By Lemma 3.2, we have $\frac{1}{\sqrt{n}} A \in O_{n}(\mathbb{R})$. Hence $\left\|\left(\frac{1}{\sqrt{n}} A\right) I_{L}\right\|=\left\|I_{L}\right\|=\sqrt{l}$ and $\left\|A I_{L}\right\|=\sqrt{n l}$. This gives us the desired inequality $\left|I_{K}^{T} A I_{L}\right| \leq \sqrt{n k l}$.

Now, we have finally achieved enough understanding of the Hadamard matrix to devise a strategy for Player 1 to sufficiently constrain the payout of the game.

Theorem 3.8. For all $n \geq 1, S(n) \leq \sqrt{2 n^{3}}$.

Proof. For a given n, pick $k \in \mathbb{N}$ such that $2^{k-1} \leq n<2^{k}$. By Lemma 3.3, there exists an Hadamard matrix of dimension $2^{k} \times 2^{k}$. Pick one of such and call it A. Now Player 1 needs only pick any $n \times n$ submatrix of A, call it T and copy the distribution of 1 's and -1 's onto the $n \times n$ grid. Then no matter what Player 2 does, the payout is guaranteed to be $\leq \sqrt{2 n^{3}}$. How does this work?

We can view the $n \times n$ grid (identified with T) as embedded in A. Now say Player 2 has decided to switch the signs in Row 1. We can extend this "row move" of T to a "row move" of A, involving the corresponding row of A which contains Row 1 of T. By Lemma 3.4, A remains an Hadamard matrix after the move. The "modified" T would still be an $n \times n$ submatrix of an Hadamard matrix, by taking the same rows and columns as before from the "modified" A. The same argument would work if Player 2 decides to change multiple rows and columns. Extending the "row moves" and "column moves" of T to the corresponding ones in A, we see that the "modified" T remains an $n \times n$ submatrix of an Hadamard matrix of dimension $2^{k} \times 2^{k}$.

Therefore we may conclude using Lindsey's Lemma (Lemma 3.6) that after Player 2's turn, the sum of the entries in the grid is $\leq \sqrt{2^{k} n^{2}} \leq \sqrt{2 n^{3}}$.

This gives an upper bound for $\mathrm{S}(\mathrm{n})$. We proceed to show that this bound is tight (asymptotically) by demonstrating that the optimal strategy of Player 2 would guarantee a "payout" which is greater than or equal to $c n^{\frac{3}{2}}$ for some $c \in \mathbb{R}$.

4. Probabilistic approach and Player 2's optimal strategy

We are in fact not going to write out explicitly the optimal strategy, as it suffices to show that there exists a strategy for Player 2 which gives a "payout" $\geq c n^{\frac{3}{2}}$. We will show this with a probablistic approach (which often yields elegant solutions in unexpected situations in combinatorics). Let's recall a result in elementary probability theory.

Proposition 4.1. Let X be a discrete random variable. Then $\exists k \in \mathbb{R}$ such that $k \geq E(X)$ and $P(X=k)>0$.

We will discuss the implication of this result in light of a particular probabilistic strategy of Player 2. In the "first phase", for each of the n rows, Player 2 tosses a fair coin. If the outcome is Head, he switches the signs in that particular row and does nothing if the coin-toss turns out otherwise. After this process, fix a j. We have each of the $a_{i j}$'s in that column independently and identically distributed(i.i.d.) as Bernoulli distribution with success probability 0.5 (i.e. $\operatorname{Bin}(1,0.5)$). It is easy to see that each entry has exactly 0.5 probability to stay the same, and 0.5 to be changed; this corresponds to 0.5 for +1 and 0.5 for -1 , regardless of what the initial value is. Different entries at the same column are independently distributed because they depend on the outcome of different coin-tosses. Note that $E\left(a_{i j}\right)=0$ and $\operatorname{Var}\left(a_{i j}\right)=1$ for all $1 \leq i, j \leq n$. Now, let's recall a special case of the Central Limit Theorem for a sequence of i.i.d. variables.

Theorem 4.2. (Central Limit Theorem for i.i.d. Random Variables) Let X_{1}, X_{2}, \ldots be a sequence of independently identically distributed random variables having mean μ and variance $\sigma^{2} \neq 0$. If additionally there exists $M \in \mathbb{R}$ such that $P\left\{\left|X_{i}\right|<\right.$ $M\}=1$, then $X:=\sum_{i=1}^{n} X_{i}$ converges in distribution to $N\left(n \mu, n \sigma^{2}\right)$ (Normal Distribution with mean $n \mu$ and variance $n \sigma^{2}$)

Note that $\left|a_{i j}\right| \leq 1$ with probability 1 , so Theorem 4.2 applies. We have that the column sum of the j -th column, $B_{j}=\sum_{i=1}^{n} a_{i j}$, is converging in distribution to $N(0, n)$, with probability density function (p.d.f.): $f(x)=\frac{1}{\sqrt{2 \pi} \sigma} e^{\left(-\frac{x}{\sqrt{2} \sigma}\right)^{2}}$. Noticing that the above p.d.f. is symmetric about 0 , we have $E\left[\left|B_{j}\right|\right] \rightarrow \int_{0}^{\infty} 2 x f(x) d x$ as $n \rightarrow \infty$. The reader should check that the above integral is equal to $\sqrt{\frac{2}{\pi}} \sqrt{n}$.

Lastly, we need to recall the fact that the expected value operator is linear.
Proposition 4.3. Let $X_{1}, X_{2}, \ldots, X_{n}$ be random variables and $a_{1}, a_{2}, \ldots, a_{n}$ be real numbers. Then we have $E\left[\sum_{i=1}^{n} a_{i} X_{i}\right]=\sum_{i=1}^{n} a_{i} E\left[X_{i}\right]$.

For any two columns i and j , there is no reason why $\left|B_{i}\right|$ and $\left|B_{j}\right|$ are independent. Nevertheless, the above proposition enables us to sum up their expected values and have $E\left[\sum_{j=1}^{n}\left|B_{j}\right|\right]=\sum_{j=1}^{n} E\left[\left|B_{j}\right|\right]=n \sqrt{\frac{2}{\pi}} \sqrt{n}=\sqrt{\frac{2}{\pi}} n^{\frac{3}{2}}$. We have got the "right number", but how does this calculation give a lower bound for the payout of Player 2's optimal strategy? We need Proposition 4.1.

Let X be the random variable which gives the payout of the game if Player 2 follows the "coin-tossing strategy" outlined above. It is clear that $X=\sum_{j=1}^{n}\left|B_{j}\right|$. Since X can only take on an integer value between $-n^{2}$ and n^{2}, it is then a discrete random variable. Then Lemma 4.1 would imply that there exists positive probability that $X \geq E[X]=\sqrt{\frac{2}{\pi}} n^{\frac{3}{2}}$. Since X is completely determined by the outcome of the n coin-tosses, this implies there exists an outcome of the coin-tosses which gives instructions for Player 2 to achieve a payout at least as much as $\mathrm{E}[\mathrm{X}]$. By definition, the optimal strategy for Player 2 should achieve a payout at least as much as that achievable using any other strategy, so $\sqrt{\frac{2}{\pi}} n^{\frac{3}{2}}$ is a lower bound for the optimal payout for Player 2.

5. Conclusion

We have demonstrated that if both Player 1 and Player 2 play optimally, we then have $\sqrt{\frac{2}{\pi}} n^{\frac{3}{2}} \leq S(n) \leq \sqrt{2} n^{\frac{3}{2}}$ as $n \rightarrow \infty$. So as $n \rightarrow \infty,\left|S(n) / n^{\frac{3}{2}}\right| \leq \sqrt{2}$ and $\left|n^{\frac{3}{2}} / S(n)\right| \leq \sqrt{\frac{\pi}{2}}$, which means $S(n)=\Theta\left(n^{3 / 2}\right)$.

[^0]: Date: AUGUST 11, 2007.

