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1. Introduction

This paper gives an introduction to the area of graph theory dealing with prop-
erties of regular graphs of given girth. A large portion of the paper is based on
exercises and questions proposed by László Babai in his lectures and in his Discrete
Math lecture notes.

2. Graphs

Graph theory is the study of mathematical structures called graphs. We define
a graph as a pair (V, E), where V is a nonempty set, and E is a set of unordered
pairs of elements of V . V is called the set of vertices of G, and E is the set of
edges. Two vertices a and b are adjacent provided (a, b) ∈ E. If a pair of vertices
is adjacent, the vertices are referred to as neighbors. We can represent a graph
by representing the vertices as points and the edges as line segments connecting
two vertices, where vertices a, b ∈ V are connected by a line segment if and only
if (a, b) ∈ E. Figure 1 is an example of a graph with vertices V = {x, y, z, w} and
edges E = {(x, w), (z, w), (y, z)}.

•z

•y

•w

•x

Figure 1

Now we define some relevant properties of graphs.
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Definition 2.1. A walk of length k is a sequence of vertices v0, v1, . . . , vk, such
that for all i > 0, vi is adjacent to vi−1.

Definition 2.2. A connected graph is a graph such that for each pair of vertices
v1 and v2 there exists a walk beginning at v1 and ending at v2.

Example 2.3. The graph in Figure 2 is not connected because there is no walk
beginning at z and ending at w.

•z

•y

•w

•x

Figure 2

From this point on, we will assume that every graph discussed is connected.

Definition 2.4. A cycle of length k > 2 is a walk such that each vertex is unique
except that v0 = vk.

Definition 2.5. A tree is a graph with no cycles.

Definition 2.6. The girth of a graph is the length of its shortest cycle.

Since a tree has no cycles, we define its girth as inf ∅ = ∞
Example 2.7. The graph in figure 3 has girth 3.

•a •b

•c •d

•e

Figure 3

Definition 2.8. The degree of a vertex is the number of vertices adjacent to it.

Definition 2.9. A graph is r-regular if every vertex has degree r.

Definition 2.10. A complete graph is a graph such that every pair of vertices
is connected by an edge.

We observe that a complete graph with n vertices is n − 1-regular, and has
(

n

2

)

=
n(n − 1)

2

edges.

Definition 2.11. A complete bipartite graph is a graph whose vertices can be
divided into two disjoint sets X and Y , such that every vertex in X is adjacent to
every vertex in Y and no pair of vertices within the same set is adjacent.

The complete bipartite graph with | X |= x and | Y |= y is denoted Kx,y.
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Definition 2.12. The complement of a graph G, denoted Ḡ, is a graph on the
same vertices as G, only the vertices adjacent in G are not adjacent in Ḡ and the
vertices not adjacent in G are adjacent in Ḡ.

Example 2.13. In Figure 4, Ḡ is the complement of G.

•a

•b •c

•d

•e•f

•a

•b •c

•d

•e•f

G Ḡ

Figure 4

3. Girths of Regular Graphs

Using only the definitions of the previous section and some elementary linear
algebra, we are able to prove some interesting results concerning r-regular graphs
of a given girth. We begin with two lemmas upon which the rest of the paper will
depend.

Lemma 3.1. The number of vertices of an r-regular graph with an odd girth of
g = 2d + 1 (where d ∈ Z

+) is n, such that

n ≥ 1 +

d−1
∑

i=0

r(r − 1)i.

We will first show this for g = 5:

Proof of Lemma 3.1 for g = 5. Let G be an r-regular graph with girth 5. Take a
vertex v0 of G. Let V0 = {v0}. v0 must be adjacent to r vertices. Let V1 be the
set containing those r vertices. None of the elements of V1 can be adjacent to one
another, because that would create a 3-cycle. Thus, each of those vertices must
be adjacent to an additional r − 1 vertices. Each of these vertices must be unique
in order to avoid creating a 4-cycle. Let V2 be the set of all vertices adjacent to
elements of V1 except v0. Elements of V2 can be adjacent to one another, creating
5-cycles. Thus, adding up the vertices in Figure 5, we have

n = 1 + r + r(r − 1)

⇒ n = 1 +

1
∑

i=0

r(r − 1)i.

�
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•v0

• •

• • • •

· · · · · ·

· · · · · · · · ·

V0 (1 vertex)

V1 (r vertices)

V2 (r(r − 1) vertices)

Figure 5

Now we extend this to any g = 2d + 1.

Proof of Lemma 3.1. Let G be an r-regular graph with girth g = 2d + 1. Take a
vertex v0 of G. Let V0 = {v0}. v0 must be adjacent to r vertices. Let V1 be the set
consisting of those r vertices. None of the elements of V1 can be adjacent to one
another without creating a 3-cycle. Now, we will create more sets of vertices, as
in Figure 5. The vertices adjacent to those in V1 (not including v0) will be in the
set V2. Similarly, if v is a vertex, we define Vk = {v | v is adjacent to an element
of Vk−1 and v /∈ Vn where n < k − 1} . There can be no cycles within vertices in
⋃d−1

i=0
Vi. Suppose there were such a cycle. Then, without loss of generality, we can

assume that the cycle is a result of an adjacency between two elements within the
same set Vn. Then, there would be a 2n + 1-cycle, and since n < d, 2n + 1 must be
less than g. Thus, there can be no such cycle, which implies that each vertex of Vd

is a unique vertex of G. Each set Vn (< n ≤ d) has a cardinality of (r − 1) times
the number of vertices of Vn−1, and V1 has r vertices. Thus, Vk has r(r − 1)k−1

vertices. So, summing the cardinalities of V0 through Vd we have,

n ≥ 1 +

d−1
∑

i=0

r(r − 1)i

�

We now give a similar lemma for graphs of even girth.

Lemma 3.2. The number of vertices of an r-regular graph with a girth of g = 2d
(where d ≥ 2) is n, where

n ≥ 1 + (r − 1)d−1 +
d−2
∑

i=0

r(r − 1)i = 2
d−1
∑

i=0

(r − 1)i.

We will prove this in two different ways. In the first proof, we will begin with a
vertex of the graph, as in the proof of Lemma 3.1, and in the second one we will
begin with two adjacent vertices.

Proof #1 of Lemma 3.2. Let G be an r-regular graph with girth g = 2d, where
d ≥ 2. Let v0 be a vertex in G. Let V0 = {v0}. v0 must be adjacent to r vertices.
Let V1 be the set consisting of those r vertices. None of the elements of V1 can be
adjacent to one another without creating a 3-cycle. The vertices adjacent to those
in V1 (not including v0) will be in the set V2. Similarly, if v is a vertex, we define
Vk = {v | v is adjacent to an element of Vk−1 and v /∈ Vn where n < k− 1} . There

can be no cycles within vertices in
⋃d−1

i=0
Vi. Suppose there were such a cycle. Then,

without loss of generality, we can assume that the cycle is a result of an adjacency
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between two elements within the same set Vn. Then, there would be a 2n+1-cycle,
and since n < d, 2n + 1 must be less than g. Thus, there can be no such cycle,
which implies that there must be more vertices than just those in sets V1 through
Vd−1. Each set Vn (n > 0) has a cardinality of (r − 1) times the number of vertices
of Vn−1, and V1 has r vertices. Thus, Vk has r(r − 1)k−1 vertices. Thus, we have
counted a total of

n ≥ 1 +

d−2
∑

i=0

r(r − 1)i

vertices so far. However, each vertex in Vd−1 must have r − 1 additional neighbors

which are not in
⋃d−1

i=0
Vi in order to satisfy the girth requirement of 2d and r-

regularity. That gives r(r − 1)d−1 additional vertices. However, these vertices need
not be unique in order to create a 2d-cycle. Since each of the vertices can have at
most r neighbors within Vd−1, we can divide by r so that we only actually need an
additional (r − 1)d−1 unique vertices. So, summing the cardinalities of V0 through
Vd−1, and the additional vertices that are adjacent to those in Vd−1, we have,

n ≥ 1 + (r − 1)d−1 +

d−2
∑

i=0

r(r − 1)i.

�

Proof #2 of Lemma 3.2. Let G be an r-regular graph with girth g = 2d, where
d ≥ 2. Let a0 and b0 be adjacent vertices in G. Let V1 = {a0, b0}. Each vertex in
V1 must be adjacent to an additional r − 1-vertices. These vertices must be unique
in order to prevent a 3-cycle from being created. Define V2 as the set of the 2(r−1)
vertices adjacent to the vertices in V1 (not including elements of V1. Similar to the
first proof, we define Vk = {v | v is adjacent to an element of Vk−1 and v /∈ Vn

where n ≤ k−1}. There can be no cycles within vertices in
⋃d−1

i=0
Vi. Suppose there

were such a cycle. Then, without loss of generality, we can assume that the cycle
is a result of an adjacency between two elements within the same set Vn. Then,
there would be a 2n-cycle, and since n < d, 2n must be less than g = 2d. Thus,
there can be no such cycle, which implies (since g is even) that each vertex of Vd

is a unique vertex of G. Each set Vn has a cardinality of (r − 1) times the number
of vertices of Vn−1 and V1 has 2 vertices. Thus, Vk has 2(r − 1)k−1 vertices. So,
summing the cardinalities of V1 through Vd, we obtain

n ≥ 2

d−1
∑

i=0

(r − 1)i.
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Now, simple algebra shows that 1+(r−1)d−1+
∑d−2

i=0
r(r−1)i = 2

∑d−1

i=0
(r−1)i :

Let x = r − 1. Then the left hand side of the equation becomes:

LHS = (x + 1)

d−2
∑

i=0

xi + xd−1 + 1

=
(x + 1)(xd−1 − 1)

x − 1
+ xd−1 + 1

=
1

x − 1

[

(x + 1)(xd−1 − 1) + (xd−1 + 1)(x − 1)
]

=
1

x − 1
(xd − x + xd−1 − 1 + xd − xd−1 + x − 1)

=
2xd − 2

x − 1
= 2

(

xd − 1

x − 1

)

= 2

d−1
∑

i=0

xi = 2

d−1
∑

i=0

(r − 1)i = RHS

�

4. Minimal Regular Graphs of Given Girth

A natural question that arises from the lemmas in the previous section is when
do the equalities hold? That is, for which pairs of g = 2d + 1 and r can we find a
graph such that the number of vertices is

(1) n = 1 +

d−1
∑

i=0

r(r − 1)i,

and for which pairs of g = 2d and r can we find a graph such that the number of
vertices is

(2) n = 2
d−1
∑

i=0

(r − 1)i?

For small values of g there are many values of r for which the equality holds. We
begin with g = 3. In this case, we must find r-regular graphs with girth 3 and
1 + r(r − 1)0 = 1 + r vertices.

Observation 4.1. For every integer r > 1, there exists an r-regular graph with
girth 3 and exactly r + 1 vertices.

Proof. Given an integer r > 1, the complete graph with r + 1 vertices is r-regular
and has a girth of 3. �

In order to further understand regular graphs of given girth, we must introduce
some linear algebra relevant to graph theory.

Definition 4.2. The adjacency matrix A of a graph G is the square matrix
whose entries are aij , where

aij =

{

1 if i and j are adjacent
0 otherwise.

Clearly, the adjacency matrix of a (non-directed) graph is symmetric, that is
AT = A, since adjacency is a symmetric relation. That is, i is adjacent to j ⇐⇒ j
is adjacent to i. We also observe that the sum of the entries of the ith row or of
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the ith column is equal to the degree of the ith vertex. Therefore, the sum of any
row or any column of the adjacency matrix of an r-regular graph is r.

A result of the spectral theorem is that every symmetric matrix has an orthonor-
mal eigenbasis, and real eigenvalues. Thus, the same holds for every adjacency
matrix.

Observation 4.3. The square of an adjacency matrix has entries bij, where bij is
equal to the number of vertices which are adjacent to both vertex i and vertex j for
i 6= j, and bii is equal to the degree of vertex i.

Proof. Suppose A is an n by n adjacency matrix of a labeled graph. Then, by
matrix multiplication, A2 will have entries bij , where

bij =

n
∑

k=1

aikakj .

We notice that the product aikakj will be nonzero if and only if k is adjacent to
both i and j, in which case aik = 1 and akj = 1 so aikakj = 1. Thus,

bij =

l
∑

k=1

1 = l,

where l is the number of vertices which are adjacent to both vertex i and vertex j.
bii will thus simply be the number of vertices adjacent to i, or the degree of i, since
i shares all adjacencies with itself. �

Since each entry of A2 has a geometric interpretation within the graph, it is
reasonable to infer that the same holds for Ak. In fact, we can state the following
lemma.

Observation 4.4. Let A be an adjacency matrix of a labeled graph G, with n
vertices. Then the entry aij of Ak, where k ≥ 1, is the number of walks of length k
from vertex j to vertex i.

Proof by Induction. The statement holds for k = 1 by the definition of an adjacency
matrix. Assume the statement holds for k = l. Then, we multiply Al and A to
obtain Al+1. It does not matter in which order we multiply them since matrix
multiplication is associative. Let the entries of A be denoted bij and let the entries
of Al be denoted cij . The entry aij of Al+1 is the dot product of the ith row of A
and the jth column of Al. That is,

aij =
n

∑

m=1

bimcmj.

We notice that the product bimcmj will be nonzero if and only if i is adjacent to m
and there is at least one walk of length l from j to m. this is equivalent to saying
there is at least one walk of length l + 1 from j to i whose second to last vertex is
m. Thus, if bimcmj is nonzero, it is equal to the number of walks of length l + 1
from j to i whose second to last vertex is m. Thus, summing over n, we find that
aij =

∑n

m=1
bimcmj is the total number of walks of length l from j to i. �

Now that we have studied adjacency matrices, let us briefly return to r-regular
graphs of girth 3 with r +1 vertices (complete graphs) in order to give an example.
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Example 4.5. Let G be a complete graph of degree r > 1, and let A be its adjacency
matrix. Since G is complete, the entries of A are

aij =

{

0 if i = j
1 if i 6= j.

Also, since G has r + 1 vertices, every pair of unique vertices has exactly r − 1
neighbors in common, so the entries of A2 are

aij =

{

r if i = j
r − 1 if i 6= j.

Thus, for the adjacency matrix of the complete graph, the following equality holds:

A + A2 = rJ,

where J is the matrix of all ones.

Now, let us look at r-regular graphs of girth g = 4 (d = 2). According to Lemma
3.2, at least n vertices are required to make such a graph, where

2
1

∑

i=0

(r − 1)i = 2(r − 1)0 + 2(r − 1)1 = 2 + 2r − 2 = 2r.

In fact, only 2r vertices are required, as stated in the following lemma.

Lemma 4.6. For every integer r > 1, the only r-regular graph G that has girth
g = 4 and exactly 2r vertices is the complete bipartite graph Kr,r.

Proof. Let x be a vertex in G. x is adjacent to r vertices. Let Y be the set of
vertices adjacent to x. Let X be the set of r vertices not adjacent to x (including x
itself). No two vertices in Y can be adjacent without creating a 3-cycle. Thus, every
vertex of Y must be adjacent to every vertex in X in order for G to be r-regular.
Thus, no two vertices in X can be adjacent without creating a 3-cycle. Therefore,
G is the complete bipartite graph Kr,r. Suppose v ∈ X and z ∈ Y . Then, the
vertices x, y, v, and z create a four cycle. Thus, G has girth 4. �

By using Lemma 4.6, we can make the following observation about the adjacency
matrix of an r-regular graph of girth four with 2r vertices:

Observation 4.7. Let G be an r-regular graph of girth four with 2r vertices, and
let A be an adjacency matrix of G. Then the following equality holds:

A2 + rA = rJ.

Proof. Let i and j be vertices in G. Since G is a complete bipartite graph, i and j
have r neighbors in common if i is not adjacent to j and no neighbors in common
if i is adjacent to j. Thus, A2 has zeros where A has ones, and r’s where A has
zeros. Thus,

A2 + rA = rJ.

�

Now let us approach the problem of when the equality in equation (1) holds for
regular graphs of girth g = 5 (d = 2). That is, we must find for which values of r
we can find a graph with girth 5 and n vertices, where

n = 1 + r(r − 1)0 + r(r − 1)1 = 1 + r + r2 − r = 1 + r2
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It turns out that there are only a finite number of values of r for which the equality
holds. In fact, there are at most 5 values: {1,2,3,7,57}. We say ”at most” because
such a graph has not yet been discovered for r = 57. To give an idea of how complex
the graphs become as r increases, let’s look at the simplest of these graphs:

•a •b

Figure 6: r = 1, n = 2

•a

•b

•c•d

•e

Figure 7: r = 2, n = 5

•a

•b

•c•d

•e

•f

•g

•h•i

•j

Figure 8 (Petersen Graph): r = 3, n = 10

The graph for r = 7 is called the Hoffman-Singleton graph, and has 50 vertices
and 175 edges. In fact, the theorem in this section regarding graphs of girth five is
known as the Hoffman-Singleton Theorem. Before we state the Hoffman-Singleton
Theorem, we must discuss some features of regular graphs with girth ≥ 5 for which
the equality in equation (1) holds.

Lemma 4.8. If G is an r-regular graph, has girth at least 5, and n = r2 + 1
vertices, the number of common neighbors of a pair x, y of vertices is zero if x, y
are adjacent and 1 if x, y are not adjacent.

Proof. For this proof, we will be directly referring to the proof of Lemma 3.1 for
g = 5 and to Figure 5. Without loss of generality, let x = v0.

Case 1: y ∈ V1. In this case, y is adjacent to x and x and y have no neighbors
in common, so the lemma holds.

Case 2: y ∈ V2. In this case, y is not adjacent to x, and x and y are both
adjacent to exactly one vertex in V1. Thus the lemma holds. �
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Theorem 4.9 (Hoffman-Singleton Theorem). If there exists an r-regular graph G
of girth greater than or equal to 5 such that the number of vertices n satisfies the
equality n = r2 + 1, then r ∈ {1, 2, 3, 7, 57}.

See appendix for proof.

5. Further Studies

It is possible to study the minimal regular graphs of girth greater than 5, however,
such studies require more complex mathematical tools than those used in this paper,
and some have even been studied with no success yet.
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6. Appendix

The following proof was given in a lecture by László Babai. I added it for
completeness of the paper.

Proof of Theorem 4.9. Let A be the adjacency matrix of G, and let Ā be the adja-
cency matrix of Ḡ. By Observation 4.3 and Lemma 4.8, we have

(3) A2 = Ā + rI,

where I is the identity matrix. Also, by the definition of the complement of a graph,
we have

(4) A + Ā + I = J,

where J is the matrix of all ones. Thus, substituting equation (3) into equation
(4), we have

A + (A2 − rI) + I = J

⇒ A + A2 − (r − 1)I = J(5)

As observed earlier, the sum of the elements of each row of A is r. Thus,

A · 1 =







r
r
...






,

where 1 is the vector of all ones. So we have A · 1 = r · 1, which implies that 1

is an eigenvector of A with eigenvalue r. By the Spectral Theorem (as described
earlier), A has an orthogonal eigenbasis, e1 = 1, e2, . . . , en. That is, ei ⊥ ej for all
pairs of i, j ∈ {1, 2, . . . , n} such that i 6= j. Thus, 1 ⊥ ei for all i ≥ 2. So, for i ≥ 2,
we have

Jei =







ei · 1
...

ei · 1






= 0.

Multiplying equation (5) by ei (i ≥ 2) to the right, we obtain

(6) (A2 + A − (r − 1)I)ei = Jei = 0.

We know that Aei = λiei, and thus A2ei = λ2
i ei, so equation (6) becomes

λiei + λiei − (r − 1)ei = 0,

and thus

(7) λ2
i + λi − (r − 1) = 0.

Since this is a quadratic equation, we know that it has at most 2 roots. Thus, A
must have at most 3 eigenvalues; let’s call them r, µ1, and µ2 with multiplicities 1,
m1, and m2 respectively.

µ1 and µ2 must be roots of equation (7). Thus, we have

µ1,2 =
−1 ±

√

1 + 4(r − 1)

2
=

−1 ±
√

4r − 3

2
.

Let s =
√

4r − 3. Then, s2 = 4r − 3, or , equivalently,

(8) r =
s2 + 3

4
.
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Since A is an n by n matrix, we have

(9) 1 + m1 + m2 = n.

We also know that the sum of the eigenvalues is equal to the trace of the matrix,
so

(10) r + m1µ1 + m2µ2 = 0.

Since n = r2 + 1, we can rewrite equation (9) as

(11) m1 + m2 = r2.

We know that

µ1,2 =
−1 ± s

2
.

Without loss of generality, let

µ1 =
−1 + s

2
and µ2 =

−1 − s

2
.

Now we can rewrite equation (10) as

r + m1

−1 + s

2
+ m2

−1 − s

2
= 0,

or

(12) 2r + s(m1 − m2) − (m1 + m2) = 0.

Consider the case where s is irrational. Then m1 − m2 = 0 (since m1, m2, and
r are all integers), and we have

2r − (m1 + m2) = 0,

or
2r − r2 = 0,

by equation (11). Since r 6= 0, this equation implies that r = 2. This number does,
in fact, occur in the theorem as a possible value of r.

From now on, we will assume that s is rational, and thus s is an integer (since
it is the square root of an integer).

Substituting equation (11) into equation (12), we have

2r + s(m1 − m2) − r2 = 0.

Plugging in equation (8), we have

2
s2 + 3

4
+ s(m1 − m2) −

(s2 + 3)2

16
= 0.

Simplifying, we obtain

s4 − 2s2 − 16(m1 − m2)s − 15 = 0.

Thus, s must be a divisor of 15. That is, s ∈ {±1,±3,±5,±15}. Thus, by equation
(7), we have r ∈ {1, 3, 7, 57}. Including the case where s is irrational, we add 2 to
the possible values of r, which brings us to the conclusion that r ∈ {1, 2, 3, 7, 57}.

�
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