
LIMITS IN CATEGORY THEORY

SCOTT MESSICK

Abstract. I will start assuming no knowledge of category theory and intro-

duce all concepts necessary to embark on a discussion of limits. I will conclude

with two big theorems: that a category with products and equalizers is com-
plete, and that limits in any category can be reduced to limits of Hom-sets by

means of a natural transformation.
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1. Categories

Category theory is a scheme for dealing with mathematical structures in a highly
abstract and general way. The basic element of category theory is a category.

Definition 1.1. A category C consists of three components:
(1) A collection1 of objects Ob(C ). Instead of C ∈ Ob(C ), we may write simply

C ∈ C .
(2) A collection of morphisms Ar(C ), and with each morphism f , two associ-

ated objects, called the domain dom f and the codomain cod f . The set
of morphisms with domain A and codomain B is written HomC (A,B) or
simply C (A,B) and called a “Hom-set”. A morphism can be thought of
as an arrow going from its domain to its codomain. Indeed, I will use the
words “morphism” and “arrow” interchangeably. Instead of f ∈ C (A,B),
f : A → B may be written, where A and B are already understood to be
objects in C .

(3) A composition law, i.e., for every pair of Hom-sets C (A,B) and C (B,C),
a binary operation ◦ : C (B,C) × C (A,B) → C (A,C). Instead of ◦(f, g)
we write g ◦ f or gf . Composition must satisfy the following two axioms.

Date: August 17, 2007.
1For the scope of this paper, I will not attempt to make the word “collection” precise. Note,

however, that it is often too big to be a set.
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Category Objects Morphisms
Set sets functions
Top topological spaces continuous maps
Grp groups homomorphisms of groups
Any poset elements of the set exactly one arrow for every ≤

Table 1. Examples of categories

(a) Associativity. If f ∈ C (A,B), g ∈ C (B,C), and h ∈ C (C,D), then
h ◦ (g ◦ f) = (h ◦ g) ◦ f = h ◦ g ◦ f = hgf .

(b) Identities. For every object C ∈ C there exists an identity arrow 1C ∈
C (C,C) such that for every morphism g ∈ C (A,C) and h ∈ C (C,B),
1C ◦ g = g and h ◦ 1C = h hold.

The quintessential example of a category is the category of sets, Set. The
objects are all sets, and the morphisms all functions between sets (with the usual
composition of functions). The categories of topological spaces and groups are
similar; in fact, there is a category like this for almost every branch of mathematics;
the objects are the structures being studied, and the morphisms are the structure-
preserving maps.

The two axioms for composition of morphisms can be restated diagramatically
as follows. For every object C, there exists an identity arrow 1C such that the
following diagram commutes for every g, h:

A
g //

1C◦g ��@
@@

@@
@@

C

1C

��

h◦1C

��@
@@

@@
@@

C
h
// B

Given objects A, B, C, D and morphisms between them, the following diagram
always commutes:

A
f //

g◦f ��@
@@

@@
@@

B

g

��

h◦g

  @
@@

@@
@@

C
h // D

A commutative diagram is one where, between any two given objects, composi-
tion along every (directed) path of arrows yields the same morphism between those
objects. These diagrams also exemplify the usual way of illustrating concepts of
category theory, representing objects as nodes and morphisms as arrows between
them.

The following concept is important, and a first example of how category theory
generalizes important kinds of statements about mathematical objects. In this case,
the idea of two objects being isomorphic is generalized.

Definition 1.2. A morphism f : A → B is an isomorphism if there exists a
morphism g : B → A such that f ◦ g = 1B and g ◦ f = 1A. Then the objects A,B
are said to be isomorphic.
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Loosely speaking, isomorphic objects look “the same” in a category, because
arrows to or from one can be uniquely mapped through the isomorphism to arrows
to or from the other. Isomorphic objects are not the same, but have the same cate-
gorical structure. Intuitively, a branch of mathematics, say, group theory, specifies
what structure is important in an object (group). Two such structures (groups) are
isomorphic, in the setting-specific sense (invertible homomorphisms here), if they
have the same such structure. Since the category is defined with the appropriate
maps for the setting (homomorphisms), two objects will be categorically isomor-
phic if and only if they are isomorphic. The importance of this idea of generalizing
from a concept, defined internally in the same way for many different types of ob-
jects, to a single categorical concept defined externally by means of arrows, must
be stressed. Isomorphisms are a simple example with which to think about the
philosophy; limits, which come later, are much more complicated.

2. Functors and Natural Transformations

Categories, in part, embody the idea that any notion of a mathematical object
should come with a notion of maps between two such objects. Sets come with
functions, groups with homomorphisms, topological spaces with continuous maps,
and so on. Similarly, categories come with functors.

Definition 2.1. A functor F : C → D is a map which associates with every object
C ∈ C an object F (C) ∈ D , and with every morphism f ∈ C (C1, C2) a morphism
F (f) ∈ DF (C1), F (C2), and which preserves composition and identities, as in:

• F (1C) = 1F (C) holds for every object C ∈ C .
• Whenever h, g, f are arrows in C such that h = g ◦ f , it also holds that
F (h) = F (g) ◦ F (f).

Parentheses may be omitted, as in C 7→ FC and f 7→ Ff .
There are many simple examples of functors, forgetful functors from Grp or Top

to Set which take objects to their underlying sets, free functors going the other way
(e.g. putting the trivial topology on every set), functors from little categories that
pick out diagrams in their codomain (which will be important later), and so on. One
important kind of functor is given by Hom-sets. Observe that if C is any category,
with any object C, then HomC (C,−) gives a functor H : C → Set. This functor
maps arrows by left-composition, i.e., given f : A → B, Hf : HomC (C,A) →
HomC (C,B) is defined by (Hf)(g) = f ◦ g.

A natural transformation is, in turn, a morphism of functors. Given functors
F,G : C → D , one may imagine the image of F as a bunch of objects sitting in D ,
with some arrows between them highlighted. Similarly one may imagine the image
of G as another bunch of objects. Loosely speaking, a natural transformation will
be a way of getting from the first picture to the second picture, using the arrows of
D , in a “natural” way, i.e., in the same way for every object.

Definition 2.2. Given functors F,G : C → D , a natural transformation η : F → G
is a collection of arrows in D , specifically, one arrow for each object X of C , called2

ηX , such that the following diagram commutes for every X,Y ∈ C .

2I’m switching notation slightly here, to avoid nested subscripts.
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X

f

��

FX
Ff //

ηX

��

FY

ηY

��
Y GX

Gf
// GY

Definition 2.3. A natural isomorphism is a natural transformation in which every
arrow is an isomorphism.

3. Limits

The notion of a limit in category theory generalizes various types of universal
constructions that occur in diverse areas of mathematics. It can show very precisely
how thematically similar constructions of different types of objects, such as the
product of sets or groups of topological spaces, are instances of the same categorical
construct. Consider the Cartesian product in sets. X × Y is usually defined by
internally constructing the set of ordered pairs {(x, y)|x ∈ X and y ∈ Y }. But it
can also by identified as the set which projects down to X and Y in a universal way,
that is to say, doing something to X×Y is the same as separately doing something
to X and Y .

Definition 3.1. A product of objects A,B in a category C is an object, C, together
with morphisms p : C → A and q : C → B, called the projections, with the following
universal property3. For any other object D ∈ C with morphisms f : D → A and
g : D → B, there is a unique morphism u : D → C such that p◦u = f and q◦u = g.
In other words, every (D, f, g) factors uniquely through (C, u).

D

f

��

g

""

u

  
C

q //

p

��

B

A

Example 3.2. In the category Set, the product is the Cartesian product. The
projections p : A × B → A and q : A × B → B are given by p(a, b) = a and
q(a, b) = q. Given another set D with arrows f : D → A and g : D → B, the
unique arrow u : D → A× B is given by u(d) = (f(d), g(d)). That this commutes
and is the only arrow doing so are transparent, as for example, (p◦u)(d) = p(u(d)) =
p(f(d), g(d)) = f(d).

Example 3.3. In Grp, the product is the direct product of groups. The construc-
tion is similar to Set; the product is given by the underlying Cartesian product,
with a group operation constructed elementwise from those of the factors. To
demonstrate that the universal arrow exists and is unique, it suffices to show that
the function u given by the same construction is in fact a homomorphism, given

3A formal definition of universal properties exists, but is unnecessary for the purposes of this

paper.
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that, because we are in the category of groups, f and g are also homomorphisms.
(Trivially, the projections are homomorphisms.) This proof is straightforward:

(3.4) u(d1d2) = (f(d1d2), g(d1d2)) = (f(d1)f(d2), g(d1)g(d2))

= (f(d1), g(d1))(f(d2), g(d2)) = u(d1)u(d2)

Example 3.5. In Top, the product is the usual product of topological spaces.
In fact, this product is often defined as “the coarsest topology which makes the
projections continuous,” which is exactly what is needed to make the analogous
construction work.

Example 3.6. In a poset, the product is the greatest lower bound, if it exists.
This provides not only an example which is very different from sets, but also one
showing that the product doesn’t always exist. Let c = glb(a, b). There is only
one choice of projections. If d has arrows to a and b, it means d ≤ a and d ≤ b,
so d is a lower bound. But c is a greatest lower bound, so d ≤ c. This gives the
universal arrow which easily commutes and is unique because arrows are scant in
this category.

Proposition 3.7. The product of any two objects in a category, if it exists, is
unique up to unique isomorphism.

Proof. Let A and B be objects in a category, and C, pC , qC and D, pD, qD be
products of A and B. By the universal property, there exist unique morphisms
f : C → D and g : D → C which commute with the projections. This gives pC ◦ g
= pD and pD ◦ f = pC and hence pC ◦ g ◦ f = pC . Similarly, qC ◦ g ◦ f = qC .
Thus, g ◦ f is an arrow from C to itself which commutes with the projections. But
by the universal property there can only be one morphism from C to itself which
commutes with the projections, and the identity suffices. Hence g ◦ f = 1C . The
other way around is similar.

C

��~~
~~

~~
~

  @
@@

@@
@@

f

��

A B

D

``@@@@@@@

>>~~~~~~~

g

OO

C

��~~
~~

~~
~

��@
@@

@@
@@

1C

��

A B

C

__@@@@@@@

??~~~~~~~

gf

OO

�

Remark 3.8. A product can be generalized in an obvious way to any number of
factors other than two. Later I will speak of a category with “all small products”;
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this just means the products of any set of objects exists in the category. In Set it’s
clear that all small products exist.

The second most important example of a limit is an equalizer. In sets, and in
many similar categories, this is just the subset of the domain of two parallel arrows
where those two functions are equal.

Definition 3.9. An equalizer of two arrows f, g : X → Y in a category C is an
object, E, together with a morphism e : E → X such that f ◦ e = g ◦ e, with the
following universal property: for any O ∈ C with a morphism m : O → X such
that f ◦m = g ◦m, there is a unique morphism u : O → E such that m = e ◦ u.
This equalizer may be denoted eq(X,Y ).

E
e // X

f //
g
// Y

O

m

>>~~~~~~~
u

OO

Remark 3.10. In Grp and Top, equalizers are constructed exactly the same way.
In Grp, it can be viewed as a difference kernel. (In fact, kernels can also be viewed
as limits).

Now we’re ready for the general notion of a limit, but first, it’s useful to define
a cone. Notice that in the product and the equalizer, the projections played the
same role as the morphism e. In what follows, J should be thought of as a small
category, such as two discrete objects (no morphisms except identities) in the case
of products, or a just a pair of objects with a pair of arrows in the case of equalizers.
The functor F : J → C should be thought of as a diagram of that shape in the
category C . Thus the limit of the diagram is taken.

Definition 3.11. Given a functor F : J → C , a cone of F is an object N ∈ C
together with morphisms ψX : N → F (X) for every X ∈ J such that for every
morphism f : X → Y in J , the triangle commutes, i.e. Ff ◦ ψX = ψY .

N
ψX

zzvvvvvvvvv
ψY

��

ψZ

##H
HHHHHHHH

F (X)
F (f)

// F (Y )
F (g)

// F (Z)

Definition 3.12. A limit of a functor F : J → C is a universal cone4 L, φX .
That is, for every cone N,ψX of F , there is a unique morphism u : N → L such
that φX = u ◦ψX for every X ∈J . The limit object may be written limi∈J F (i).

4The term limit is overloaded to mean either the cone, i.e., the object with the arrows, or just
the object.
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N

u

��
ψX

����
��

��
��

��
��

��
�

ψY

��3
33

33
33

33
33

33
33

L

φX||yyyyyyyy

φY ""E
EEEEEEE

F (X)
F (f)

// F (Y )

Proposition 3.13. The limit of any diagram in a category, if it exists, is unique
up to unique isomorphism.

4. Pullbacks

The pullback (fiber product) is the last limit I will define explicitly. There are
many other important limits, but pullbacks will be my example for how all limits
come from products and equalizers.

Definition 4.1. A pullback is a limit of a diagram of the following form: A −→
C ←− B. That is, a pullback is an object D with morphisms p1 : D → A and
p2 : D → B which make the square commute and are universal, i.e. for every other
object Q with morphisms q1 : Q→ A and q2 : Q→ B, there is a unique morphism
u : Q → D which makes the diagram commute. The pullback, interpreted as the
object D, may be written A×C B.

Q

""

��

u

��
D //

��

B

��
A // C

Proposition 4.2. In Set, the pullback is given by the set X ×Z Y = {(x, y)|
f(x) = g(y)} where f : X → Z and g : Y → Z, together with the restricted
projection maps p1, p2 into X and Y .

Proof. Let D, q1, q2 be another cone of the same diagram. We have f(q1(d)) =
g(q2(d)) for every d ∈ D. Thus the pairs (q1(d), q2(d)) are in X ×Z Y . Let u(d) =
(q1(d), q2(d)).

�

Proposition 4.3. In any category, a pullback can be constructed using a product
and an equalizer.

A×B
p2 //

p1

��

gp2

##F
FF

FF
FF

FF

fp1 ##F
FF

FF
FF

FF
B

g

��
A

f
// C
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The product A × B induces two parallel diagonal arrows to C, of which the
equalizer can be taken.

E

p1e

��

e
##F

FF
FF

FF
FF p2e

%%
A×B

p2 //

p1

��

gp2

##F
FF

FF
FF

FF

fp1 ##F
FF

FF
FF

FF
B

g

��
A

f
// C

Now, consider any other cone commuting with the pullback diagram. The uni-
versal property of the product gives a unique arrow to the product. By a diagram
chasing argument, this arrow can be seen to equalize the diagonal arrows, which
gives a unique arrow to the equalizer that makes the diagram commute. Thus, the
equalizer is the pullback.

5. Complete Categories

Definition 5.1. A category is complete if every small5 diagram has a limit.

Theorem 5.2. Let F : J → Set be any small diagram in Set. Then the limit of
F is the set

L = lim
i∈J

F (i) = {(xi) ∈
∏
i∈J

F (i)‖(Ff)(xi) = xcod f∀f ∈ Ar(J )}

Remark 5.3. An equivalent condition to the one given is that (Ff)(xi) = (Fg)(xj)
whenever f, g ∈ Ar(J ) and cod f = cod g. For g can be the identity, which gives
the statement in the theorem, and to go the other way, note that if cod f = cod g = k
then (Ff)(xi) = xk = (Fg)(xj). This makes it clear that an equalizer is being taken
in order to produce the limit.

Proof. The limit cone is L with restricted projection maps (pi). Let (N, (ψi)i∈J )
be any other cone. We have (Ff)(ψi(n)) = (Fg)(ψj(n)) whenever cod f = cod g,
for every n ∈ N . Thus the tuples (ψi(n))i∈J are in L. Let u(n) = (ψi(n))i∈J .

�

Theorem 5.4. A category with all equalizers and all small products is complete.

Proof. This proof is a careful and slightly clever generalization of the idea in the
previous proof. Actual equality no longer exists, so an equalizer has to be used
to do the trick. We will take two products and find two arrows between them of
which to take the equalizer, which will be the limit. The product is taken first over
all objects in the diagram, then over the codomains of all arrows in the diagram,
indexed by arrows.

5A diagram is small if the collection of objects is a set.
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F (cod f)

∏
i F (i)

55

��

u //
v
//
∏
f F (cod f)

pf

OO

pf

��
F (dom f)

Ff
// F (cod f)

The first product with its projections (repeated if necessary) can make a cone
for the second product in two different ways, as shown in the triangle on top and
the square on the bottom of the first figure. This gives the two universal arrows
u and v as shown, which respectively make all the triangles commute, or all the
squares.

F (i) F (cod f)

E
e //

φi

OO

∏
i F (i)

pi

ddIIIIIIIII

55

��

u //
v
//
∏
f F (cod f)

pf

OO

pf

��
F (dom f)

Ff
// F (cod f)

The equalizer is taken as shown, and the arrows φi = pie are formed to make
the cone E, φi. That it’s a cone can be seen by inspecting the diagram. Given
f : j → k, we have ue = ve, pfue = pfve, pke = Ff ◦ pje, phik = Ff ◦ phij .
Then any other cone Q, (psii), gives a unique map t to the product, by its universal
property, but since it’s a cone, ut = vt, so there is a unique arrow s : Q → E by
the universal property of the equalizer.

�

6. Another Limit Theorem

The following is a beautiful and fascinating theorem, and in a paper of larger
scope, much more could be done with it. Even without the purpose of proving
other theorems, it illustrates a lot of intuition behind the notion of a categorical
limit.

Theorem 6.1. Let F : J → C be a diagram in C . Then an object X ∈ C is a
limit of F if and only if there is a natural isomorphism

HomC (C,X) ∼= lim
i∈J

HomC (C,F (i))

where the limit on the right is in Set and hence exists.

Proof for products. First suppose that C is the product A × B. We need to find
a bijection of sets, Hom(D,C) ∼= Hom(D,A) × Hom(D,B). Given arrows from
D to A and B gives us a cone of F , so since C is the product we have a unique
arrow u given by the universal property. For the other direction, given any arrow
h : D → C we simply take p ◦ h, q ◦ h, so we have a bijection.
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To show naturality, let α : M → N be an arrow in C . Then the following
diagram must commute:

Hom(M,C) oo // Hom(M,A)×Hom(M,B)

Hom(N,C)

OO

oo // Hom(N,A)×Hom(N,B)

OO

Here the vertical arrows are just left-composition by α and the horizontal ar-
rows are just elementwise right-composition by p, q. The diagram commutes by
associativity.

On the other hand suppose we have such a natural isomorphism for some object
C. We need to find the projections in order to form a product. To do this, we
consider a particular, enlightening case of the natural isomorphism:

Hom(C,C) ∼= Hom(C,A)×Hom(C,B)

Even in an arbitrary category, we know Hom(C,C) has an identity element. By
plugging the identity through the isomorphism, we get p : C → A and q : C → B.
Now let D, f, g be another cone. We can prove the universal property by using the
following commutative diagram:

Hom(D,C) oo // Hom(D,A)×Hom(D,B)

Hom(C,C) oo //

OO

Hom(C,A)×Hom(C,B)

OO

u oo // (f, g)

1C oo //
_

OO

(p, q)
_

OO

We know we can construct the vertical arrows because the bijection gives us
u : D → C from (f, g). The vertical arrows are left-composition by u. The com-
mutative diagram then states that p ◦ u = f and q ◦ u = g.

�

Notice that this theorem illustrates what a product morally is: an object such
that specifying a map to the object is the same as specifying a map to the factors.
In fact, this “thoerem”, though I call it that, is really just a restatement of the
definition of a limit, and we’re proving that they are the same. But the concept is
profound and not obvious, so I think it’s worth drawing attention to.

General proof. The general case proceeds similarly. Let L be the limit of F : J → C.
We need to find a bijection of sets, Hom(X,L) ∼= limHom(X,F (i)). What is an
element of the limit on the right-hand side? Well, we have an explicit description
of a limit in Set. But we have to be careful, because the functor here is not F itself
but HF , where H is the Hom-functor Hom(X,−). Then the following is true for an
element (ψi) of the limit: (HFf)(ψi) = ψj whenever f : i → j in J. But we know
what H does to arrows, so we have Ff ◦ ψi = ψj wheenver f : i → J in J. Thus,
the statement that a tuple of arrows (ψi) is in the limit of Hom-sets is exactly the
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statement that X, (ψi) is a cone of F. This gives a unique arrow u : X → L and
everything proceeds just as before.

To go the other way, we again take the bijection Hom(L,L) ∼= lim Hom(L,F (i))
and feed the identity through it, yielding a cone L, (φi) as before, which we must
prove is universal. Let X, (ψi) be any other cone.

Hom(X,L) oo // limHom(X,F (i))

Hom(L,L) oo //

OO

limHom(L,F (i))

OO

u oo // (ψi)

1L oo //
_

OO

(φi)
_

OO

Just as before, we can find u with the bijection and construct the commutative
diagram to complete the proof.

�
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