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1. Introduction

In the study of Galois theory, after computing a few Galois groups of a given
field, it is very natural to ask the question of whether or not every finite group can
appear as a Galois group for that particular field. This question was first studied in
depth by David Hilbert, and since then it has become known as the Inverse Galois
Problem. It is usually posed as which groups appear as Galois extensions over
Q specifically, and there have been a number of celebrated results over the years
pertaining to this question, perhaps most notably being Shafarevich’s theorem that
every solvable group has such a realization over Q. This paper, however, will focus
around the classical result known today as Hilbert’s Irreducibility Theorem, which
is a useful tool in Inverse Galois Theory.

A large number of realizations of groups as Galois groups over Q can easily be
found using basic types of extensions. For instance, using cyclotomic field extensions
and the theorem of finitely generated abelian groups, one finds that every finite
abelian group can be realized. We also have that if K and K ′ are two Galois
extensions of a field F , where K∩K ′ = F , then KK ′ is also a Galois extension, with
Galois group Gal(K/F ) × Gal(K ′/F ), so we can often realize the direct product
of two realizable groups. Given a Galois extension K with Galois group G and
normal subgroup H, we have by the fundamental theorem of Galois that G/H can
be realized over the same field as well.

A very important group we may be curious about realizing as a Galois group
over Q is Sn. By looking at the general polynomial f(x) = (x − x1) · · · (x − xn),
where x1, . . . , xn are indeterminate and s1, . . . , sn are the elementary symmetric
functions of x1, . . . , xn, we can find that the function field Q(x1, . . . , xn) is Galois
over Q(s1, . . . , sn), with Galois group Sn. We would like, however, to find Sn
realized as a Galois extension over Q instead. In general, when we have a Galois
group realized as an extension of a field of rational functions over a field F , we
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would also like to “descend” and have the group be realized over F . Hilbert’s
Irreducibility Theorem tells us that we can do this for Q, and the aim of this paper
will be to show that we can do the same for a general type of field called a hilbertian
field. The reason this may be interesting to someone working on the Inverse Galois
Problem is because it is often easier to find Galois groups realized over the field of
rational functions of F .

Before we begin, we will set up some conventions for the paper. Every field
will be of characteristic 0, and every Galois extension will be finite. For F a field,
F (x1, . . . , xn) will, unless stated otherwise, denote the field of rational functions
in n variables over F , and F [x1, . . . , xn] will denote the ring of polynomials of n
variables. For R a subring of a ring S, and A a set, R[A] will denote the smallest
ring containing both R and A, and if A is a singleton, we will just write the element
in place of A. D(f) will denote the determinant of a polynomial f .

2. Some Machinery

To begin, we want to build up our machinery by proving a general lemma, which
when given a Galois extension of a field of fractions, will allow us to find, for other
fields, extensions with the same Galois group. This will be our main tool in finding
the Galois extensions mentioned above.

Before immediately jumping in, however, we will prove some basic propositions:

Proposition 1. Let R be an integral domain, and S a subring. Given f, h ∈ S[x],
and g ∈ R[x] such that fg = h, we have that g ∈ S[x] as well if f is monic.

Proof. If f is monic, we have that there are unique polynomials q, r ∈ S[x] such
that h = fq + r and deg(r) < deg(f). Then fq + r = fg, so r = f(g − q). Now
since R is an integral domain, the sum of the degrees of f and g − q is the degree
of r, in the case g − q 6= 0. But this would contradict that deg(r) < deg(f), so we
must have that g = q and r = 0. Hence g is a polynomial in S[x]. �

Proposition 2. Let F be the field of fractions of one of its subrings R, and let
K/F be a Galois extension of degree n. Then we can find a generator α for K/F
such that its minimal polynomial f is in R[x].

Proof. We assume it is known that all Galois extensions are simple extensions, so
take β a generator of K/F . Since F is the field of fractions of R, we can multiply
the minimal polynomial of β, which we’ll call mβ , by a nonzero constant d ∈ R
such that all of the coefficients of dmβ lie in R. Defining α := dβ, we see that
F (α) = F (β), i.e., α is also a generator for K/F . For bn−1, . . . , b0 the coefficients
of mβ , define f as follows:

(1) f(x) = xn + dbn−1x
n−1 + d2bn−2x

n−2 + · · ·+ dn−1a1x+ dna0.

We see that f is a monic, degree n polynomial in R[x], and that it has α as a root:
f(α) = f(dβ) = dnmβ(β) = 0. Since the degree of K/F (=F (α)/F ) is the degree of
the minimal polynomial of α, we see that f must be the minimal polynomial. �

We will be working with polynomial rings and rational function fields, so when
we apply the previous proposition and the following lemma, our field of fractions
will be some rational function field, and the underlying ring will be a polynomial
ring. The following lemma is at the core of our end result, since it will be what we
use to construct our Galois extensions. So here it is:
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Lemma 1. Take K, F , R, f , and α from the previous proposition. Let A be a
finite subset of K closed under the automorphisms of G := Gal(K/F ), and let α be
in A. Then ∃u ∈ R such that for any field F ′ and ring homomorphism ω : R→ F ′

satisfying ω(u) 6= 0, we can extend ω to a ring homomorphism ω̃ from R[A] to a
Galois extension K ′/F ′ with the following properties:

(1) α′ := ω̃(α) is a generator for K ′/F ′.

(2) Let f ′ ∈ F ′[x] be the polynomial obtained by applying ω to the coefficients
of f . Then if f ′ is irreducible, we have that G′ := Gal(K ′/F ′) is isomor-
phic to G, and furthermore, for σ′ ∈ K ′ the image of σ ∈ K under this
isomorphism, we have that ω̃(σ′(s)) = σ′(ω̃(s)).

Proof. Let u = D(f) be the discriminant of f . Since f is a minimal polynomial, it
is irreducible, and since we are working in a characteristic 0 field, f is separable,
and hence u 6= 0. Consider some field F ′ and ring homomorphism ω : R → F ′

satisfying ω(u) 6= 0. We see that D(f ′) = ω(u), so f ′ is separable.
Since α is a generator for K/F , we know that for every s ∈ A there is a poly-

nomial gs ∈ F [x] such that s = gs(α). Recall that F is the field of fractions of R,
so there is a ds ∈ R such that dsgs is a polynomial with coefficients in R. Because
there are only finitely many s ∈ A, we can find a common d such that dgs ∈ R[x]
regardless of which s we choose, namely by setting

(2) d =
∏
s∈A

ds.

Given d, we now define R̃ := R[d−1]. Note that R̃[A] = R̃[α], since for every
s ∈ A we have by choice of d that ds ∈ R̃[α], and d−1 ∈ R̃[α], so that s = d−1ds ∈
R̃[α]. Now extend ω to a homomorphism from R̃ to F ′ by setting ω(d−1) = ω(d)−1.
In the course of this proof, we will end up finding an extension from R̃[A] to some
K ′ with the above properties, but we will be able to take the restriction over R[A]
afterwards and still retain these desired properties.

Let ϕ : R̃[x]→ R̃[α] denote the evaluation homomorphism defined ϕ(g) = g(α).
We claim that the kernel of ϕ is the ideal generated by f in R̃[x]. To see this, first
take h ∈ ker(ϕ), i.e., a polynomial with α as a root. Then fg = h for some g in
F [x] since f is the minimal polynomial of α. Now, our first proposition tells us that
g ∈ R̃[x], and hence h is in the ideal of f . Thus ker(ϕ) ⊂ (f). The other inclusion
is clear since every multiple of f must also have α as a root, and hence must be in
the kernel.

We see from the definition of R̃[α] that ϕ is surjective, so if we factor this
homomorphism through the kernel, we get an isomorphism φ : R̃[x]/(f) → R̃[α].
Note that R̃[x]/(f) is an extension of R̃, and that φ restricted to R̃ is the identity.

Now, we construct K ′ and ω̃. First, let g′ be an irreducible factor of f ′, and then
take the natural projection homomorphism ρ : F ′[x] → F ′[x]/(g′). If ω̂ : R̃[x] →
F ′[x] is the homomorphism applying ω to the coefficients of polynomials in R̃[x],
then we can then factor the homomorphism ρ ◦ ω̂ through the ideal generated by
f in R̃[x], giving us a homomorphism γ : R̃[x]/(f) → F ′[x]/(g′). Note here that
ρ ◦ ω̂ restricts to ω on R̃, and factoring through (f) does not affect this, so γ is an
extension of ω. Then let K ′ := F ′[x]/(g′) and ω̃ := γ ◦ φ−1. K ′ is a field extension



4 LOGAN CHARIKER

of F ′, and by what we noted before about φ and γ, ω̃ must restrict to ω on R̃. The
following diagram depicts the construction of ω̃ and K ′:

(3) R̃[A] = R̃[α]
φ−1

−−→ R̃[x]/(f)
γ−→ F ′[x]/(g′) = K ′

We wish to see that K ′ is generated by α′. First note that, by following the
homomorphisms constructing it, ω̃ takes α to x (mod g′), which is trivially the root
of g′, and that adjoining any root of g′ to F ′ gives us an extension isomorphic to
K ′. So K ′ is generated by α′.

Next we show that K ′/F ′ is Galois. take ˆ̃ω : R̃[A][y]→ F ′[y] the homomorphism
applying ω̃ to the coefficients of polynomials in R̃[A][y]. Then we see that for
α1, . . . , αn the conjugates of α, and α′1, . . . , α

′
n their images under ω̃,

(4) f ′ := ˆ̃ω(f) = ˆ̃ω((y − α1) · · · (y − αn)) = (y − α′1) · · · (y − α′n).

We showed before that f ′ is separable, and we know that adjoining α′1, . . . , α
′
n to

F ′ gives us K ′, since all of these roots are trivially in K ′ and one of them is α′, a
generator of K ′. Hence K ′ is the splitting field of f ′, and so it is Galois.

Next, we want to show that when f ′ is irreducible(i.e., when g′ = f ′), we have
that ω̃ induces an isomorphism between the Galois groups G and G′. To define the
isomorphism, note first that there is a unique automorphism σi ∈ G taking α to
one of its conjugates αi. We know there is such an automorphism by definition of
conjugates, and we know it is unique because the size of the Galois group G is n,
the number of distinct roots of f . Likewise, since f ′ is now irreducible, we have
that the degree of K ′/F ′ is the degree of f ′, and since α′1, . . . , α

′
n are the distinct

roots of f ′(which we see by (4) and the fact that f ′ is separable), there are also
unique automorphisms σ′i taking α′ to α′i. Then we define our isomorphism as the
map taking σi to σ′i.

So now we wish to prove that this actually is an isomorphism. In order to do
so, we must first show the identity ω̃(σ(s)) = σ′(ω̃(s)) where s is some element of
R̃[A]. Since R̃[A] is generated by R̃ and α, and ω̃σ and σ′ω̃ are homomorphisms,
we only need to show that the identity holds for α and elements of R̃. We have
that σ and σ′ are the identities on R̃ and F ′, respectively, and ω̃ takes elements of
R̃ to elements of F ′, so both sides of the identity reduce to ω̃(s) when s ∈ R̃. For
s = α, we see that if we replace σ and σ′ with σi and σ′i, respectively, then both
sides evaluate to α′i.

Given this identity, we see

(σiσj)′(α′) = (σiσj)′(ω̃(α))

= ω̃((σiσj)(α)))

= ω̃(σi(σj(α)))

= σ′i(ω̃(σj(α)))

= σ′iσ
′
j(α
′),

so our map is a homomorphism. It is clearly a bijection since the map goes from a
set of n distinct elements onto another set of n distinct elements.

�
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3. A preliminary version of the theorem

Now that we have the basic tool we need to create the Galois extensions we want,
we will apply it in part (1) of the following theorem to get a preliminary version
of our final theorem. The rest of the paper will work toward defining hilbertian
fields, determining some of their properties, and then generalizing part (1) of the
following theorem for hilbertian fields.

Theorem 1. Let K be a Galois extension of F (x). F (x) is the field of fractions
of its subring F [x], so take f ∈ F [x][y] and α ∈ K given by proposition 1. Then we
have the following facts:

(1) For almost all b ∈ F , if fb(y) := f(b, y) is irreducible in F [y], then for
K ′ := F [x]/(fb), K ′/F is Galois, and we have that G := Gal(K/F (x)) is
isomorphic to G′ := Gal(K ′/F ).

(2) Let L/F be a finite extension, with L ⊂ K, and take h ∈ L[x, y] an irre-
ducible polynomial with all of its roots in K. Then for almost all b ∈ F , if
fb(y) is irreducible in F[x], then hb(y) := h(b, y) is irreducible in L[x].

Proof. Part (1) is an application of the previous lemma. K is a Galois extension of
F (x), which is the field of fractions of the ring F [x], so by the previous theorem,
∃u ∈ F [x] such that if we look at the evaluation homomorphisms ωb : F [x]→ F , de-
fined ωb(g) = g(b), we get an isomorphism between the Galois groups Gal(K/F (x))
and Gal(K ′/F ), where K ′ := F [y]/(fb), as long as ωb(u) 6= 0. Now ωb(u) 6= 0 for
almost all b, since u is a single-variable polynomial, so part (1) follows.

Part (2) also employs the previous lemma, however it does so less directly. Once
again, take F [x], F (x), and K to be the ring, it’s field of fractions, and the Galois
extension mentioned in the previous lemma, and again consider evaluation homo-
morphisms ωb where b is not a root of u(x) ∈ F [x]. This time, however, we include
in our set A two finite collections: the generators (and their conjugates) of L/F ,
and the roots β1, . . . , βm of hx. Then by the previous lemma, for each b we con-
sider, we can extend ωb to ω̃b from F [x][A] to some K ′ Galois over F , and since
we included the generators of L into A, our extension maps L isomorphically into
K ′(isomorphically, since any ring homomorphism from a field is either trivial or
1-1, and ω̃b is not the trivial map on L since it is the identity on F ). From now on,
identify L with its isomorphic copy, so that ω̃b is the identity on L and thus the
evaluation homomorphism on L(x)(remember ω̃b sends x to b).

Now, extend ω̃b to ˆ̃ωb the homomorphism on F [x][A][y] applying ω̃b to coeffi-
cients, and apply this to hx. We claim see that ˆ̃ωb(hx)(y) = hb(y), since as we just
noted, ω̃b is the evaluation homomorphism on the coefficients of hx.

Now view hx as a product of its linear factors:

hx(y) = gm(x)(y − β1) · · · (y − βm).

Then for β′i the images of the βi under ˆ̃ωb, we see from the fact stated in the
previous paragraph that

hb(y) = gm(b)(y − β′1) · · · (y − β′m).

Because hx(y) is irreducible (and therefore separable) in L(x)[y] by Gauss’s Lemma,
Gal(K/L(x)) permutes the βi transitively. Now assume that fb is irreducible. Then
we get by the previous lemma an isomorphism from Gal(K/F (x)) to Gal(K ′/F ),
which when restricted to Gal(K/L(x)) takes us to a subgroup of Gal(K/L)(since
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for z ∈ L, σ ∈ Gal(K/L(x)), and σ′ the corresponding automorphism, we see
σ′(z) = σ′(ω̃b(z)) = ω̃b(σ(z)) = ω̃b(z) = z, i.e., σ′ fixes L). If σ ∈ Gal(K/L(x))
takes βi to βj , and σ′ is the corresponding automorphism in Gal(K/L), then we
see that

σ′(β′i) = σ′(ω̃b(βi))

= ω̃b(σ(βi))

= ω̃b(βj)

= β′j .

We know there is such a σ for any βi and βj since Gal(K/L(x)) permutes the
roots of hx transitively. Hence Gal(K ′/L) permutes the roots of hb transitively.
We exclude from our consideration the finitely many b ∈ F such that hb is not
separable (i.e., the roots of D(h) ∈ F (x), since D(hb) = D(h)(b)), so that hb is
therefore irreducible.

�

4. The hilbertian property

Now we define a specific property for fields to have so that they will work well
with part (1) of theorem 1, and have other nice properties as well:

Definition 1. A field F is called hilbertian, or is said to have the hilbertian prop-
erty, if for any irreducible polynomial f ∈ F [x, y], we have that for infinitely many
b ∈ F , fb(y) := f(b, y) is irreducible in F [y].

We see that if F is hilbertian, then we can apply part (1) of theorem 1, without
having to worry about satisfying the antecedent of part (1), since it is already
satisfied for infinitely many b by the hilbertian property.

Hilbert’s Irreducibility Theorem is the statement that the specific field Q is
hilbertian. We will not prove this theorem, but instead derive properties of hilber-
tian fields in general, so that we can see some of the consequences of the Irreducibil-
ity Theorem in the context of the Inverse Galois Problem.

First, we supply a powerful equivalent definition of the hilbertian property, which
is where part (2) of theorem 1 comes in:

Proposition 3. F is hilbertian iff for any finite extension L/F and irreducible
polynomials h1, . . . , hk ∈ L[x, y], there are infinitely many b ∈ F such that each
hi(b, y) is irreducible as a polynomial in L[y].

Proof. Suppose F is hilbertian. Take irreducible polynomials h1, . . . , hk ∈ L[x][y].
Then by Gauss’s Lemma, these polynomials are also irreducible in L(x)[y]. Ad-
joining the roots of these polynomials gives us a finite extension M of L(x), and
hence also of F (x). Then let K be the Galois closure of M over F (x). We can
find f ∈ F [x, y] and α ∈ K given by proposition 3, and then we can apply part
(2) of the previous theorem to any of the polynomials hi to see that for almost all
b ∈ F , if f(b, y) is irreducible, then so is hi(b, y). Since these statements hold for
almost all b ∈ F , we see that it is also the case that for almost all b ∈ F , if f(b, y)
is irreducible, then so is hi(b, y) for any i. Now, by the hilbertian property of F ,
there are infinitely many b ∈ F such that f(b, y) is irreducible, and hence there are
infinitely many b ∈ F such that hi(b, y) is irreducible for any i.
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For the reverse direction, we set L := F , choose a single irreducible polynomial
f ∈ F [x, y], and then the hilbertian property comes immediately.

�

We want to start generalizing what we’ve found to polynomials in many variables,
and in order to do so, a useful tool to have will be the Kronecker Specialization:

Definition 2. The Kronecker Specialization is a map Sd : F [x1, . . . , xk]→ F [x, y]
defined as follows:

Sd(f)(x, y) = f(x, y, yd, yd
2
, yd

3
, . . . , yd

k−2
)

This may appear at first to be somewhat arbitrary, but the following proposition
shows why it is useful:

Proposition 4. Let F be a field and define Vd to be the set of polynomials in
F [x1, . . . , xk] of degree less than d in each variable x2, . . . , xk. Also define Wd

to be the set of polynomials in F [x, y] to be the polynomials of degree less than
dk−1 in y. Then Sd is a bijection between Vd and Wd. Furthermore, Sd is a ring
homomorphism.

Proof. That Sd is also a ring homomorphism is clear from the fact that it is a
composition of evaluation homomorphisms.

Take f ∈ Vd a monomial of the form axα1
1 · · ·x

αk

k . Then Sd takes f to the
monomial axα1yα2+α3d+α4d

2+···+αkd
k−2

in F [x, y]. Now by the uniqueness of base
d integer representations, we see that Sd is a bijection between the monomials of
Vd and Wd. From this bijection, it is easy to see that Sd is a bijection from Vd to
Wd.

�

So we see that in the context of hilbertian fields, the Kronecker Specialization
will give us information about polynomials of many variables, since we already have
a nice property for polynomials in two variables, and the Kronecker Specialization
provides a bridge between the two types of polynomials. We will use this in the
following theorem, which shows that the hilbertian property extends in a sense to
polynomials in many variables.

Theorem 2. If F is hilbertian and f ∈ F [x1, . . . , xk] an irreducible polynomial, we
have that there are infinitely many b ∈ F such that f(b, x2, . . . , xk) is irreducible as
a polynomial in F [x2, . . . , xk].

Proof. To begin, take d greater than the degree of any variable x2, . . . , xk in f . We
want to take the prime factorization of Sd(f), and after taking this factorization, we
will group all irreducible polynomials of degree 0 in the variable y into a polynomial
g(x). Then we get the following factorization of Sd(f):

(5) Sd(f)(x, y) = g(x)
∏
i∈C

gi(x, y)

where each gi is an irreducible polynomial with positive degree in y. Then, by the
hilbertian property of F , we see that for almost all b ∈ F , gi(b, y) is irreducible in
F [y]. So consider only b ∈ F such that this holds and such that g(b) 6= 0. Note
that we are still considering all but finitely many possible b ∈ F here, since g is a
single-variable polynomial.
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Now, specializing b into the variable x in (5) gives us a prime factorization of
Sd(b, y). Supposing fb := f(b, x2, . . . , xk) is reducible, i.e., fb = hh′, we have that

Sd(h)Sd(h′) = Sd(hh′)

= Sd(fb)

= Sd(f)(b, y)

= g(b)
∏
i∈C

gi(b, y).

So the prime factorizations of Sd(h) and Sd(h′) partition the factorization of Sd(f)(b, y),
i.e., for {A,B} a partition of C, and uu′ = g(b), we have

Sd(h) = u
∏
i∈A

gi(b, y) and Sd(h′) = u′
∏
i∈B

gi(b, y).

Then define H(x, y) and H ′(x, y) as the polynomials corresponding to the Sd(h)
and Sd(h′) as follows:

H(x, y) =
∏
i∈A

gi(x, y) and H ′(x, y) =
∏
i∈B

gi(x, y).

H and H ′ are both in Wd, so there are unique h̃, h̃′ ∈ Vd such that Sd(h̃) = H, and
Sd(h̃′) = H ′. Now we want to consider the specialization of these two polynomials,
h̃b := h(b, x2, . . . , xk) and h̃′b := h′(b, x2, . . . , xk). We see that

Sd(h̃b) = Sd(h̃)(b, y)

= H(b, y)

=
∏
i∈A

gi(b, y)

= u−1Sd(h)

= Sd(u−1h),

and thus h̃b = u−1h. Likewise, we find that h̃′b = u′−1h′. Thus

(6) h̃bh̃
′
b = u−1u′−1hh′ = g(b)−1fb.

Note that h̃h̃′ is not in Vd, since otherwise we see that

(7) Sd(gh̃h̃′) = gSd(h̃)Sd(h̃′) = gHH ′ = Sd(f),

and then by the previous proposition, gh̃h̃′ = f , contradicting the irreducibility of
f .

By (6), we see that if we look at h̃h̃′ as a polynomial over F [x1], then b must
be a root of the coefficients of every monomial where any of x2, . . . , xn has degree
greater than d− 1, since f is in Vd but h̃h̃′ is not. But there are only finitely many
possible such coefficients, since there are only finitely many possible factorizations
gHH ′ of Sd(f). So if we choose b outside this finite set, we get a contradiction.
Thus fb is irreducible for almost all b.

�

The following corollary shows how we can go further and specialize any number
of variables in an irreducible polynomial f ∈ F [x1, . . . , xk] over a hilbertian field
and still have an irreducible polynomial.
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Corollary 1. For F and f as in the previous theorem, we have that for any poly-
nomial p ∈ F [x1, . . . , xk−1] that there are elements b1, . . . , bk−1 in F such that
p(b1, . . . , bk−1) 6= 0 and f(b1, . . . , bk−1, xk) is irreducible in F [xk].

Proof. Take f ∈ F [x1, . . . , xk] irreducible. The theorem will follow from induc-
tion on the number of specialized variables. Our inductive hypothesis goes as
follows: for any polynomial p ∈ F [x1, . . . , xn], there are b1, . . . , bn ∈ F such that
p(b1, . . . , bn) 6= 0 and f(b1, . . . , bn, xn+1, . . . , xk) irreducible. The previous theorem
proves the base case n = 1, so assume the hypothesis holds true for n < k − 1.
Then take p ∈ F [x1, . . . , xn+1]. By looking at p as a polynomial with coefficients
in F [xn+1], we see that since each coefficient has finitely many roots, we can easily
find c ∈ F to specialize xn+1 so that p(x1, . . . , xn, c) is a nonzero polynomial in
n variables. Then by the inductive hypothesis, we can find b1, . . . , bn such that
f(b1, . . . , bn, xn+1, . . . , xk) is irreducible. By the previous theorem, for almost all
b ∈ F , f(b1, . . . , bn, b, xn+2, . . . , xk) is irreducible, and since p(b1, . . . , bn, xn+1) is a
single-variable polynomial, we know that for almost all b ∈ F , p(b1, . . . , bn, b) 6= 0.
So we can find a b ∈ F satisfying both, thus proving the inductive hypothesis for
n+ 1.

�

Now, armed with theorem 2, we can show the following nice fact about hilbertian
fields, which will help us in our generalization of part (1) of theorem 1:

Theorem 3. Every finitely generated extension of a hilbertian field is hilbertian.

Proof. First, we show the hilbertian property is preserved under finite extensions.
To see this, let F be hilbertian and L a finite extension of F . Then for f ∈ F [x, y]
an irreducible polynomial, we have by theorem(x) that there are infinitely many
b ∈ F (and hence in L) such that f(b, y) is irreducible in L[y]. Hence L is hilbertian.

Next, we show the hilbertian property is preserved under purely transcendental
extensions. To see this, take an irreducible polynomial f ∈ F (x1, . . . , xn)[x, y], and
let subscripts denote specialization of x. Then ∃g ∈ F (x1, . . . , xn) such that gf is
in F [x1, . . . , xn, x, y], so by theorem 2, there are infinitely many b ∈ F (and hence
in F (x1, . . . , xn)) such that (gf)b is irreducible in F [x1, . . . , xn, y]. By Gauss’s
Lemma, this must also be irreducible in F (x1, . . . , xn)[y]. Now (gf)b = gbfb = gfb,
and g is a unit in F (x1, . . . , xn), so fb is irreducible in F (x1, . . . , xn)[y].

Every finitely generated extension can be made from a purely transcendental ex-
tension followed by a finite extension, so we have shown that every finitely generated
extension of a hilbertian field is hilbertian.

�

5. The end result

Here, we can finally generalize the result of part (1) of theorem 1 for hilbertian
fields:

Theorem 4. If F is hilbertian, and K is a Galois extension of F (x1, . . . , xk), we
have that Gal(K/F (x1, . . . , xk)) is isomorphic to the Galois group given by some
Galois extension K ′/F

Proof. We show this by induction on k. For k = 1, this follows from part (1) of the-
orem 1, and the fact that F is hilbertian. So suppose this is true for k ≥ 1. Then let
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K be a Galois extension of F (x1, . . . , xk+1). By the previous theorem, F (x1, . . . , xk)
is hilbertian, so by the base case we just proved, Gal(K/F (x1, . . . , xk+1)) is iso-
morphic to some Gal(K ′/F (x1, . . . , xk)), and by the inductive hypothesis, this is
isomorphic to some Gal(K ′′/F ).

�

So now, given Hilbert’s Irreducibility Theorem that Q is hilbertian, we know
that we can realize over Q any group realizable over one of its rational function
fields.
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