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A 2-dimensional space-filling curve, here, is a surjective continuous map
from an interval to a 2-dimensional space.

To construct a new space-filling curve distinct and much different from
Hilbert’s, Peano’s, and the Z-order, we first observe that all three of these
curves are based on self-similar fractals–in particular, the recursive definition
of the sequences of functions that converge to these curves systematically
replaces smaller units of the whole with the entire map.

For instance, the space-filling curve given in Munkres, 1, which is there
referred to as the ”Peano space-filling curve” (271) but which follows more
closely Hilbert’s design 2, begins with H0, a parametrized curve from t = 0 to
t = 1. The function increases linearly from (0, 0) to (1

2
, 1

2
) at t = 1

2
and then

back to (1, 0) at t = 0. H1, which replaces H0, is a slightly more complicated
function.

Figure 1: The Hilbert Curve, up to two iterations.

The important observation to make about it is that

first, it still begins at (0, 0) and ends at (1, 0);

1Munkres. Topology: A First Course
2”Hilbert Curve.” Wikipedia, the Free Encyclopedia, acc. August 10, 2007
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second, it can be divided into exactly four equal-sized segments (that cor-
respond to the four squares obtained by dividing the interval in half
vertically and horizontally) that are scaled versions of H0, which on
higher values of m for Hm will be replaced by scaled versions of H1;

third, these miniatures of H0 can only be replaced in this way because the
scaled copies of H1 begin and end in exactly the same places as H0.

Likewise, the interval covered by the Z-order curve is a square containing
square numbers of squares. For a given Zm the curve begins at (0, 1) and
ends at (1, 0). Each m + 1 element in the series of functions the converges
to the Z-order curve is formed by subdividing further the given squares on
which the mth element was identical to scaled versions of Z0 and replacing
each of these with scaled versions of Z1. The Peano curve, too, follows this
pattern; each progression of the sequence of functions further divides the
unit interval into smaller squares. Now we can clearly see a formula at work
behind these classic space-filling curves:

1. Begin with a polygon that can be divided into scaled copies of itself.

2. Define an initial map from the interval to the polygon and a F1 which

(a) starts and ends in the same places as the initial function

(b) can be subdivided into a finite number of smaller functions such
that

i. the borders between them correspond exactly to their inter-
sections with a further division of the chosen polygon,

ii. each of them is a scaled, reflected, or rotated copy of F0

iii. the union of the images of these smaller functions contains
every point in the image of the larger F1–i.e. that there is no
leftover area in F1 which cannot be replaced.

3. Define the sequence of functions by replacing each smaller instance of
the initial function with F1

However, the condition (1) drastically limits the possibilities of new space-
filling curves following this model. Pentagons, for example, do not satisfy
this condition. Squares are the obvious choice, especially since the function
should map to a square interval I. However, an equilateral triangle can be
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divided into four triangles by constructing segments between the midpoints
of each side. We will construct a space-filling curve based on the Sierpinski
triangle, a self-similar fractal obtained from this division.

Fix an arbitrary closed interval [a, b] ⊂ R and an arbitrary equilateral tri-
angle T in R2 using [a, b] as a side. Define the continuous map γ : [a, b]→ T
by the curve pictured in Figure 1. We will construct a sequence of functions
based on an operation that replaces γ with γ′, which is pictured in Figure 2.
We can apply this operation which transforms all γ to γ′ to each γ included

within γ′. Some of them are flipped horizontally or rotated, but the only
important point for our curve is where the endpoints are, since aligning these
will guarantee continuity of the map. Figure 3 shows γ”. It should now be
obvious that simply by giving a = 0 and b = 1, we obtain a sequence of
functions {γn} : [0, 1] → T. Each part of a curve γn lies in an equilateral
triangle with sides length (1/2)n. The operation defining our sequence re-
shapes that part (from t1 = a to t2 = b) to a new path corresponding to
γ′ which nonetheless lies within the same triangle T, with sides of length
(1/2)n. Thus, the distance between any γn(t) and γn+1(t) is at most (1/2)n.
{γn}, therefore, is a cauchy sequence of functions (if we choose the Euclidean
metric) which converges to a continuous function α : [0, 1]→ T.

Let x be a point in T. I claim that x ∈ α([0, 1]). For all n, there exists
t ∈ [0, 1], min(d(γn(t), n)) ≤ (1/2)n. Fix ε > 0. Choose N large enough that

sup{d(γN(t), α(t))|t ∈ [0, 1]} < ε

2

and

(1/2)N <
ε

2
.

We know that there exists t0 in [0, 1] such that

d(x, γn(t0)) ≤ (1/2)N .

Therefore

d(x, α(t0)) < ε,

. By the compactness of [0, 1] under the Euclidean Metric, we know that
{α(t)|t ∈ [0, 1]} is also compact. Thus, x is an element of α. �
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Figure 2: γ

Figure 3: γ′
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The interesting thing about this curve is that it can be used to build space-
filling curves along many of the polygons resistant to self-similar fractal-
ization. Furthermore, the combination of two of these, one flipped vertically
(after multiplying t by a constant λ so that αλ’s domain remains [0,1]), can
fill the annulus represented by a unit square with identified sides. Indeed, this
curve may be able to fill many triangle-izable surfaces, but the investigation
of which exactly it may fill (whether it depends on orient-ability, genus, or
anything else) and how, must be the subject of another investigation.
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Figure 4: γ”
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