
BASIC RESULTS CONCERNING BROWNIAN MOTION

ALEXANDER MUNK

Abstract. We give an overview of standard one-dimensional Brownian mo-

tion on the dyadic rationals. We then offer a proof that such a process is uni-

formly continuous on closed intervals and, hence, that the original definition
can be sensibly extended to all nonnegative reals. We conclude by investigat-

ing some immediate consequences of this new definition such as sample path

nondifferentiability and zero set properties.
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1. Introduction

Although it is now a formal mathematical object, the concept of Brownian mo-
tion is the product of natural world observation. Specifically, it was first noted by
botanist Robert Brown in 1828 during his study of the movement of pollen par-
ticles through water. Later mathematical investigations of Brownian motion were
conducted by Bachelier (1900) and Einstein (1905) who were attempting to quan-
tify fluctuations in the stock market and heat flow, respectively; however, these
derivations and descriptions were not rigorous. In fact, the first rigorous treatment
of Brownian motion was not given until the 1920’s work of Norbert Wiener. Today,
Brownian motion is still actively explored, especially in topics at the intersection of
mathematics with physics, biology, and economics, and work related to Brownian
motion has even garnered a recent Fields Medal.

It is the purpose of this paper to introduce the reader to some basic known results
concerning Brownian motion in one dimension. We will only assume familiarity with
elementary probability principles, i.e. those not requiring measure theory, and in
fact, with the exception of Theorem 5.10., the concept of measure is absent from
this paper entirely. For this reason, the careful reader might be slightly wary of
the results proven here. We note though that all arguments can be made rigorous
with more advanced machinery. It should also be noted that all definitions, facts,
and historical comments were synthesized from the references listed below, and
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consequently, no proofs will be offered for results stated in these contexts. On the
other hand, all proofs that we do give were independently generated based upon
conversations with Professor Lawler.

2. Brownian Motion on the Dyadic Rationals

It is now time to introduce one of the more simple classes of Brownian motion:
Brownian motion on the dyadic rationals.

Remark 2.1. Strictly speaking, in the remainder of this section, we only work
with D, the nonnegative dyadic rational numbers. Nevertheless, we omit the term
“nonnegative” henceforth.

Definition 2.2. A standard Brownian motion on the dyadic rationals is a collection
of random variables {Wt : t ∈ D} satisfying the following conditions:

• For each n ∈ N, the random variables

W k
2n
−W (k−1)

2n
, k ∈ N,

are independent normal random variables with mean zero and variance
2−n.

• W0 = 0.

Straightforward though this characterization may seem, the fact that such a
process exists is not obvious. In fact, the obstacle posed by the much needed
demonstration of existence is the motivation behind restricting our attention, at
first, to the dyadic rationals. However, upon making this restriction, existence can
be easily demonstrated, and the results below immediately follow.

Fact 2.3. Let {Wt : t ∈ D} be a standard Brownian motion on the dyadic ratio-
nals. Then for all s, t ∈ D with 0 ≤ s ≤ t, the random variable Wt − Ws has a
normal distribution with mean zero and variance t − s and is independent of the
collection of random variables {Wr : r ≤ s}.

Fact 2.4. Let {Wt : t ∈ D} be a standard Brownian motion on the dyadic ratio-
nals. Then for any j ∈ Z, the collection of random variables

{
W̃q : q ∈ D

}
defined

by W̃q = 2
−j
2 W2jq for all q ∈ D is a standard Brownian motion on the dyadic

rationals.

Fact 2.5. Let {Wt : t ∈ D} be a standard Brownian motion on the dyadic ratio-
nals. Then for every a > 0,

P {sup {|Wq| : q ∈ D ∩ [0, 1] }≥ a }≤ 4P {W1 ≥ a} ,

and in particular,

P {sup {|Wq| : q ∈ D ∩ [0, 1]} ≥ a} ≤ 8
a

exp
(
−a2

2

)
.

The reader should note that analogous and even stronger results hold for stan-
dard Brownian motion (Definition 3.3.). In fact, these analogs will be of critical
importance in later sections.

We now proceed to our first set of results accompanied by proofs. The goal of this
segment is Theorem 2.12., which states that with probability 1, the sample paths
of a standard Brownian motion on the dyadic rationals are uniformly continuous
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on D∩ [0, 1]. Four lemmas will precede the statement and proof of this theorem for
the sake of clarity.

Notation 2.6. For the remainder of this section, the collection of random variables
{Wq : q ∈ D} is taken to be a standard Brownian motion on the dyadic rationals.

Notation 2.7. Although we abstain from true measure theory in our approach, we
still employ the notation P {ω ∈ Ω : X (ω) . . . holds} wherever it is not too cumber-
some. Here, Ω is taken to be the “sample space” and ω an “element” of that sample
space. It is hoped that such usage reinforces the notion of a Brownian sample path,
i.e. for some fixed ω ∈ Ω, the set {(t, Wt (ω)) : t ∈ D (t ≥ 0 later)}.

Lemma 2.8. For all ω ∈ Ω and n ∈ N, let

Zn(ω) = sup
{
|Ws(ω)−Wt(ω)| : |s− t| ≤ 2−n; s, t ∈ D ∩ [0, 1]

}
.

Then the mapping q 7→ Wq(ω) is uniformly continous on D∩ [0, 1] iff lim
n→∞

Zn(ω) =
0.

Proof. “⇒ direction.” Let ω ∈ Ω. Suppose that the mapping q 7→ Wq(ω) is
uniformly continuous on D ∩ [0, 1]. Let ε > 0. Then, by definition, there exists
δ > 0 such that for all s, t ∈ D ∩ [0, 1],

|s− t| < δ ⇒ |Ws(ω)−Wt(ω)| < ε

2
.

Now, let N ∈ N be such that for all n ≥ N, 2−n < δ. It follows that for all n ≥ N
and s, t ∈ D ∩ [0, 1],

|s− t| ≤ 2−n ⇒ |Ws(ω)−Wt(ω)| < ε

2
.

Therefore, for all n ≥ N ,

sup
{
|Ws(ω)−Wt(ω)| : |s− t| ≤ 2−n; s, t ∈ D ∩ [0, 1]

}
< ε,

i.e. for all n ≥ N , |Zn(ω)| < ε, as required.
“⇐ direction.” Let ω ∈ Ω. Suppose that lim

n→∞
Zn(ω) = 0. Let ε > 0. By

definition, there exists N ∈ N such that for all n ≥ N , |Zn(ω)| < ε. Let 0 < δ <
2−N . It follows that

sup {|Ws(ω)−Wt(ω)| : |s− t| ≤ δ; s, t ∈ D ∩ [0, 1]} < ε.

Therefore, we also know that for all s, t ∈ D ∩ [0, 1],

|s− t| < δ ⇒ |Ws(ω)−Wt(ω)| < ε,

i.e. the mapping q 7→ Wq(ω) is uniformly continuous on D ∩ [0, 1], as required. �

Lemma 2.9. For all ω ∈ Ω, n ∈ N, and 1 ≤ k ≤ 2n, let

M(k, n, ω) = sup
{∣∣∣Wq(ω)−W k−1

2n
(ω)
∣∣∣ : q ∈ D ∩

[
k − 1
2n

,
k

2n

]}
,

Mn(ω) = max {M(1, n, ω),M(2, n, ω), . . . ,M(2n, n, ω)} .

Then the mapping q 7→ Wq(ω) is uniformly continuous on D∩ [0, 1] iff lim
n→∞

Mn(ω) =
0.
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Proof. “⇒ direction.” Let ω ∈ Ω. Suppose that the mapping q 7→ Wq(ω) is
uniformly continuous on D ∩ [0, 1]. By Lemma 2.8., it suffices to show that for all
n ∈ N, Mn(ω) ≤ Zn(ω). Let n ∈ N. Then by definition of Mn(ω) there exists
1 ≤ k0 ≤ 2n such that Mn(ω) = M(k0, n, ω). Using properties of supremum, it
follows that

Mn(ω) = sup
{∣∣∣Wq(ω)−W k0−1

2n
(ω)
∣∣∣ : q ∈ D ∩

[
k0 − 1

2n
,
k0

2n

]}
≤ sup

{∣∣∣Wq(ω)−W k0−1
2n

(ω)
∣∣∣ : ∣∣∣∣q − k0 − 1

2n

∣∣∣∣ ≤ 2−n; q ∈ D ∩ [0, 1]
}

≤ sup
{
|Ws(ω)−Wt(ω)| : |s− t| ≤ 2−n; s, t ∈ D ∩ [0, 1]

}
= Zn(ω),

as required.
“⇐ direction.” Let ω ∈ Ω. Suppose that lim

n→∞
Mn(ω) = 0. By Lemma 2.8., it

suffices to show that for all n ∈ N, Zn(ω) ≤ 3Mn(ω). Let n ∈ N. Construct the
following sets:

An =
{

(s, t) : |s− t| ≤ 2−n; s, t ∈ D ∩ [0, 1] ; ∃ k ∈ {1, 2, . . . , 2n} such that t ≤ k

2n
≤ s

}
,

Bn =
{

(s, t) : s, t ∈ D ∩ [0, 1] ; ∃ k ∈ {1, 2, . . . , 2n} such that
k − 1
2n

< t ≤ s <
k

2n

}
.

Note that An and Bn are disjoint and

An ∪ Bn =
{
(s, t) : |s− t| ≤ 2−n; s, t ∈ D ∩ [0, 1] ; t ≤ s

}
.

Therefore, by properties of supremum,

sup
{
|Ws(ω)−Wt(ω)| : |s− t| ≤ 2−n; s, t ∈ D ∩ [0, 1]

}
= max {(sup {|Ws(ω)−Wt(ω)| : (s, t) ∈ An}) , (sup {|Ws(ω)−Wt(ω)| : (s, t) ∈ Bn})} .

Now, for a given 1 ≤ k ≤ 2n − 1,

sup
{
|Ws(ω)−Wt(ω)| : |s− t| ≤ 2−n; t ≤ k

2n
≤ s; s, t ∈ D ∩ [0, 1]

}
≤ sup

{∣∣∣Ws(ω)−W k
2n

(ω)
∣∣∣+ ∣∣∣W k

2n
(ω)−W k−1

2n
(ω)
∣∣∣+ ∣∣∣Wt(ω)−W k−1

2n
(ω)
∣∣∣ :

|s− t| ≤ 2−n; t ≤ k

2n
≤ s; s, t ∈ D ∩ [0, 1]

}
≤ M(k + 1, n, ω) + M(k, n, ω) + M(k, n, ω)

≤ 3Mn(ω).

Also, if k = 2n, then

sup
{
|Ws(ω)−Wt(ω)| : |s− t| ≤ 2−n; t ≤ k

2n
≤ s; s, t ∈ D ∩ [0, 1]

}
= sup

{
|W1(ω)−Wt(ω)| : |1− t| ≤ 2−n; t ∈ D ∩ [0, 1]

}
≤ sup

{∣∣∣W1(ω)−W 2n−1
2n

(ω)
∣∣∣+ ∣∣∣Wt(ω)−W 2n−1

2n
(ω)
∣∣∣ : |1− t| ≤ 2−n; t ∈ D ∩ [0, 1]

}
≤ M(k, n, ω) + M(k, n, ω)

≤ 2Mn(ω).
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It follows that

sup {|Ws(ω)−Wt(ω)| : (s, t) ∈ An} ≤ 3Mn(ω).

In addition, for 1 ≤ k ≤ 2n, let

Bk,n =
{

(s, t) ∈ Bn :
k − 1
2n

< t ≤ s <
k

2n

}
.

Note that B1,n, B2,n, . . . ,B2n,n are disjoint and
2n⋃

k=1

Bk,n = Bn. Since

sup {|Ws(ω)−Wt(ω)| : (s, t) ∈ Bn}

≤ max
{(

sup
{∣∣∣Ws(ω)−W 1−1

2n
(ω)
∣∣∣+ ∣∣∣Wt(ω)−W 1−1

2n
(ω)
∣∣∣ : (s, t) ∈ B1,n

})
,(

sup
{∣∣∣Ws(ω)−W 2−1

2n
(ω)
∣∣∣+ ∣∣∣Wt(ω)−W 2−1

2n
(ω)
∣∣∣ : (s, t) ∈ B2,n

})
, . . .(

sup
{∣∣∣Ws(ω)−W 2n−1

2n
(ω)
∣∣∣+ ∣∣∣Wt(ω)−W 2n−1

2n
(ω)
∣∣∣ : (s, t) ∈ B2n,n

})
≤ max {2M(1, n, ω), 2M(2, n, ω), . . . , 2M(2n, n, ω)}
= 2Mn(ω),

we have, by our previous work, that Zn(ω) ≤ 3Mn(ω), as required. �

Lemma 2.10. For all ε > 0 and n ∈ N,
I. P {ω ∈ Ω : Mn(ω) ≥ ε} ≤ 2n P {ω ∈ Ω : M(1, n, ω) ≥ ε}

II. P {ω ∈ Ω : M(1, n, ω) ≥ ε} = P
{
ω ∈ Ω : M(1, 0, ω) ≥ 2

n
2 ε
}
.

Proof. “I.” Let ε > 0 and n ∈ N. Then

P {ω ∈ Ω : Mn(ω) ≥ ε}
= P {ω ∈ Ω : max {M(1, n, ω),M(2, n, ω), . . . ,M(2n, n, ω)} ≥ ε}

≤
2n∑

k=1

P {ω ∈ Ω : M(k, n, ω) ≥ ε}

=
2n∑

k=1

P {ω ∈ Ω : M(1, n, ω) ≥ ε}

= 2n P {ω ∈ Ω : M(1, n, ω) ≥ ε} ,

as required.
“II.” Let ε > 0 and n ∈ N. By properties of Brownian motion,

P
{
ω ∈ Ω : M(1, 0, ω) ≥ 2

n
2 ε
}

= P
{

ω ∈ Ω :
M(1, 0, ω)

2
n
2

≥ ε

}
= P

{
ω ∈ Ω : sup

{
|Wq(ω)−W0(ω)|

2
n
2

: q ∈ D ∩ [0, 1]
}
≥ ε

}
= P

{
ω ∈ Ω : sup

{∣∣W2−nq(ω)−W0(ω)
∣∣ : q ∈ D ∩ [0, 1]

}
≥ ε
}

= P
{

ω ∈ Ω : sup
{
|Wt(ω)−W0(ω)| : t ∈ D ∩

[
0,

1
2n

]}
≥ ε

}
= P {ω ∈ Ω : M(1, n, ω) ≥ ε} ,
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as required. �

Lemma 2.11. Define a sequence (εm)m∈N by

εm = 2
−m
4 .

Then

I.
∞∑

m=1

2mP {ω ∈ Ω : M(1,m, ω) ≥ εm} < ∞

II. lim
n→∞

P {ω ∈ Ω : Mm(ω) ≥ εm for some m ≥ n} = 0.

Proof. “I.” By Lemma 2.10., for any strictly positive sequence (δm)m∈N,
∞∑

m=1

2m P {ω ∈ Ω : M(1,m, ω) ≥ δm}

=
∞∑

m=1

2m P
{
ω ∈ Ω : M(1, 0, ω) ≥ 2

m
2 δm

}
≤

∞∑
m=1

2m 8
2

m
2 δm

exp
(
−(2

m
2 δm)2

2

)

= 8
∞∑

m=1

2
m
2

1
δm

exp
(
−2mδ2

m

2

)
.

Therefore, it suffices to show that
∞∑

m=1

2
m
2

1
εm

exp
(
−2mε2m

2

)
< ∞.

Now, for all m ≥ 10,
7m

2
log(2) ≤ 2

m
2 .

Hence, for all m ≥ 10,

−2m2
−m
2 = −2

m
2 ≤ −7m

2
log(2) = −m

2
log(2)− 3m log(2) = log(2

−m
2 )− 3m log(2).

Therefore, for all m ≥ 10,

−2mε2m ≤ log(ε2m) + log(2−3m) = 2 log
(
εm2

−3m
2

)
and

exp
(
−2mε2m

2

)
≤ εm2

−3m
2 .

Consequently, for all m ≥ 10,

exp
(
−2mε2m

2

)
2

m
2

εm
≤ 2−m,

and so the series above converges, as required.
“II.” Let ε > 0. By 2.11.I., we can find an N ∈ N such that for all n ≥ N ,

∞∑
m=n

2m P {ω ∈ Ω : M(1,m, ω) ≥ εm} < ε.
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But for all n ≥ N,

P {ω ∈ Ω : Mm(ω) ≥ εm for some m ≥ n}

≤
∞∑

m=n

P {ω ∈ Ω : Mm(ω) ≥ εm}

≤
∞∑

m=n

2m P {ω ∈ Ω : M(1,m, ω) ≥ εm} < ε,

i.e. lim
n→∞

P {ω ∈ Ω : Mm(ω) ≥ εm for some m ≥ n} = 0, as required. �

Theorem 2.12.

P {ω ∈ Ω : q 7→ Wq(ω) is uniformly continuous on D ∩ [0, 1]} = 1.

Proof. By Lemma 2.9., it suffices to show that

P
{

ω ∈ Ω : lim
n→∞

Mn(ω) = 0
}

= 1.

But Lemma 2.11.II. states that
lim

n→∞
(1− P {ω ∈ Ω : Mm(ω) < εm for all m ≥ n})

= lim
n→∞

P {ω ∈ Ω : Mm(ω) ≥ εm for some m ≥ n}

= 0,

which implies that

lim
n→∞

P {ω ∈ Ω : Mm(ω) < εm for all m ≥ n} = 1.

Let ε > 0. Then there exists N ∈ N such that for all n ≥ N ,

1− ε < P {ω ∈ Ω : Mm(ω) < εm for all m ≥ n} ≤ 1.

But by the Squeeze Theorem, for all n ∈ N,

P {ω ∈ Ω : Mm(ω) < εm for all m ≥ n} ≤ P
{

ω ∈ Ω : lim
m→∞

Mm(ω) = 0
}

,

so
1− ε < P

{
ω ∈ Ω : lim

m→∞
Mm(ω) = 0

}
≤ 1.

Since ε > 0 was arbitrary, it follows that

P
{

ω ∈ Ω : lim
m→∞

Mm(ω) = 0
}

= 1,

as required. �

3. Standard Brownian Motion

The previous section restricted its attention to D∩ [0, 1]. However, the following
fact can be demonstrated in a similar manner.

Fact 3.1. Let {Wt : t ∈ D} be a standard Brownian motion on the dyadic ratio-
nals. Then Theorem 2.12. can be generalized so that for all a, b ∈ R with b ≥ a ≥ 0,

P {ω ∈ Ω : q 7→ Wq(ω) is uniformly continuous on D ∩ [a, b]} = 1.
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This observation provides the key step in extending the definition of Brownian
motion to all nonnegative reals. The technique used for this extension employs
Cauchy sequences and is the standard one from analysis. After this extension has
been conducted, the next fact can be immediately proven.

Fact 3.2. Let {Wt : t ∈ D} be a standard Brownian motion on the dyadic ra-
tionals. Then for each ω ∈ Ω, the mapping t 7→ Wt (ω) can be extended to all
nonnegative reals so that the collection {Wt : t ≥ 0} satisfies the following condi-
tions:

• For all 0 ≤ s ≤ t, the random variable Wt −Ws has a normal distribution
with mean zero and variance t− s and is independent of the collection of
random variables {Wr : r ≤ s}.

• P {ω ∈ Ω : t 7→ Wt (ω) is continuous for all t ≥ 0} = 1.
• W0 = 0.

Given the relation to Definition 2.2., a collection of random variables possessing
the above properties warrants the expected definition.

Definition 3.3. Let {Wt : t ≥ 0} be a collection of random variables satisfying the
properties given in Fact 3.2. We then say that {Wt : t ≥ 0} is a standard Brownian
motion.

In our present study, it will be convenient to have a broader understanding of
Brownian motion than that afforded by the above concept alone. The next defini-
tion fills this gap, and the fact afterward suggests that the “required” properties
are preserved.

Definition 3.4. Let x ∈ R. A Brownian motion starting at x is a collection of
random variables

{
Ŵt : t ≥ 0

}
such that for all t ≥ 0, Ŵt := Wt + x where the

collection {Wt : t ≥ 0} is a standard Brownian motion.

Fact 3.5. Let x ∈ R and
{

Ŵt : t ≥ 0
}

a Brownian motion starting at x. Then the

collection of random variables
{

Ŵt : t ≥ 0
}

satisfies the following conditions:

• For all 0 ≤ s ≤ t, the random variable Wt −Ws has a normal distribution
with mean zero and variance t− s and is independent of the collection of
random variables {Wr : r ≤ s}.

• P
{

ω ∈ Ω : t 7→ Ŵt (ω) is continuous for all t ≥ 0
}

= 1.
• W0 = x.

4. Nondifferentiability of Standard Brownian Motion

The goal of this section is Theorem 4.6., which states that with probablity 1, the
mapping t 7→ Wt (ω) is nowhere differentiable on (0, 1). We note that this interval
was chosen for convenience alone. In fact, the same statement can be demonstrated
for any open interval, and, hence, with probability 1, the mapping t 7→ Wt (ω) is
nowhere differentiable for t > 0. We also remark that we once again precede the
statement and proof of the main theorem with four lemmas for the sake of clarity.

Notation 4.1. For the remainder of this document, the collection of random vari-
ables {Wt : t ≥ 0} is taken to be a standard Brownian motion.
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Lemma 4.2. For all ω ∈ Ω, if the mapping t 7→ Wt(ω) is differentiable for some
t0 ∈ (0, 1), then

I. There exists δ > 0 and C < ∞ such that

r, s ∈
[
t0 −

δ

2
, t0 +

δ

2

]
⇒ |Wr(ω)−Ws(ω)| ≤ Cδ

II. For all η ∈ (0, δ),

r, s ∈
[
t0 −

η

2
, t0 +

η

2

]
⇒ |Wr(ω)−Ws(ω)| ≤ Cη.

Proof. “I.” Let ω ∈ Ω. Suppose that the mapping t 7→ Wt(ω) is differentiable
for some t0 ∈ (0, 1). Define the function ϕω : [0, 1] → R by ϕω(t) = Wt(ω). By
definition, given any ε > 0, there exists δ > 0 such that for all h ∈ R,

0 < |h| < δ ⇒
∣∣∣∣ϕω(t0 + h)− ϕω(t0)

h
− ϕ′ω(t0)

∣∣∣∣ < ε

2
.

Without loss of generality, we can further specify that δ > 0 be such that [t0 − δ, t0 + δ] ⊆
[0, 1]. It follows that for all h ∈ R,

0 < |h| < δ ⇒ |ϕω(t0 + h)− ϕω(t0)− hϕ′ω(t0)| <
δε

2
,

which implies that for all h ∈ R,

0 < |h| < δ ⇒ |ϕω(t0 + h)− ϕω(t0)| <
δε

2
+ |hϕ′ω(t0)| <

δε

2
+ δ |ϕ′ω(t0)|

< δε + 2δ |ϕ′ω(t0)| = δ (ε + 2 |ϕ′ω(t0)| .

Moreover, for all h, h′ ∈ R, 0 < max {|h| , |h′|} < δ implies that∣∣∣∣ϕω(t0 + h)− ϕω(t0)
h

− ϕ′ω(t0)
∣∣∣∣+ ∣∣∣∣ϕω(t0 + h′)− ϕω(t0)

h′
− ϕ′ω(t0)

∣∣∣∣ < ε,

which means that

|ϕω(t0 + h)− ϕω(t0)− hϕ′ω(t0)|+ |ϕω(t0 + h′)− ϕω(t0)− h′ϕ′ω(t0)| < δε.

Therefore, for all h, h′ ∈ R, 0 < max {|h| , |h′|} < δ implies that

|ϕω(t0 + h)− ϕω(t0 + h′)− (h− h′)ϕ′ω(t0)| < δε

and so for these h ∈ R,

|ϕω(t0 + h)− ϕω(t0 + h′)| < δε + |(h− h′)ϕ′ω(t0)|
< δε + 2δ |ϕ′ω(t0)| = δ (ε + 2 |ϕ′ω(t0)|) .

Therefore, setting ε = 1 and C = (1 + 2 |ϕ′ω(t0)|), it follows that

r, s ∈
[
t0 −

δ

2
, t0 +

δ

2

]
⇒ |Wr(ω)−Ws(ω)| ≤ Cδ,

as required.
“II.” Since the above argument can also be applied toward any η ∈ (0, δ), the

proof is complete. �
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Lemma 4.3. For all ω ∈ Ω, n ≥ 3, k ∈ {1, 2, . . . , n− 2}, let

M(k, n, ω) = max
{∣∣∣W k

n
(ω)−W k−1

n
(ω)
∣∣∣ ,
∣∣∣W k+1

n
(ω)−W k

n
(ω)
∣∣∣ ,
∣∣∣W k+2

n
(ω)−W k+1

n
(ω)
∣∣∣} ,

Mn(ω) = min {M(1, n, ω),M(2, n, ω), . . . ,M(n− 2, n, ω)} .

Then, if the mapping t 7→ Wt(ω) is differentiable for some t0 ∈ (0, 1), it follows
that there exists C,N < ∞ such that for all n ≥ N ,

Mn(ω) ≤ C

n
.

Proof. Let ω ∈ Ω. Suppose that the mapping t 7→ Wt(ω) is differentiable for some
t0 ∈ (0, 1). Define the function ϕω : [0, 1] → R by ϕω(t) = Wt(ω). By Lemma 4.2.,
there exists δ > 0 and C < ∞ such that

r, s ∈
[
t0 −

δ

2
, t0 +

δ

2

]
⊆ (0, 1) ⇒ |Wr(ω)−Ws(ω)| ≤ Cδ

and for all η ∈ (0, δ),

r, s ∈
[
t0 −

η

2
, t0 +

η

2

]
⇒ |Wr(ω)−Ws(ω)| ≤ Cη.

Let N ∈ N be such that for all n ≥ N, 1
n ≤

δ
8 . It follows that for all n ≥ N , there

exists k′ ∈ {1, 2, . . . , n− 2} such that[
k′ − 1

n
,
k′

n

]
,

[
k′

n
,
k′ + 1

n

]
,

[
k′ + 1

n
,
k′ + 2

n

]
⊆
[
t0 −

δ

2
, t0 +

δ

2

]
and

t0 ∈ at least one of
[
k′ − 1

n
,
k′

n

]
,

[
k′

n
,
k′ + 1

n

]
, or

[
k′ + 1

n
,
k′ + 2

n

]
.

By the above statement, this implies that for all n ≥ N ,

max
{∣∣∣W k′

n
(ω)−W k′−1

n

(ω)
∣∣∣ ,
∣∣∣W k′+1

n

(ω)−W k′
n

(ω)
∣∣∣ ,
∣∣∣W k′+2

n

(ω)−W k′+1
n

(ω)
∣∣∣} ≤ C

6
n

,

so Mn(ω) ≤ C 6
n for all n ≥ N , as required. �

Lemma 4.4. There exists α ∈ R such that for all C ∈ R, n ∈ N, and k ∈
{1, 2, . . . , n− 2},

I. P
{
ω ∈ Ω : M(k, n, ω) ≤ C

n

}
=
[
P
{

ω ∈ Ω :
∣∣∣W 1

n
(ω)
∣∣∣ ≤ C

n

}]3
II. P

{
ω ∈ Ω :

∣∣∣W 1
n
(ω)
∣∣∣ ≤ C

n

}
≤ Cα√

n
.
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Proof. “I.” Let C ∈ R, n ∈ N, and k ∈ {1, 2, . . . , n− 2}. Then

P
{

ω ∈ Ω : M(k, n, ω) ≤ C

n

}
= P

{
ω ∈ Ω : max

{∣∣∣W k
n
(ω)−W k−1

n
(ω)
∣∣∣ ,
∣∣∣W k+1

n
(ω)−W k

n
(ω)
∣∣∣ ,
∣∣∣W k+2

n
(ω)−W k+1

n
(ω)
∣∣∣} ≤ C

n

}
= P

{
ω ∈ Ω :

∣∣∣W k
n
(ω)−W k−1

n
(ω)
∣∣∣ ≤ C

n
,
∣∣∣W k+1

n
(ω)−W k

n
(ω)
∣∣∣ ≤ C

n
,
∣∣∣W k+2

n
(ω)−W k+1

n
(ω)
∣∣∣ ≤ C

n

}
= P

{
ω ∈ Ω :

∣∣∣W k
n
(ω)−W k−1

n
(ω)
∣∣∣ ≤ C

n

}
P
{

ω ∈ Ω :
∣∣∣W k+1

n
(ω)−W k

n
(ω)
∣∣∣ ≤ C

n

}
· P
{

ω ∈ Ω :
∣∣∣W k+2

n
(ω)−W k+1

n
(ω)
∣∣∣ ≤ C

n

}
=
[
P
{

ω ∈ Ω :
∣∣∣W 1

n
(ω)
∣∣∣ ≤ C

n

}]3
,

as required.
“II.” Let C ∈ R and n ∈ N. By definition of Brownian motion,

P
{

ω ∈ Ω :
∣∣∣W 1

n
(ω)
∣∣∣ ≤ C

n

}
= P

{
ω ∈ Ω :

−C

n
≤ W 1

n
(ω) ≤ C

n

}
=
∫ C

n

−C
n

1√
2π 1

n

exp
(
−x2

2 1
n

)
dx

=
∫ C

n

−C
n

√
n

2π
exp

(
−nx2

2

)
dx

= 2
√

n

2π

∫ C
n

0

exp
(
−nx2

2

)
dx

≤ 2
√

n

2π

∫ C
n

0

1 dx = 2
√

n

2π

C

n
=

αC√
n

where α = 2√
2π

, as required. �

Lemma 4.5. For all C ∈ R,

lim
n→∞

P
{

ω ∈ Ω : Mn(ω) ≤ C

n

}
= 0.

Proof. Let ε > 0 and C ∈ R. Choose N ≥ 3 so that for all n ≥ N ,[
αC√

n

]3
< ε.

Additionally, for all n ≥ N , let k′n ∈ {1, 2, . . . , n− 2} be such that

M(k′n, n, ω) = min {M(1, n, ω),M(2, n, ω), . . . ,M(n− 2, n, ω)} .
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It follows that for all n ≥ N ,

P
{

ω ∈ Ω : Mn(ω) ≤ C

n

}
= P

{
ω ∈ Ω : M(k′n, n, ω) ≤ C

n

}
≤
[
αC√

n

]3
< ε,

as required. �

Theorem 4.6.

P {ω ∈ Ω : q 7→ Wq(ω) is nowhere differentiable on (0, 1)} = 1.

Proof. It suffices to show that

P {ω ∈ Ω : q 7→ Wq(ω) is somewhere differentiable on (0, 1)} = 0.

Let ε > 0. For any ω ∈ Ω, if the mapping q 7→ Wq(ω) is somewhere differentiable
on (0, 1), let Cω < ∞ and Nω < ∞ be such that for all n ≥ Nω,

Mn(ω) ≤ Cω

n
.

Otherwise, if for some ω ∈ Ω the mapping q 7→ Wq(ω) is nowhere differentiable
on (0, 1), let Cω = Nω = 1. Define a random variable X : Ω → R by X(ω) =
max (Cω, Nω). By properties of probability,

lim
n→∞

P {ω ∈ Ω : X(ω) ≤ n} = P {ω ∈ Ω : X(ω) < ∞} = 1.

Thus, there exists K ∈ N such that for all n ≥ K

1− ε

2
< P {ω ∈ Ω : X(ω) ≤ n} ≤ 1.

It follows that
P {ω ∈ Ω : max (Cω, Nω) > K} <

ε

2
.

Therefore,

P {ω ∈ Ω : q 7→ Wq(ω) is somewhere differentiable on (0, 1)}

≤ P
{

ω ∈ Ω : for all n ≥ Nω, Mn(ω) ≤ Cω

n

}
≤ P

{
ω ∈ Ω : for all n ≥ K, Mn(ω) ≤ K

n

}
+

ε

2
.

Now, for each l ∈ N such that l ≥ K,

P
{

ω ∈ Ω : for all n ≥ K, Mn(ω) ≤ K

n

}
≤ P

{
ω ∈ Ω : Ml(ω) ≤ K

l

}
.

Thus, since Lemma 4.5. implies that there exists L ≥ K such that for all l ≥ L,

P
{

ω ∈ Ω : Ml(ω) ≤ K

l

}
<

ε

2
,

we have

P
{

ω ∈ Ω : for all n ≥ K, Mn(ω) ≤ K

n

}
<

ε

2
.
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So

P {ω ∈ Ω : q 7→ Wq(ω) is somewhere differentiable on (0, 1)} < ε,

and because ε > 0 was arbitrary,

P {ω ∈ Ω : q 7→ Wq(ω) is somewhere differentiable on (0, 1)} = 0,

as required. �

5. The Zero Set of Standard Brownian Motion

To facilitate our remaining work, we require the following results characterizing
certain transformations on {Wt : t ≥ 0}.

Fact 5.1. Let s > 0. For all r ≥ 0, define a random variable Ŵr : Ω → R by
Ŵr (ω) =

√
sW r

s
(ω). Then

{
Ŵr : r ≥ 0

}
is a standard Brownian motion.

Fact 5.2. Let N ∈ N. For all t ≥ 0, define a random variable W̃t : Ω → R by
W̃t (ω) = Wt+N (ω)−WN (ω). Then

{
W̃t : t ≥ 0

}
is a standard Brownian motion.

We additionally require the use of a result known as the “Reflection Principle,”
which derives its name from the particular symmetry employed in its proof.

Fact 5.3. Let b > 0. Then for any t > 0,

P {ω ∈ Ω : ∃r ∈ [0, t] with Wr (ω) ≥ b} = 2P {ω ∈ Ω : Wt (ω) ≥ b} .

We are now prepared to investigate a final matter concerning standard Brownian
motion: the properties of the “zero set” given by {t ≥ 0 : Wt = 0}. In particular,
our goals for this section are Theorems 5.6., 5.8., and 5.10., all of which examine
the “distribution” of the zero set over the nonnegative reals. For the sake of clarity,
we will present a supporting lemma before each main result.

Remark 5.4. The proofs of Theorems 5.6. and 5.8. employ similar techniques.
We only include both for completeness. Additionally, we note that the interval [0, 1]
considered in Theorem 5.10. was chosen for convenience alone. In fact, the same
statement can be demonstrated for any closed interval and, hence, with probability
one, the Lebesgue measure of the zero set of standard Brownian motion is zero.

Lemma 5.5. For all N ∈ N,

P {ω ∈ Ω : ∃t > N with Wt (ω) = 0} = 1.

Proof. Let N ∈ N and ε > 0. Since for all m ∈ N,

P {ω ∈ Ω : −m ≤ WN (ω) ≤ m} =
∫ m

−m

1√
2πN

exp
(
−x2

2N

)
dx,

there exists M ∈ N such that

P {ω ∈ Ω : −M ≤ WN (ω) ≤ M} ≥ 1− ε.
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For all t ≥ 0, define a random variable Xt : Ω → R by Xt (ω) = Wt+N (ω)−WN (ω).
Then {Xt : t ≥ 0} is a standard Brownian motion, and for all l > 0,

P {ω ∈ Ω : ∃s′ ∈ [0, l] with Xs′ (ω) ≤ −2M}
= P {ω ∈ Ω : ∃s ∈ [0, l] with Xs (ω) ≥ 2M}
= 2P {ω ∈ Ω : Xl (ω) ≥ 2M}

= 2
∫ ∞

2M

1√
2πl

exp
(
−x2

2l

)
dx.

Therefore, there exists an L ∈ N such that

P {ω ∈ Ω : ∃s′ ∈ [0, L] with Xs′ (ω) ≤ −2M}
= P {ω ∈ Ω : ∃s ∈ [0, L] with Xs (ω) ≥ 2M}
≥ 1− ε.

It follows that if
A = {ω ∈ Ω : ∃s′ ∈ [0, L] with Xs′(ω) ≤ −2M} and

B = {ω ∈ Ω : ∃s ∈ [0, L] with Xs(ω) ≥ 2M} ,

then
P {ω ∈ Ω : ∃s, s′ ∈ [0, L] with Xs′(ω) ≤ −2M and Xs(ω) ≥ 2M}

= P (A ∩ B) = 1− P ([A ∩ B]c)

≥ 1− P (Ac)− P (Bc) ≥ 1− 2ε.

By continuity of Brownian motion, this implies that
P {ω ∈ Ω : ∃t > N with Wt (ω) = 0}
≥ P

{
∃s, s′ ∈ [0, L] such that Ws′+N −WN ≤ −2M and Ws+N −WN ≥ 2M∣∣∣−M ≤ WN ≤ M

}
P {−M ≤ WN ≤ M}

≥ P {∃s, s′ ∈ [0, L] with Ws′+N −WN ≤ −2M and Ws+N −WN ≥ 2M} (1− ε)

= P {∃s, s′ ∈ [0, L] with Xs′ ≤ −2M and Xs ≥ 2M} (1− ε)

≥ (1− 2ε) (1− ε) = 1− 3ε + 2ε2 ≥ 1− 3ε.

Since ε > 0 was arbitrary, this means that

P {ω ∈ Ω : ∃t > N with Wt (ω) = 0} = 1,

as required. �

Theorem 5.6. For all N ∈ N,

P {ω ∈ Ω : there are infinitely many times t > N with Wt (ω) = 0} = 1.

Proof. Let N ∈ N. Suppose that

P {ω ∈ Ω : there exist at most finitely many times t > N with Wt (ω) = 0} = δ

for some δ > 0. Then

P {ω ∈ Ω : ∃Nω < ∞ such that for all t > Nω, Wt (ω) 6= 0} ≥ δ.

Construct the following sets:
A = {ω ∈ Ω : ∃Nω < ∞ such that for all t > Nω, Wt (ω) 6= 0} ,

An = {ω ∈ Ω : ∃Nω < n such that for all t > Nω, Wt (ω) 6= 0} (∀n ∈ N) .
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Then
∞⋃

n=1

An = A and for all n ∈ N, An ⊆ An+1.

Therefore,
lim

n→∞
P (An) = P (A) ≥ δ,

which implies that there exists M ∈ N such that

P (AM ) ≥ δ

2
.

Thus,

P {ω ∈ Ω : for all t > M, Wt (ω) 6= 0} ≥ δ

2
,

which contradicts Lemma 5.5. It follows that

P {ω ∈ Ω : there are infinitely many times t > N with Wt (ω) = 0} = 1,

as required. �

Lemma 5.7. For all ε > 0,

P {ω ∈ Ω : ∃t ∈ (0, ε) with Wt (ω) = 0} = 1.

Proof. Let ε > 0. Since

P {ω ∈ Ω : for all t ∈ (0, ε) ,Wt (ω) 6= 0}
= P {ω ∈ Ω : for all t ∈ (0, ε) ,Wt (ω) > 0}+ P {ω ∈ Ω : for all t ∈ (0, ε) ,Wt (ω) < 0}
= 2P {ω ∈ Ω : for all t ∈ (0, ε) ,Wt (ω) < 0} ,

it suffices to show that

P {ω ∈ Ω : for all t ∈ (0, ε) ,Wt (ω) < 0} = 0.

The above is satisified if and only if

P {ω ∈ Ω : ∃t ∈ (0, ε) with Wt (ω) ≥ 0} = 1.

Let η > 0. Then δ > 0 can be chosen so that

P {ω ∈ Ω : ∃t ∈ (0, ε) with Wt (ω) ≥ δ}
= 2P {ω ∈ Ω : Wε (ω) ≥ δ}

= 2
∫ ∞

δ

1√
2πε

exp
(
−x2

2ε

)
dx

≥ 1− η.

This implies that

P {ω ∈ Ω : ∃t ∈ (0, ε) with Wt (ω) ≥ 0} ≥ 1− η,

and since η > 0 was arbitrary,

P {ω ∈ Ω : ∃t ∈ (0, ε) with Wt (ω) ≥ 0} = 1,

as required. �

Theorem 5.8. For all ε > 0,

P {ω ∈ Ω : there are infinitely many times t ∈ (0, ε) with Wt (ω) = 0} = 1.
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Proof. Let ε > 0. Suppose that

P {ω ∈ Ω : there are at most finitely many times t ∈ (0, ε) with Wt (ω) = 0} = δ

for some δ > 0. Then

P {ω ∈ Ω : ∃η > 0 such that for all t < η, Wt (ω) 6= 0} ≥ δ.

Construct the following sets:

A = {ω ∈ Ω : ∃η > 0 such that for all t < η, Wt (ω) 6= 0} ,

An =
{

ω ∈ Ω : ∃η >
1
n

such that for all t < η, Wt (ω) 6= 0
}

(∀n ∈ N) .

Then
∞⋃

n=1

An = A and for all n ∈ N, An ⊆ An+1.

Therefore,

lim
n→∞

P (An) = P (A) ≥ δ,

which implies that there exists M ∈ N such that

P (AM ) ≥ δ

2
.

Thus,

P
{

ω ∈ Ω : for all t <
1
M

, Wt (ω) 6= 0
}
≥ δ

2
,

which contradicts Lemma 5.7. It follows that

P {ω ∈ Ω : there are infinitely many times t ∈ (0, ε) with Wt (ω) = 0} = 1,

as required. �

Lemma 5.9. For all t > s > 0,

P {ω ∈ Ω : ∃r ∈ [s, t] with Wr (ω) = 0} ≤ 2
π

√
t

s
− 1.

Proof. Let t > s > 0. For all r ≥ 0, define a random variable Ŵr : Ω → R by
Ŵr (ω) =

√
sW r

s
(ω). Then

{
Ŵr : r ≥ 0

}
is a standard Brownian motion. There-

fore,
P {ω ∈ Ω : ∃r ∈ [s, t] with Wr (ω) = 0}

= P
{

ω ∈ Ω : ∃r ∈ [s, t] with Ŵr (ω) = 0
}

= P
{
ω ∈ Ω : ∃r ∈ [s, t] with

√
sW r

s
(ω) = 0

}
= P

{
ω ∈ Ω : ∃r ∈ [s, t] with W r

s
(ω) = 0

}
= P

{
ω ∈ Ω : ∃l ∈

[
1,

t

s

]
with Wl (ω) = 0

}
.
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By continuity of Brownian motion, it follows that

P
{
∃l ∈

[
1,

t

s

]
with Wl = 0

}
= P

{
∃l ∈

[
1,

t

s

]
with Wl = 0

∣∣∣W1 > 0
}

P {W1 > 0}+ P
{
∃l ∈

[
1,

t

s

]
with Wl = 0

∣∣∣W1 < 0
}

· P {W1 < 0}

=
1
2

[
P
{
∃l ∈

[
1,

t

s

]
with Wl = 0

∣∣∣W1 > 0
}

+ P
{
∃l ∈

[
1,

t

s

]
with Wl = 0

∣∣∣W1 < 0
}]

=
1
2

[
P
{
∃l ∈

[
1,

t

s

]
with Wl ≤ 0

∣∣∣W1 > 0
}

+ P
{
∃l ∈

[
1,

t

s

]
with Wl ≥ 0

∣∣∣W1 < 0
}]

.

Now, given that W1 = x > 0,
{

W̆r : r ≥ 0
}

is a standard Brownian motion, and{
W̃r : r ≥ 0

}
is a Brownian motion starting at x,

P
{
∃l ∈

[
1,

t

s

]
with Wl ≤ 0

}
= P

{
∃l ∈

[
0,

t

s
− 1
]

with W̃l ≤ 0
}

= P
{
∃l ∈

[
0,

t

s
− 1
]

with W̆l ≤ −x

}
= P

{
∃l ∈

[
0,

t

s
− 1
]

with W̆l ≥ x

}
= 2P

{
W̆ t

s−1 ≥ x
}

.

If Y and X are independent random variables such that Y ∼ N
(
0, t

s − 1
)

and
X ∼ N (0, 1), then by properties of Brownian motion, this implies that

P
{
∃l ∈

[
1,

t

s

]
with Wl ≤ 0

∣∣∣W1 > 0
}

= 2P
{

Y ≥ X
∣∣∣X > 0

}
.

Therefore,

P
{
∃l ∈

[
1,

t

s

]
with Wl ≤ 0

∣∣∣W1 > 0
}

= 2
∫∫

y≥x>0

1√
2π
(

t
s − 1

) exp

(
−y2

2
(

t
s − 1

)) 2√
2π

exp
(
−x2

2

)
dx dy

= 2
1√

2π
(

t
s − 1

) 2√
2π

∫ ∞

0

exp

(
−y2

2
(

t
s − 1

))(∫ y

0

exp
(
−x2

2

)
dx

)
dy

≤ 4

2π
√(

t
s − 1

) ∫ ∞

0

exp

(
−y2

2
(

t
s − 1

))(∫ y

0

1 dx

)
dy

=
2

π
√(

t
s − 1

) ∫ ∞

0

exp

(
−y2

2
(

t
s − 1

)) y dy.
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It follows that

P
{
∃l ∈

[
1,

t

s

]
with Wl ≤ 0

∣∣∣W1 > 0
}

≤ −2
π

√
t

s
− 1

[
exp

(
−y2

2
(

t
s − 1

))∣∣∣∣∣
∞

0

]
=

2
π

√
t

s
− 1.

Now, using exactly the same technique, it is possible to show that

P
{
∃l ∈

[
1,

t

s

]
with Wl ≥ 0

∣∣∣W1 < 0
}
≤ 2

π

√
t

s
− 1

as well, so we can conclude that

P
{

ω ∈ Ω : ∃l ∈
[
1,

t

s

]
with Wl (ω) = 0

}
≤ 1

2

[
2
π

√
t

s
− 1 +

2
π

√
t

s
− 1

]
=

2
π

√
t

s
− 1,

as required. �

Theorem 5.10. Let λ denote Lebesgue measure on R. Then

P {ω ∈ Ω : λ ({t ∈ [0, 1] : Wt (ω) = 0}) = 0} = 1.

Proof. Define a random variable X : Ω → R by

X (ω) = λ ({t ∈ [0, 1] : Wt (ω) = 0}) .

It suffices to show that E [X] = 0. For all n ∈ N, define a random variable Yn :
Ω → R by

Yn (ω) =
1
n

(
# of k ∈ {0, 1, . . . , n− 1} such that ∃t ∈

[
k

n
,
k + 1

n

]
with Wt (ω) = 0

)
.

Clearly, for all ω ∈ Ω and n ∈ N, X (ω) ≤ Yn (ω), and so

E [X] ≤ E [Yn]

for all n ∈ N. Thus, since X is nonnegative, it suffices to show that

lim
n→∞

E [Yn] = 0.

Now, for all n ∈ N and k ∈ {0, 1, . . . , n− 1}, define a random variable Zk,n : Ω → R
by

Zk,n (ω) =

{
1 if ∃t ∈

[
k
n , k+1

n

]
with Wt (ω) = 0,

0 otherwise.

Then for all n ∈ N,

Yn =
1
n

(
n−1∑
k=0

Zk,n

)
,
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so

E [Yn] = E

[
1
n

(
n−1∑
k=0

Zk,n

)]

=
1
n

(
n−1∑
k=0

E [Zk,n]

)

=
1
n

(
n−1∑
k=0

P
{

ω ∈ Ω : ∃t ∈
[

k

n
,
k + 1

n

]
with Wt (ω) = 0

})

≤ 1
n

[
1 +

n−1∑
k=1

2
π

√
k+1

n
k
n

− 1

]

=
1
n

[
1 +

n−1∑
k=1

2
π

√
1
k

]
.

But for all n ∈ N, this last expression is just the arithmetic average of the first n
terms of the sequence (am)m∈N given by

am =

{
1 if m = 1,
2
π

√
1

m−1 otherwise.

Therefore, since (am)m∈N is a nonnegative sequence tending to 0 as m approaches
∞, this implies that

lim
n→∞

E [Yn] = 0,

as required. �
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