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Definitions and Assumptions

Define the following characteristics to be:
V(K) = the number of vertices within a graph K
E(K) = the number of edges within a graph K
F(K) = the number of faces a graph K separates the plane or surface into
Definition: A graph G is a tree if G is connected and has no simple cycles, i.e.
a cycle with no repeated vertices besides the starting and ending vertex.

Assumptions:
Jordan Curve Theorem: Any simple closed curve separates the space it’s con-
tained within into two distinct parts

1 Lemma: Euler’s Theorem in 2 Dimensions

Definition: The Euler characteristic for any graph K in 2 dimensions is defined
by:

χ(K) = V (K)− E(K)

Claim 1: ∀ connected graphs K χ(K)≤1
Claim 2: χ(K)=1 ⇔ K is a tree
Proof of Claim 1: Define Gk to be a connected graph with k edges. For G0

there are two possible graphs:
The graph consisting of a single vertex satisfying:

χ(G0) = 1− 0 = 1

And the Grapch consisting of no vertices satisfying:

χ(G0) = 0− 0 = 0

Thus for k=0, χ(Gk)≤1. Now we will induct on the number of edges in order
to prove Claim 1.
Assume that χ(Gn)≤1 with V(Gn)=l and E(Gn)=n. In order to create any
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graph Gn+1 there are only two possible methods for adding an additional edge:
(1) Add an edge between vi and vj with vi, vj ∈ Gn. Thus:

V (Gn+1) = V (Gn) = l

E(Gn+1) = E(Gn) + 1 = n + 1

χ(Gn+1) = V (Gn+1)−E(Gn+1) = l−(n+1) = (l−n)−1 = χ(Gn)−1 < χ(Gn)

(2) Add an edge between vi and vj with vi ∈ Gn and vj /∈ Gn. Thus:

V (Gn+1) = V (Gn) + 1 = l + 1

E(Gn+1) = E(Gn) + 1 = n + 1

χ(Gn+1) = V (Gn+1)− E(Gn+1) = (l + 1)− (n + 1) = (l − n) + 1− 1 = χ(Gn)

Hence ∀k, χ(Gk)≤1//
Lemma: Adding an edge to a connected graph G using method (1) creates a
simple cycle.
Proof: G is connected ⇒ ∃ a path from vi to vj s.t. no vertex is repeated. If
a new edge is added connecting vi to vj , this edge will add allow the path to
extend from vi to vi without crossing any other vertices twice.//
Proof of claim 2: We shall assume that G0 with 0 vertices is not a tree, though
it does make intuitive sense that the nonexistent vertices could have infinite
cycles between nothingness. Thus our base case shall be G0 with V(G0)=1, and
hence as shown above χ(G0)=1.
Assume Gk is a tree.⇒ Gk is generated from G0 solely by method(2) by the
Lemma. Thus:

χ(Gk) = χ(Gk−1) = ... = χ(G1) = χ(G0) = 1

Since method (1) preserves the Euler Characteristic.

Now assume χ(Gk)=1. We shall also assume that Gk is generated by at least
one edge of type (1).

⇒ χ(Gk) = χ(Gk−1) = ...χ(Gj+1 < χ(Gj) = ... = χ(G′) = χ(G) = 1

⇒ χ(Gk) < 1

A contradiction of our initial assumption, thus all edges of Gk must be added
by method (2)⇒ Gk is a tree.//

2 Proof of Euler’s Theorem in 3 Dimensions

Definition: For any surface or solid K in 3 Dimensions the euler characteristic
χ of K is denoted:

χ(K) = V (K)− E(K) + F (K)
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Definition: Let a net on a convex surface be defined as a graph of connected
vertices and edges separating the surface into faces.

Claim: ∀ nets P on a convex surface χ(N)=2
Proof : Let Pk be a net with k edges, and P0 be a net on a surface consisting
of a single vertex be the smallest possible net on a surface. Thus:

χ(P0) = 1− 0 + 1 = 2

Thus χ(Pk)=2 for k=0. We will now procede by induction on the edges.
Assume Pn is a net with V(Pn)=l, E(Pn)=n, and F(Pn)=m and that χ(Pn)=2.
As in the previous section, in order to create Pn+1 from Pn there are two meth-
ods for adding an additional edge, with the same consequences for the vertices
and edges as above, with the addition that for method (1) creates a simple
closed curve, and thus separates 1 of the existing faces into 2 distinct faces,
though method (2) creates no additional faces. Thus the following is obtained
by each method:
Method (1):

V (Pn+1) = V (Pn) = l

E(Pn+1) = E(Pn) + 1 = n + 1

F (Pn+1) = F (Pn) + 1 = m + 1

χ(Pn+1) = V (Pn+1)−E(Pn+1)+F (Pn+1) = l−(n+1)+(n+1) = (l−n+m)−1+1 = χ(Pn)

Method (2):

V (Pn+1) = V (Pn) + 1 = l + 1

E(Gn+1) = E(Gn) + 1 = n + 1

F (Pn+1) = F (Pn) = m

χ(Pn+1) = V (Pn+1)−E(Pn+1)+F (Pn+1) = (l+1)−(n+1)+m = (l−n+m)+1−1 = χ(Pn)

Using our inductive assumption we find that χ(Pn+1)=χ(Pn)=2.
Thus χ(P)=2 for all nets on convex surfaces, and hence χ(P)=2 for all
polyhedra, a subset of those nets.//

3 Euler Characteristic an Homeotopy to the Sphere

For this section we will be showing the equivalency of 3 statements:
(1)χ(K)=2
(2)Any embedded loop in K separates K into two distinct parts
(3)K is homeotopic to the sphere
Proof: (3)⇒(2): First by the Jordan Curve Theorem we can say already that
(3)⇒(2) since the sphere has one surface, any closed curve would have to sepa-
rate it.
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Now we will show that (2)⇒(1)⇒(3) to complete the proof. In doing this we
will use the lemma stating that the euler characteristic of any tree is equal to
1.
To do this we will consider a closed combinatorial surface K, essentially a tri-
angulation of the surface, or a net composed solely of triangles.
(2)⇒(1): First create a maximal tree T, in K. Since the tree is maximal ⇒

V (T ) = V (K)

Then create a dual graph Γ with each face of K being a vertext of Γ, and
adding an edge between every pair of vertices vi, vj ∈ Γ s.t. the faces fi, fj ∈ K
corresponding to vi, vj satisfy:

fi ∩ fj /∈ T

Thus Γ will have the property

F (K) = V (Γ)

and the two graphs together will satisfy:

E(K) = E(T ) + E(Γ)

Thus combining these results we obtain:

χ(K) = V (K)− E(K) + F (K) = V (T )− [E(T ) + E(Γ)] + V (Γ) =

[V (T )− E(T )] + [V (Γ)− E(Γ)] = χ(T ) + χ(Γ)

By the Lemma we know that χ(T)=1 since T is a tree, so to show that χ(K)=2,
we simply need to show that χ(Γ)=1, or that Γ is a tree.
Suppose Γ is a tree
⇒ Γ has an embedded loop
⇒ Γ separates K, and hence that T isn’t connected, but T is connected, a
contradiction. Thus Γ must be a tree, and χ(K)=2 (1)⇒(3): Now K itself is
composed of a neighborhood around T and a neighborhood around Γ, which
we have just shown are both trees, and the neighborhood around a tree is
homeomorphic to a disk. If we take the neighborhood around T and Γ and
combine them together we obtain an area homeomorphic to a sphere.

4 All Convex Polyhedra are Homeomorphic to
the sphere

Proof: In the previous two sections we found that:
1)χ(K)=2 ∀ convex polyhedra
2)χ(K)=2⇔ All embedded loops in K separate⇔ K is homeotopic to the sphere.

Thus we can now say that all convex polyhedra are homeomorphic to the
sphere//
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