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Introduction

The Kronecker-Weber theorem was one of the earliest results of class field theory. It says:

Theorem. (Kronecker-Weber-Hilbert) Every abelian extension of the rational numbers Q is con-
tained in a cyclotomic extension.

Recall that an abelian extension is a finite field extension K/Q such that the galois group Gal(K/Q)
is abelian, and a cyclotomic extension is an extension of the form Q(ζ), where ζ is an nth root of
unity.
This paper consists of two proofs of the Kronecker-Weber theorem. The first is rather involved,
but elementary, and uses Hilbert’s theory of higher ramification groups. The second is a simple
application of the main results of class field theory, which classifies abelian extension of an arbitrary
number field.

An Elementary Proof

Now we will present an elementary proof of the Kronecker-Weber theoerem, in the spirit of Hilbert’s
original proof. The particular strategy used here is outlined in Marcus [1].

Minkowski’s Theorem

We first prove a classical result due to Minkowski:

Theorem. (Minkowski) Any finite extension of Q has nonzero discriminant. In particular, such
extension is ramified at some prime p ∈ Z.

Proof. Let K/Q be a finite extension of degree n, and let A = OK be its ring of integers. Consider
the embedding:
s

A −→ Rr ⊕ Cs

x 7→ (σ1(x), ..., σr(x), τ1(x), ..., τs(x))

where the σi are the real embeddings of K and the τi are the complex embeddings, with one
embedding chosen from each conjugate pair, so that n = r+2s. It is easily checked that this embeds
A as a lattice Λ in Rn, whose fundamental parallelogram has volume

Vol(Rn/Λ) = 2−s
√

disc(K)

Under this embedding, the norm of an element x ∈ A is given by:

N(x) = |σ1(x)| · · · |σr(x)||τ1(x)|2 + . . . |τs(x)|2
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which can easily be extended to a function on all of Rn. Now consider the following convex region
in Rn:

C = {x ∈ Rn |
r∑

i=1

|xσi |+ 2
s∑

j=1

|xτj | < n}

A page of integrals shows that the volume of this set is given by:

Vol(C) =
2rnn

n!

(π

2

)s

If x ∈ C, then N(x) < 1, because the geometric mean is bounded above by the arithmetic mean.
Thus x ·C∩Λ = {0}, since every nonzero element of A has norm at least 1. By Minkowski’s convex
body lemma, this implies:

Vol(C) ≤ 2nVol(Rn/Λ)

By definition of the norm and by the computations above, we see that:

2rnn

n!

(π

2

)s
≤ 2n2−s

√
disc(K)

And therefore:

disc(K) ≥
(π

4

)s n!
nn

Since π < 4 and nn < n! if n 6= 1, we see that:

disc(K) > 1

This completes the proof, because the primes that ramify in the extension K/Q are precisely those
that divide disc(K).

Higher Ramification Groups

Next we show that it is enough to prove the Kronecker-Weber theorem in the case where all primes
are wildly ramified. In this section, L/K is a finite extension of number fields, A = OK and B = OL

are the rings of integers, P is a prime of A, and Q is a prime of B lying over P.

First we recall the definition of tame and wild ramification:

Definition. We say that Q/P is tamely ramified if the ramification index e(Q/P ) is relatively prime
to the characteristic of the residue field OK/P . Otherwise, we say that Q/P is wildly ramified.

This proof of the Kronecker-Weber theorem makes extensive use of the higher ramification groups,
which we now define:

Definition. The nth ramification group En(Q/P ) is defined as follows:

En(Q/P ) = {σ ∈ Gal(L/K) |σ(x) ≡ x (modQn+1) ∀x ∈ B}

In particular, if n = 0 we recover the inertial group E(Q/P ). If the context is clear, the Q and P
will often be omitted.
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It is clear that each En is a normal subgroup of the decomposition group D = D(Q/P ), so in
particular En+1 is normal in En.
One of the most fundamental facts about higher decomposition groups is the following:

Proposition. There is a natural injective homomorphism φn : En/En+1 → U (n)/U (n+1), where
U (0) = B̂×and U (n) = 1 + Q̂n ⊂ B̂× for n > 0.

Proof. For convenience, we will work in the completions Â and B̂ at P and Q, respectively. This
is justified by the isomorphism D(Q/P ) → Gal(L̂/K̂), which takes En(Q/P ) isomorphically onto
En(Q̂/P̂ ).
Let π be any uniformizer for B̂. For any σ ∈ En(Q/P ), we have:

σ(π) = απ

for some α ∈ B̂×. Since σ ∈ En, we have (for n > 0):

π ≡ σ(π) ≡ απ (modQn+1)

Thus α ∈ U (n). Now let u ∈ B be any unit. We have

σ(u) = βu

for some β ∈ B̂×. Then:

β ≡ σ(u)u−1 ≡ uu−1 ≡ 1 (modQn+1)

So the map

φn(σ) = σ(π)/π

is a well defined homomorphism from En/En+1 to U (n)/U (n+1), and does not depend on the choice
of uniformizer π. It is injective, because if

α ≡ 1 (modQn+1)

then for any x = uπk ∈ B̂, we have:

σ(x) ≡ σ(uπk) ≡ σ(u)σ(πk) ≡ uαkπk ≡ uπk ≡ x (modQn+1)

This fairly simple observation has several useful corollaries:

Corollary. Q/P is tamely ramified if and only if all the higher decomposition groups are trivial.

Proof. (⇒) Simply note that, for n > 1, |U (n)/U (n+1)| = |B/Q|, since it is isomorphic to 1 +
Qn/Qn+1 ⊂ (R/Qn+1)×. Hence, if e(P/Q) is prime to p, the injective homomorphism φn must be
0, hence En = 0 for all n > 1.
(⇐) Similarly, since |U (0)/U (1)| = |R/P×|, the order of E/E1 must be prime to p. Hence, if p
divides |E|, at least one higher ramification group must be nonzero.

Corollary. D(Q/P ) is solvable for any P and Q
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Proof. D/E is isomorphic to a subgroup of Gal(R/Q/S/P ), which is abelian, and by the proposition,
Ei/Ei+1 is isomorphic to a subgroup of an abelian group. Thus the ramification groups form a
filtration of D, and each of the quotients are abelian, so D is solvable.

In the following sections, we will need the following stronger version of the proposition above:

Proposition. Suppose D/E1 is abelian. Then the image of the homomorphism φ0 : E/E1 →
(B/Q)× is contained in (A/P )×.

Proof. Suppose the φ0(σ) = α). Then we have:

σ(π) ≡ απ (modQn+1)

for any uniformizer π. Replacing π with τ−1(π) for any τ ∈ D, we see that:

σ(τ−1(π)) ≡ ατ−1(π) (modQn+1)

And thus

σ(π) ≡ τ(σ(τ−1(π))) ≡ τ(α)π (modQn+1)

Since any element of Gal(B/Q/A/P ) is the restriction of an element of D, this shows that α is
invariant under every element of Gal(B/Q/A/P ). Hence α ∈ A/P , as desired.

Eliminating Tame Ramification

We now prove that it suffices to prove the Kronecker-Weber theorem in the case where no primes
are tamely ramified.

Proposition. Suppose a prime p ∈ Z is tamely ramified in an abelian extension K/Q. Then there
exists an extension K ′/Q and a subfield L ⊂ Q(ζ), for some nth root of unity ζ, such that:

1. Any prime that is unramified in K is also unramified in K ′.

2. p is unramified in K ′

3. LK = LK ′

Proof. Fix a prime P of K lying over p. Then E1 = E1(P/p) is trivial, so E is isomorphic to a
subgroup of (Fp)×. Since K/Q is abelian, the ramification index e divides p-1.

Let ζ be a pth root of unity, and let L ⊂ Q(ζ) be the unique subfield of order e. Since p is totally
ramified in Q(ζ), it is totally ramified in L also, and since p is prime to the order of L/Q, p is
tamely ramified in L. Let Q be the unique prime of L lying over p.

Now consider the composite LK. Let U be a prime of LK lying over Q, and let K ′ be its inertial
field, that is, the fixed field of E(U/P ). We claim that K ′ is the extension described above.

Say q ∈ Z is unramified. Then q does not divide the discriminant of K, and since q 6= p, q does not
divide the discriminant of L. Thus it does not divide the discriminant of KL, hence it is unramified
in KL, hence it is unramified in K ′. This shows that K ′ satisfies property 1 above.

Since any prime is unramified in its inertia field, property 2 is automatic. Thus it suffices to show
that K ′ satisfies property 3.
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First note that U is tamely ramified, since E(U/p) injects into Gal(K/Q) × Gal(L/Q), which
has order prime to p. Thus E(U/p) injects into the cyclic group Z/p×. Thus E(U/p) is cyclic.
But if we look at the image of E(U/p) in Gal(K/Q) × Gal(L/Q), we see that it is contained in
E(Q/p)×Gal(L/Q), which has exponent e. Thus E(U/p) is a cyclic group of order at most e.

Since p is ramified in L with ramification index e, it must be ramified in K ′L with ramification
index at least e. But p is unramified in K ′, so [LK ′ : K] ≥ e. But [LK : K] = e, so LK = LK ′, as
desired.

Thus we have reduced the Kronecker-Weber theorem to the case where all primes are wildly rami-
fied. In fact, we can do better:

Proposition. It suffices to prove the Kronecker-Weber theorem in the case where [K : Q] = pk for
some prime p ∈ Z, Gal(K/Q) is cyclic, and p is the only ramified prime.

Proof. Since any abelian group is a direct sum of cyclic group of prime power order, any abelian
extension is a composite of cyclic extensions of prime power degree. The proposition above allows
us to assume that p is the only ramified prime in each of these cyclic extensions.

Reduction to the Crucial Case

We now reduce further to the case where [K : Q] is a prime p and disc(K) is a power of p. In
particular, we show that the Kronecker-Weber theorem is implied by the following two results:

Proposition (1). Let p be an odd prime. Then there is a unique extension K/Q of order p such
that disc(K) is a power of p.

Proposition (2). The only quadratic extensions of Q with discriminant a power of 2 are Q(i),
Q(
√

2), or Q(
√
−2).

Note that the second statement is obvious, since the discriminant of K = Q(
√

d), where d is a
squarefree integer, is given by:

disc(K) =
{

d d ≡ 1(mod 4)
4d d ≡ 2, 3(mod 4)

The first statement is more difficult, so we postpone its proof to the following section. For now, we
shall use it, along with the reductions achieved in the previous section, to deduce the Kronecker-
Weber theorem:

Theorem. Assuming proposition 1, any cyclic extension K/Q of degree pn whose discriminant is
a power of p is contained in Q(ζ), where ζ is a pn+1st root of unity if p is odd and a 2n+2nd root
of unity if p = 2. By the results of the previous section, therefore, any abelian extension of Q is
contained in a cyclotomic extension.

Proof. We define an extension L of Q as follows: if p is odd, let L be the unique subfield of Q(ζ)
of order pn; otherwise, let L be Q(ζ) ∩ R. KL is again an extension whose order is a power of p.
We will show that KL is contained in Q(ζ).

In both cases, Gal(L/Q) is cyclic. Let τ be a generator, and let τ̃ be any automorphism of KL
extending τ . Let F be the fixed field of τ̃ . Since the fixed field of τ is Q, L ∩ F = Q. There
is an injection Gal(LK/Q) → Gal(L/Q) × Gal(K/Q), which has exponent pn, so τ̃ has order at
most pn. On the other hand, it extended τ , which had order pn, so τ̃ has order exactly pn. Thus
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[KL : F ] = pn. We will show that [FL : F ] = pn, hence KL = FL, and that FL ⊂ Q(ζ), hence
K ⊂ Q(ζ)

For the case p = 2, consider the automorphism of F given by complex conjugation. Its fixed field
is a subfield of R of degree 2k, and thus contains a quadratic subfield. By Proposition 2, this
must be Q(

√
2). Similarly, L must contain Q(

√
2), but this is a contradiction, since we had proved

that L ∩ F = Q. Thus the fixed field of complex conjugation, acting on F, must be Q. But then
the fundamental theorem of Galois theory shows that F is a quadratic extension, since complex
conjugation has order 2. Hence F = Q(i) or Q(

√
−2), so FL = Q(ζ) and [FL : F ] = 2n, as desired.

For the case where p is odd, note that if F 6= Q, then both L and F contain the unique cyclic
extension of degree p with discriminant a power of p. This is a contradiction, since F was defined
to be the fixed field of an automorphism that generates Gal(L/Q), which by Galois theory implies
that L ∩ F = Q. Thus F = Q, and FL = L ⊂ Q(ζ), so [FL : F ] = [L : Q] = pn, as desired.

The Crucial Case

Now we have proved the Kronecker-Weber theorem, modulo proposition 1 of the previous section.
We now recall the statement and provide the missing proof. Note that we depart from Marcus in
the proof of this fact; instead we are following the approach used by Hilbert in his Zahlbericht. [2]

Proposition (1). There is a unique extension K/Q of degree p with discriminant a power of p;
in particular, it is the unique subfield of Q(ζ) of degree p over Q, where ζ is a p2th root of unity.

Proof. Let K be the unique subfield of the p2th cyclotomic field of order p. Then K is ramified
only at the prime p, which shows existence of an extension with the desired properties.

Now suppose that K ′ is another such extension. We want to show that K = K ′. To do this, first
take the composite K ′L with the pth cyclotomic field L = Q(ζ). Since L contains the pth roots
of unity, the standard results of Kummer theory apply, so K ′L = L( p

√
α) for some α ∈ L. For

example, if K = K ′, then α could be ζ, or a number of the form ζkβp for some k ∈ Z not divisible
by p and some β ∈ L.

Let λ = 1 − ζ. Then N(λ) = p, so λ generates the unique prime ideal of L lying over p. We will
now show that α can be chosen to be an algebraic integer satisfying

α ≡ 1(modλp)

First we can choose α to be prime to p. To see this, we use the fact that K ′L is abelian. Consider
a generator τ for Gal(L/Q), and extend it to an automorphism τ ∈ Gal(K ′L/Q). Also consider a
generator σ for Gal(K ′L/L). Since σ and τ commute, we have:

σ(τ( p
√

α)) = τ(σ( p
√

α)) = τ(ζ p
√

α) = ζ lτ( p
√

α)

for some primitive root l modulo p. This shows that p
√

α is an eigenvector of σ with eigenvalue ζ l.
Hence

τ(α) = τ( p
√

α)p =
(
c

p
√

αl
)p

= cpαl

Now it is clear that α can be chosen to be prime to p. Simply replace α by τ(α)
α . Since the ideal

generated by λ is invariant under τ , any factor of λ dividing α cancels out, leaving something prime
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to p. Note that once α is prime to p, we can also force α to be congruent to 1 mod λ by raising
α to a suitable power, since the multiplicative group of a finite field is cyclic. Also, using the fact
that

ζa ≡ 1− aλ(modλ2)

we can force α to be congruent to 1 mod λ2 by multiplying by a suitable power of ζ. Finally, we
use induction to obtain the desired congruence. Say we have already shown that

α ≡ 1 + aλe(modλe+1)

Now we use again the fact that K ′L is abelian. we have the congruence

σ(α) ≡ cpαl(modλe+1)

which, given our assumption, implies that

c ≡ cp ≡ 1(modλ)

and therefore

cp ≡ 1(modp)

As a consequence we have

1 + a(lλ)e ≡ σ(α) ≡ αl ≡ 1 + al(λe)(modλe)

and therefore

le ≡ l(modλ)

but l was supposed to be a primitive root modulo λ and e was greater than 1. The inductive step
works as long as e is less than p, so we have shown

α ≡ 1 + aλp(modλp+1)

or in other words

α ≡ 1(modλp)

as desired. That K = K ′ follows immediately from this. To see why, consider the number

ξ =
1− p

√
α

λ

This is an algebraic integer, because 1− α is divisible by λ. Its minimal polynomial is given by:

f(x) =
(

x− 1
λ

)p

− α

λp

Thus the discriminant of KK ′L over KL must contain the ideal generated by

±N
(
f ′(ξ)

)
= ±N

(
p(ξ − 1

λ
)p−1

)
= εαp−1
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for some unit ε. In particular, the discriminant is prime to p. But then p is unramified in the
extension KK ′L/KL. Hence p is unramified in the inertial field T/Q. But p was the only ramified
prime in K, K ′, and L, hence no prime other than p can be ramified in T . But this is a contradiction,
since there are no unramified extensions of Q.

This lemma completes the proof of the Kronecker-Weber theorem. I think it is somewhat interesting
that none of the ”elementary” proofs of the Kronecker-Weber theorem I was able to find in modern
literature make use of the argument above, despite how truly elementary it is.

Class Field Theory

The proof of the Kronecker-Weber theorem presented above is very similar to Hilbert’s orginal
proof, which he gave in 1895, finishing the work of Kronecker (1853) and Weber (1886). Some
decades later, class field theory emerged, which gave a classification of the abelian extensions of an
arbitrary number field. We now turn to a summary of the main results of class field theory. Once
these results have been stated, we will use them to reprove the Kronecker-Weber theorem.

Adèles and Idèles

Let K be a number field, and let R = OK be its ring of integers. We define the adèles of K to be
the restricted direct product

AK =
∏
P

K̂P

where K̂P denotes the completion of K at the (possibly inifinite) prime P ⊂ R. By restricted direct
product we mean that an element of AK is a tuple (aP ) such that aP ∈ K̂P for all P and aP ∈ R̂P

for all but finitely many P. We give AK the restricted direct product topology, meaning that we
take as a basis the set of all products

∏
P UP , where UP ⊂ K̂P is an open subset and UP ⊂ R̂P for

all but finitely many P. Note that under this topology, AK becomes a locally compact topological
group.

Note that K embeds in AK as a discrete additive subgroup, because the standard product formula∏
P

|a|P = 1,

which holds for all a ∈ K×, implies that |a|P cannot be simultaneously small for all primes P. Thus
there is a neighborhood of 0 that contains no nonzero elements of K.

The group of units of AK is denoted IK and is called the group of idèles. Thus an idèle is an adèle
such that all but finitely many of its coordinates are units in R̂P . Note that IK is also a locally
compact topological group. Perversely, however, it is not given the subspace topology inherited
from its inclusion into AK . Rather, it is given the restricted product topology with respect to
the open sets UP = R̂×

P . One reason for this is that otherwise the inversion map would not be
continuous. To see this, note that in the adeles, a neighborhood basis for 1 is given by all sets of
the form ∏

P∈S

VP ×
∏
P 6∈S

WP
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where S is a finite set, VP is an open subset of K̂P containing 1, and WP is the set of nonzero elements
of R̂P . Each of these sets contains a sequence that tends to zero in AK , so any neighborhood of
1 must contain such a sequence. However, the inverse image of any of the basic open sets under
inversion contains no such sequence, so inversion cannot be continuous.

In the topology described above, a neighborhood basis for 1 is given by all sets of the form:∏
P∈S

VP ×
∏
P 6∈S

UP

where S is any finite set containing the infinite primes, VP is an open subset of K̂P containing 1,
and UP is the group of units of R̂P . Keeping in mind the counterexample above, it is clear that
this new topology gives the idèles the structure of a locally compact topological group.

The construction of the adèles and idèles may seem pointlessly formal, but it is important to keep
in mind that these tools were developed only after the main results of class field theory had been
proven several times over. Thus they are an historically inaccurate starting point for any treatment
of class field theory, and are not strictly necessary to communicate the ideas of the subject. On
the other hand, they provide a convenenient language in which to state the classification of abelian
extensions, and that is all that will be attempted in this exposition.

The Idèle Class Group

As in the case of the adèles, K× embeds in IK as a discrete subgroup. The image of the inclusion
is called the group of principal idèles. In analogy with the usual class group, we define the idèle
class group to be the quotient of the idèles by the principal idèles:

CK = IK/K×

Since the principal idèles are a discrete subgroup, the idèle class group inherits the structure of a
locally compact group.

It is worth noting that the usual class group can be recovered from the idèle class group. In
particular, there is a surjective homomorphism

IK −→ Div(K)

α 7→
∏
p-∞

P vP (α)

which descends to a surjective homomorphism

CK → ClK

where ClK is the usual class group of K.

One of the original constructions preceding the development of class field theory was the discovery
of the Hilbert class field: a maximal unramified abelian extension HK/K such that every real place
of K remains real in HK . As it turns out, Gal(HK/K) is isomorphic to ClK . Indeed, under the
correspondence indicated above, the Hilbert class field corresponds to ClK . In some sense, finite
quotients of the idèle class group can be thought of as generalized class groups. The main idea
of class field theory is that each of these generalized class groups is the galois group of an abelian
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extension of K, and furthermore, that every abelian extension arises in this way. These statements
will be expanded and made more precise in the following sections.

The Norm Map

Recall that for a finite field extension L/K, we have the norm map

NL
K : L → K

α 7→ det(lα)

where lα : L → L is the linear transformation given by multiplication on the left by α.

Now let L and K be number fields. We define a map, also called the norm map,

N : AL → AK

by simply taking the product of all the local norm maps:

N

∏
Q

αQ

 =
∏
P

∏
Q|P

N
L̂Q

K̂P
(αP )

where Q runs over all primes of L and P runs over all primes of K. Since the norm of a unit is a
unit, and all but finitely many coordinates of α are units for all α in IL, the map N takes IL to
IK. Furthermore, when we restrict N to the principal idèles, we obtain the usual norm map NL

K .
In particular, the norm map descends to a map

N : CL → CK

Given any finite extension L/K, we can form the corresponding norm subgroup:

NL = N (CL) ⊂ CK

This is a closed subgroup of finite index in CK , although this is not trivial to prove. One can ask to
what extent the norm subgroup determines the extension L/K. The answer is that it is determined
by the maximal abelian subextension Lab/K, as we shall see below.

Abelian Extensions and the Kronecker-Weber Theorem

We can now state the main theorem on abelian extensions. This is not the only result of class field
theory - for example, there is also Artin reciprocity – but it directly generalizes the Kronecker-Weber
theorem, so it is the only result from class field theory that we shall be interested in.

Theorem. If L/K is any finite extension of number fields, then we have the following:

1. The norm subgroup NL is a closed subgroup of finite index in CK .

2. There is a natural isomorphism Gal(L/K)ab → CK/NL.

3. The map L 7→ NL is a 1-1 correspondence between the finite abelian extensions L/K and
closed subgroups of finite index in CK .

10



This theorem evidently generalizes the Kronecker-Weber theorem to an arbitrary number field.
Conversely, if we calculate the idèle class group of Q, and compute the norm subgroups corre-
sponding to the cyclotomic fields, then we should be able to deduce the Kronecker-Weber theorem.

Proposition. The idèle class group of Q is isomorphic to Ẑ× ⊕ R×
+.

Proof. Let α = (αp) ∈ IQ be an idèle. Consider the rational number

β =
∏

p6=∞
p−vp(α)

Then αβ is an idèle with the property that each of its finite coordinates is a unit in Qp. Multiplying
by ±1, we can assume that its infinite coordinate is positive. Noting that any idèle class can be
written uniquely in this way, and checking a few details, we see that

CQ '
∏

p6=∞
Z×p ⊕ R+

×

By the chinese remainder theorem,

Ẑ× '
∏

p6=∞
Z×p

so we obtain the desired conclusion.

We can now easily prove the Kronecker-Weber theorem.

Theorem. (Kronecker-Weber-Hilbert) Every abelian extension of Q is contained in a cyclotomic
extension.

Proof. Let x = (t, u2, u3, u5, . . . ) be any element of CK . We will show that if not all up are equal
to 1, then there is a cyclotomic extension L/K such that x 6∈ NL.
Say up 6= 1. Then up = n+pkx for some integer n, relatively prime to p, and some x ∈ Zp\pZp. Let
K/Q be a a subextension of a cyclotomic extension such that p is totally ramified with ramification
index pk+1. Let K̂ be its completion at the unique prime lying over p, and let π be a uniformizer
for the ring of integers of K̂.
If u ∈ K̂ is a unit, then u = m + πy for some integer m, relatively prime to p, and some y ∈ R.
Then

N(u) = mpk+1
+ pk+1Tr(πy) + terms higher order in p

Thus N(u) 6= up, since either they are distinct mod p or up is farther from 1 in the p-adic metric.
Thus up is not a norm of any element of K̂, hence x is not a norm of any element of IK .

Thus the norm subgroups of IQ coming from cyclotomic extensions completely exhaust
∏

p6=∞ Z×p .
In other words, the intersection of the norm subgroups of all cyclotomic extensions is R×

+. But R×
+

is contained in the norm subgroup of any abelian extension. Since the bijection between abelian
extensions and norm subgroups reverses containment, this shows that any abelian extension of Q
is contained in a cyclotomic extension.
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