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Abstract. The categorical concept of Kan extensions form a more general

notion of both limits and adjoints. The general definition of Kan extensions

is given and motivated by several concrete examples. After providing the
necessary background on some basic categorical objects and theorems, the

relationship between Kan extensions, limits, and adjoints is expressed through

two theorems from [3].

1. Some Preliminary Categorical Concepts

A tremendous array of fields within mathematics draws heavily upon the ideas
of limits and adjoints. While these notions are sufficiently general for most uses,
there exists a more abstract concept introduced by Kan [2], which encompasses
both limits and adjoints.

Although the following discussion assumes familiarity with the basic language of
category theory, we begin by summarizing some terminology and a few results for
reference and clarity. The notion of a limit is the first of these. Limits are easily
understood through the auxiliary notion of a cone.

Definition 1.1. Given a functor F : D → C, a cone on F is a pair (C, pD) consisting
of:

• an object C ∈ C,
• a morphism pD : C → FD in C, for every object D ∈ D,

such that for every morphism d : D → D′ in D, pD′ = Fd ◦ pD.

The name “cone” is used for a reason; pictorially, cones are situations in which
there are morphisms that take the object C to the objects FDi, with the following
diagram commuting:

C
pD1

{{wwwwwwwww
pD2

�� ((QQQQQQQQQQQQQQQ

FD1
F (d)

// FD2
... FDi

Definition 1.2. A limit of a functor is a universal cone. i.e. A limit of a functor
F : D → C is a cone (L, (pD)D∈D) on F such that, for every cone (M, (qD)D∈D) on
F, there exists a unique morphism m : M → L such that for every object D ∈ D,
qD = pD ◦m.

Kan extensions also generalize another important categorical structure: the ad-
junction.
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Definition 1.3. Let C and D be categories. An adjunction from C to D is a triple
(F,G, ϕ), in which F : C → D and G : D → C are functors. The adjunction also
has a function ϕ, which assigns to each pair of objects c ∈ C and d ∈ D a bijection
of sets

ϕ = ϕc,d : D(Fc, d) ' C(c,Gd),
which is natural in c and d.

Remark 1.4. F is called the left adjoint of G, while G is called the right adjoint of
F .

For brevity, we give the following result about adjunctions without a proof. It
is standard, and the proof can be found in [1] or [3], for example.

Theorem 1.5. An adjunction (F,G, ϕ) : C ↔ D determines a natural transforma-
tion1 η : IC →N GF , such that for each object c ∈ C, the arrow ηc is universal from
the object c to G. We call η the unit of the adjunction.

Analogous to the unit is the counit. Given the adjunction in 1.5, the counit
is another natural transformation ε : FG →N ID. Not surprisingly, a theorem
analogous to 1.5 holds for the counit. Another important fact is that the unit and
counit transformations determine an adjunction. Together, the definitions of the
unit and counit suggest that each should somehow act as a type of “inverse” of the
other. Strictly speaking, of course, they are not inverses, but this intuition can be
formalized in the following two equations known as the triangular identities.

Theorem 1.6. Let F : C → D and G : D → C be functors. If G is left adjoint to
F with unit and counit natural transformations η : 1C →N GF and ε : FG→N 1D
respectively, then

(1) Gε ◦ ηG = 1G

(2) εF ◦ Fη = 1F

In pictures we have:

F
ηF
//

�&
EE

EE
EE
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FGF

Fε
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G
Gη
//
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EE

FGF

εG

��

F G

Proof. From the definition of the adjunction, we have the isomorphism:

(3) ϕ = ϕc,d : D(Fc, d) ' C(c,Gd).
If we plug 1Gd : Gd→ Gd into the right-hand side of (3), and recall that ε : FG→N

1D, then we know that ϕ−1(1Gd) = εd. It follows that:

1Gd = ϕ(εd)
= Gε ◦ ηG.

Reasoning by analogy, we find that ϕ(1F c) = ηc, and:

1Fc = ϕ−1(ηc)
= εF ◦ Fη,

1Different authors use various notations for natural transformations. I use an arrow with a
subscript N: →N
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which are the two triangular identities. In other words, the diagrams above com-
mute, whence arises the name “triangular identities”. �

2. Kan Extensions

With this basic machinery and terminology we can finally introduce the formal
definition of the Kan extension.

Definition 2.1. Let K : M → C and T : M → A be functors. The right Kan
extension of T along K is a pair (R, ε), with a functor R : C → A and a natural
transformation ε : RK →N T , which satisfies the following universal property:

If (H, δ) is another pair with a functor H : C → A and a natural transformation
δ : HK →N T , then there exists a unique natural transformation σ : H →N R such
that δ = ε · σK : SK →N T .

The functor R in definition 2.1 is usually denoted R = RanKT . Because defi-
nition 2.1 guarantees the existence of a unique natural transformation σ, the map
σ 7→ ε · σK is bijective. So for a right Kan extension, we have a bijection:

(4) Nat(H,RanKT ) ' Nat(HK,T ),

which determines the Kan extension by specifying just the functors T and K.
One can visualize Kan extensions through the diagrams:

(5) C

R

  
@@

@@
@@

@@
@@

@@
@@

@@
H

��

M

K

OO

T
// A

(6) RK

ε

��

HK
σoo_ _ _

δ
{{xx

xx
xx

xx
x

T

In diagrams (5) and (6), R is the functor of the right Kan extension of T along
K, while ε is the natural transformation. ε maps the composition R ◦ K to the
functor T . We now pick any other functor from C to A–say H–along with a natural
transformation δ, mapping the composition H◦K to T . There will then be a unique
natural transformation σ that takes H to R such that δ = ε · σK. To put it more
simply, the pair that comprises the Kan extension is universal. It is also important
to note that only diagram (6) commutes. The functors in (5) do not commute in
general, although the diagram is conceptually helpful.

The fact that we specifically define a “right” Kan extension suggests that there
ought to be a “left” Kan extension. Not surprisingly, a left Kan extension is the
dual of a right Kan extension. The notation LanKT is typically used to denote the
left Kan extension of T along K. Dualizing definition 2.1 has the net effect of just
reversing the direction of all the natural transformations. So instead of having the
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diagram:

RK

ε

��

HK
σoo_ _ _

δ
{{xx

xx
xx

xx
x

T

we have the diagram:

RK
σ //___ HK

T

ε

OO

δ

;;xxxxxxxxx

Diagram (5), however, remains unchanged.
Kan extensions can intuitively be considered as “extending” the codomain of

one functor into the codomain of another functor in a sort of universal manner. In
order to illustrate this concept, we construct several examples. While the first of
these is simple, it shows an elementary construction of the Kan extension.

Example 2.2. (Products) Consider the following diagram:

(7) 1
R

""D
DDDDDDD

M

K

OO

T
// Set

1 is just the category with a single element and an identity arrow. Set is the
category whose objects are small sets and whose arrows are functions between them.
Finally, M is the discrete category {1, 2}. By this, we simply mean a category with
two objects, whose only morphisms are identities. Since T takes two objects to the
category of sets, it is equivalent to just a pair of sets. Similarly, it is obvious that R
is a single set a ∈ Set and K just takes the two objects of M to the unique object
in 1.

If we are interested in finding RanKT , the right Kan extension of T along K (if
it exists), we need to find a functor R that fulfills the universal property. R simply
takes the unique element in 1 to some set, so our task is simply to pick the right
set. Additionally, we need to find a natural transformation ε : RK →N T .

No matter what, ε will be a cone with a vertex a and a base given by T . Now
suppose we have another functor S : 1 → Set, which goes to another set b ∈ Set.
We also have another natural transformation δ : SK →N T . Similar to ε, δ will
also be a cone with a vertex b and base T . The natural transformation σ : S →N R
is just a morphism from the vertex b to the vertex a. At this point, we want σ to
be unique, and we have two cones. It is now obvious that the Kan extension here
is equivalent to the product of a and b. So R goes to a

∏
b, and ε is the cone with

the canonical projection functions.

Example 2.3 (Representable Functors). Another example of Kan extensions can
be constructed using representable functors, which are defined by the following2:

2Different authors give slightly different definitions, but the relevant point is that, up to iso-
morphism, representable functors are covariant hom-functors.
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Definition 2.4. Given a category C and a fixed object c ∈ C, we define the repre-
sentable functor

C(c,−) : C → Set.

For an object d ∈ C, C(c,−) performs the assignment

C(c,−)(d) = C(c, d),

For a morphism f : d→ e in C, the assignment is

C(c,−)(f) = f ◦ g,

where g : c→ d is a morphism in C.

Consider small categories A and B, and a functor F : A → B. Given a fixed
object a ∈ A, we also consider the functors A(a,−) and B(Fa,−). Finally, let us
also suppose that we have a functor G : B → Set. The Yoneda lemma gives the
existence of a bijection:

ψ : Nat(B(Fa,−), G) ' GFa

Given a functor G and a particular object a, this determines a unique natural
isomorphism σ : B(Fa,−) →N G; if there were two distinct isomorphisms, then
there could not be a bijective mapping to the object GFa. If we let ε : A(a,−) →N

B(Fa, F−), then for a given a, the left Kan extension of A(a,−) along F is the pair
(R, ε).

3. Relationship to Adjoints and Limits

With all of the necessary categorical preliminaries, we are now ready to consider
the connections between Kan extensions, adjoints, and limits. The first result is
produced by letting C = 1 in definition 2.1. This causes the natural transformation
α : T →N SK1 to become a cocone, implying that left Kan extensions and colimits
are equivalent. In so doing, we generalize the result of example 2.2 to any limit,
beyond just products. Also note that the basic argument that was used in example
2.2 easily gives the proof of the theorem.

Theorem 3.1. A functor T : M→A has a colimit if and only if it has a left Kan
extension along the unique functor K1 : M → 1, and then Colim(T ) is the value
of LanK1T on the object of 1.

Proof. Suppose T has a colimit. We are looking for a functor F : 1 → A. Since
1 has just one object, F is just an object a ∈ A. Next consider the natural
transformation α : T →N SK1. The functor T maps objects in M to objects in
A, while the functor SK : M → A maps every object of M to a constant object
a ∈ A. Hence, α is a cocone. If a is the colimit object of T , then the cocone formed
by α is universal, and the Kan extension of T along K1 exists.

Suppose LanK1T exists. LanK1T = L is the functor S : 1 → A along with the
universal natural transformation ε : T →N LK1. By the same reasoning as in the
other direction of the proof, ε forms a cocone of T , which must be universal. Hence
T has a colimit.

As usual, the dual of the theorem holds, substituting limits for colimits and right
Kan extensions for left ones. �
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In addition, there is a deep connection between the existence of Kan extensions
and adjoints. The following theorem gives a criterion for the existence of adjoints
in terms of Kan extensions.

Theorem 3.2 (Criteria for the existence of an adjoint). Let A and X be categories.
A functor G : A → X has a left adjoints if and only if the right Kan extension
RanG1A : X → A exists and is preserved by G.

Proof. Despite the state of confusion often generated by the proliferation of com-
mutative diagrams, the following argument is actually simple. The general idea for
the first direction is straightforward: given an adjunction, we know that we have
a bijection. Incidentally, Kan extensions can also be determined by a bijection, as
we saw in equation (4). By picking our categories correctly and finding the right
natural transformations, we show that one bijection implies the other, yielding the
right Kan extension.

Suppose G has a left adjoint F : X → A, with a unit η : 1X →N GF and a
counit ε : FG→N 1A. Let S : X → C.

For all functors H : A → C, we can construct a bijection

(8) Nat(S,HF ) ' Nat(SG,H),

which is natural in S. To do this, we use the following assignments:

{σ : S →N HF} 7→ { SG σG // HFG
Hε // H }(9)

{τ : SG→N H} 7→ { S
Sη
// SGF

τF // HF }(10)

To show the naturality of the bijection in (8), first apply the map (9) followed
by the map (10). We first note that the following diagram is commutative:

(11) S

Sη

��

σ // HF

HFη

��  (JJJ
JJJ

JJJ

JJJ
JJJ

JJJ

SGF
σGF
// HFGF

HεF
// HF

To show this, first consider the square on the left. It commutes because each path is
just the two equivalent ways of composing ση. The triangle on the right commutes
because of the triangular identities for units and counits. The application of (9)
followed by (10) is represented in diagram (11) by moving down from S and across
the bottom of the diagram to the right. Since the diagram commutes, applying (9)
and then (10) just gives the identity map σ 7→ σ.

In the other direction, applying (10) and then (9), we have another diagram:

(12) SG

GηG

��

τ // H

HFη

�� �&FF
FF

FF
FF

FF
FF

FF
FF

SGFG
τFG

// HFG
Hε

// H

which commutes by the same arguments. This implies that the application of (10)
followed by (9) gives the identity τ 7→ τ . The bijection (8) is therefore natural in
S.
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Let H = 1A with C = A. In this case, the bijection (8) requires that F =
RanG1A, because bijection (4) determines the right Kan extension. Letting H = G
instead, we have GF = RanGG, showing that G preserves our right Kan extension.

In the other direction, the argument is similarly straightforward. We again start
with the bijection defining the Kan extension. From this, we can deduce the unit
and counit of the desired adjunction, and hence the existence of the adjunction.

Suppose that R = RanG1A exists and that R is preserved by G : A → X . From
the definition of the right Kan extension, we have the bijection (4):

φ = φS : Nat(S,R) ' Nat(SG, 1A),

which is natural in S : X → A. Since R is preserved by G, by composing with G
we obtain another bijection:

ψ = ψH : Nat(H,GR) ' Nat(HG,G),

which is natural in H : X → X . From these bijections, we deduce:

φR(1) = ε : RG→N 1A
ψGR(1) = Gε : GRG→N G

If we define η : 1 →N GR by η = φ−1
id (1 : G→ G), then ψφ = 1 and

Gε · ηG = 1G.

This is one of the triangle identities which define the adjunction with G left adjoint
to F. To show the other, it suffices to show that φ(εR ·Rη) = ε using the bijection
φR above. In other words, we want to show that the following diagram commutes:

RG

RηG
,,

ε

��

RGRG
RGε

ll da_]Z

εRG

��

1A RGε
oo

If we insert the dashed natural transformation RGε and use the first triangular
identity obtained above, Gε · ηG = 1, then the square just states the equivalence
of two expressions for εε : RGRG → 1. Because of the first triangular identity,
the square commutes, and we obtain the second of the desired triangular identities.
Together they define the desired adjunction. �
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