
CLOSED CURVES ON HYPERBOLIC MANIFOLDS

R. ANDREW KREEK

Abstract. In this paper I will define a hyperbolic manifold, characterize its universal cover

Hn, describe its deck transformations, and prove that a closed curve on a hyperbolic manifold

is homotopic to a closed geodesic on the surface.

1. Hyperbolic Manifolds

We begin by discussing a few properties of the universal cover and deck transformations
of a compact hyperbolic manifold without boundary. We show that its universal cover is the
hyperbolic space Hn, and that its group deck transformations acts by isometries. But first, we
define a hyperbolic manifold.

Definition 1.1. A hyperbolic manifold is a Riemannian manifold (a differentiable manifold
with a smoothly varying inner-product on the tangent space at every point in the manifold)
with constant sectional curvature −1.

Proposition 1.2. If X is a hyperbolic manifold, and p : X̃ → X is a covering space of X,
then X̃ can be given the structure of a hyperbolic manifold.

Proof. Recall first that, as defined in Riemannian Geometry by M. do Carmo, a differentiable
manifold is the set X and a collection of injective mappings xα : Uα → X of open balls Uα ⊂ Rn

into X such that
(1):

⋃
α xα(Uα) = X

(2): for any pair α, β such that xα(Uα)∩xβ(Uβ) = W 6= ∅, the sets x−1
α (Uα) and x−1

β (Uβ)
are open sets in Rn and the mappings x−1

β ◦ xα are differentiable.
Let C = xα(Uα) for some α be a chart in X. Also, let B with B ∩ C 6= ∅ be a base map, a

member of a collection of open sets covering X, whose inverse images under the covering map
p are distinct open sets. Note that such a collection exists because p is a covering map. Now
consider any lift D ⊂ p−1(B∩C). Denote the restriction of p to D by p′. p′ is a homeomorphism
onto B ∩ C, so that p′−1 ◦ xα from E = x−1

α (B ∩ C) ⊂ Rn onto D is an injective map into X̃.
Thus we can construct a family of injective mappings from open sets in Rn into X̃.

Now, we must check that (1) and (2) hold. First, let y ∈ X̃. Since p(y) ∈ X, p(y) ∈ B ∩ C
for some B and C because the collections of base sets and charts both cover X. Since y
is contained in exactly one of the the sets D ⊂ p−1(B ∩ C), letting p′ = p|D we see that
y ∈ p′−1 ◦ xα(E), where E is as above. Now suppose that for some D1 and D2, D1 ∩D2 6= ∅.
Then p(D1 ∩ D2) = p(D1) ∩ p(D2) = (B1 ∩ C1) ∩ (B2 ∩ C2) where C1 and C2 are distinct
charts in X with maps xα and xβ . (B1 ∩C1)∩ (B2 ∩C2) is non-empty, for otherwise, D1 ∩D2

would be empty. The transition function between the two charts C1 and C2, namely x−1
β ◦xα, is

differentiable, hence the transition function between D1 and D2, x−1
β ◦p′′ ◦p′−1 ◦xα = x−1

β ◦xα,
where p′ = p|D1 and p′′ = p|D2 , is also differentiable.
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Furthermore, the covering map p is a local diffeomorphism. Any point y in X̃ has a neig-
borhood in some D, so that the image of the neighborhood under p is contained entirely in
p(D) = B ∩ C for some B and C. Since the chart map p′−1 ◦ xα is injective, there is an open
neighborhood U ⊂ Rn such that p′−1 ◦ xα(U) ⊂ D Then p(p′−1 ◦ xα(U)) = xα(U). Also,
x−1

α (p(p′−1 ◦ xα)) = Id, hence is differentiable. The same is true of the inverse of p. Thus, p is
a local diffeomorphism.

It follows from the chain rule that for y ∈ X̃ the differential dpy : TyX̃ → Tp(y)X is an
isomorphism. Recall that a Riemannian metric is characterized by an inner product on the
tangent space of every point. We define an inner product on TyX̃ as follows: let 〈u, v〉y =
〈dpy(u),dpy(v)〉p(y). As defined, p is a local isometry, a map which preserves the norm on each
tangent space.

It can be shown using more advanced differential geometry that sectional curvature is pre-
served under local isometries. Hence, because X has constant sectional curvature −1, and
because p is a local isometry, X̃ has an induced constant sectional curvature −1. �

Proposition 1.3. If X is an n-dimensional closed, compact hyperbolic manifold, then the
universal cover of X is the hyperbolic n-space, Hn.

Proof. It follows from the Cartan-Hadamard Theorem that every simply-connected, complete
hyperbolic n-manifold is isometric to Hn. Any closed, compact manifold is complete. Hence,
any covering space of it is also complete. Then, by Proposition 1, given a closed, compact
hyperbolic n-manifold X, its universal cover is by definition a simply-connected covering space
X̃, which is complete and can be given a hyperbolic manifold structure, hence X̃ ' Hn. �

Next we will describe the relationship between the group of deck transformations in Hn of
a hyperbolic surface and isometries of Hn.

Proposition 1.4. Any hyperbolic n-manifold X is the quotient Γ \ Hn of Hn by a group Γ
acting properly discontinuously—in fact freely—on Hn by orientation-preserving isometries.

Proof. Let Γ be the group of deck transformations in the universal cover Hn. We will show
that the group of deck transformations Γ of a hyperbolic surface X from a discrete group of
orientation-preserving isometries of Hn.

By definition, if S ∈ Γ, then for any z ∈ Hn, p(S(z)) = p(z), as in the figure below. Now
consider the differentials at a point z ∈ Hn dpz : TzHn → Tp(z)X and dSz : TzHn → TS(z)Hn.
By the chain rule, d(p ◦ S)z = dpz ◦ dSz. Also, d(p ◦ S)z = dpz. Hence dpz = dpz ◦ dSz.

Hn

p

��

S // Hn

p◦S}}zz
zz

zz
zz

X

TzHn

dpz

��

dSz // TS(z)Hn

d(p◦S)zyyttttttttt

Tp(z)X

Suppose, for y ∈ Hn, that 〈u, v〉z is the inner product on the tangent space TzHn. Recall
from Proposition 1.2 that the inner product on the tangent space TS(z)Hn is defined to be

〈dSz(u), dSz(v)〉S(z) = 〈dpz(dSz(u)), dpz(dSz(v))〉p(S(z) = 〈dpz(u), dpz(v)〉p(z) = 〈u, v〉z
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Thus, S preserves the inner product on every tangent space, and is therefore an isometry.
Now we shall show that Γ acts properly discontinuously by showing that every Γ-orbit is

discrete and the the order of the stabilizer of each point is finite. The latter condition is
automatically satisfied because deck transformations act freely. Consider any point x ∈ X. x
has a contractible neigborhood in which any loop is homotopic to the trivial loop. Hence, there
is a dx > 0 such that every non-trivial loop through x has length greater or equal to dx. Every
point in the fiber over x in Hn must be at least distance dx from any other point in the fiber,
and since elements of Γ map lifts of x to lifts of x, the Γ orbit of any lift x̃ of x is discrete.
Since every point in Hn is a lift of some point in X, every Γ-orbit in Hn is discrete.

By Proposition 1.40 from Hatcher, since Γ acts freely on Hn, for any x ∈ X and any two
lifts x̃ and x̃′ of x, there exists S ∈ Γ such that S(x̃) = x̃′. Hence, Γ \Hn is X. �

Next, we shall build a proof of the theorem that any closed curve on a hyperbolic surface is
homotopic to a closed geodesic on the manifold, drawing from Fuchsian Groups by Svetlana
Katok and adapting her arguments to higher dimension.

2. Closed Curves on Hyperbolic Surfaces

We will begin this section with a brief classification of isometries of hyperbolic n-space. The
following results come from hyperbolic geometry. By the translation distance of an isometry
T , we mean infx∈Hn ρ(x, T (x)), where ρ(·, ·) is the distance function on Hn induced by the
Riemannian metric.

Definition 2.1. A hyperbolic transformation is an isometry such that the translation distance
is greater than 0. A hyperbolic transformation fixes two points on the boundary of Hn and
none in Hn itself. It preserves its axis, the unique geodesic segment connecting the two fixed
points, and moves all points in Hn along the axis.

Definition 2.2. A parabolic transformation is an isometry such that the translation distance
is equal to 0, but is not realized by any point in Hn. A parabolic transformation fixes a single
point on the boundary of Hn, and no points in Hn. All points in Hn rotate around the fixed
point. In fact, any Euclidean (n − 1)-sphere tangent to Rn−1 ∪ {∞} at the fixed point is
preserved under a parabolic transformation.

Definition 2.3. An elliptic transformation is an isometry such that the translation distance
is equal to 0 and is realized by a single point in Hn. An elliptic transformation fixes one point
in Hn, while all other points rotate about the fixed point.

Definition 2.4. For a group of isometries Γ acting properly discontinuously, and a point p
not fixed by any element of Γ except Id, a Dirichlet region centered at p is

Dp(Γ) = {z ∈ Hn|ρ(p, z) ≤ ρ(z, T (p))∀T ∈ Γ}.
Dp(Γ) is a fundamental region for the action of Γ.

Lemma 2.5. The vertices of a Dirichlet region F=Dp(Γ) centered at p of a group Γ of isome-
tries acting properly discontinously on Hn are isolated in Hn.

Proof. Suppose the vertices are not isolated. Then there is a limit point v0 of the vertices in Hn.
In any neighborhood of v0 with radius ε, F has infinitely many vertices vn. Since each vertex
is the intersection of n geodesic hyperplanes, there are also infinitely many geodesic segments
contained entirely inside in the same neighborhood of v0. In fact, all but finitely many of the
hyperplane segments connecting the vertices inside the neighborhood are contained entirely
inside of it. Furthermore, each geodesic hyperplane segment is the perpendicular bisector of
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the unique geodesic line-segment connecting the points p and T (p) for some T ∈ Γ− Id. That
is, the point T (p) is twice the hyperbolic distance from p as the bisecting geodesic segment
lying in the ε-neighborhood of v0. Let r be twice the distance from p to v0. Then the endpoint
of every segment connecting p to each T (p) passing through the neighboorhood of v0 lies inside
the closed ball B(p, r + 2ε) of radius r + 2ε centered at p. But there are infinitely many such
T (p) inside of B(p, r + 2ε), which is a compact subset of Hn. This contradicts the discreteness
of the Γ-orbit of p, which contradicts the properly discontinuous action of Γ. Hence the vertices
of Dp(Γ) are isolated. �

Proposition 2.6. For any group Γ acting properly discontinuously on Hn by isometries, if
the hyperbolic manifold Γ \ Hn is compact, then its volume ν(Γ \ Hn) < ∞ and Γ contains no
parabolic elements.

Proof. First, we will show that if Γ has a non-compact Dirichlet region, then Γ \ Hn is non-
compact. Consider oriented geodesic rays r coming out of p. Recall that a Dirichlet region is
convex, so r either intersect the boundary ∂F of F once or lie entirely inside F . Define l(r) to
be the length of the segment of r from p to ∂F . If r lies inside F , l(r) = ∞. l(r) is continuous
where it is not ∞, so if it is bounded for all r, F is compact. If F is not compact, there is at
least one r such that l(r) = ∞. Thus, after indentifying congruent sides and vertices of F , the
resulting orbifold is non-compact.

Now, we will show that if Γ has a compact dirichlet region Dp(Γ), that it contains no
parabolic elements. Recall from the proof of Proposition 1.4, for each x ∈ Γ \Hn, there exists
dx > 0, the length that each loop must attain if it is to be non-trivial. If Γ \ Hn is compact,
then infx dx = d is realized and it is greater than 0 because any non-trivial loop has non-zero
length. Then the minimum distance between a point in Dp(Γ) and a point in its orbit is d.
Suppose Γ contains a parabolic element S. Then infz∈Dp(Γ) ρ(z, S(z)) = 0 because a parabolic
element moves points an arbitrarily small distance, and we obtain a contradiction.

Therefore, if Γ \ Hn is compact, it has a compact Dirichlet region, and if it has a compact
Dirichlet region, it contains no parabolic elements. �

Note that since Γ acts freely on Hn, it cannot contain any elliptic elements either because
each one has a fixed point in Hn.

Before stating and proving the final theroem, it will be important to clarify the notion
of a closed geodesic. A closed geodesic is a closed path which locally minimizes the distance
between two points on it at every point on the path. A closed geodesic can therefore be defined
as an embedding of S1 into the manifold Γ \Hn with the characteristic property of minimizing
distances. This is distinct from an embedding of [0, 1] into Γ \ Hn as a geodesic segment
because even if it begins and ends at the same point p, it can fail to satisy the condition of
locally minimizing distance in a neighborhood of p. This distinction is crucial to the theorem
because, if we did require the geodesic we seek to be closed (allowing merely a closed geodesic
segment), we would be able to remove the hypothesis that the manifold be compact.

Theorem 2.7. Any closed curve on a closed, compact hyperbolic manifold X is homotopic to
a closed geodesic on X.

Proof. Let γ : [0, 1] → X be a closed curve in X. We can lift γ to a path γ̃ in Hn such that
p(γ̃(0)) = p(γ̃(1)).

4



Let Γ be the group of deck transformations for X in Hn. By proposition 1.4, Γ is a discrete
group of isometries. By proposition 2.7, Γ contains only hyperbolic elements and acts prop-
erly discontinuously and freely on Hn. Furthermore, by Proposition 1.39 from Hatcher, Γ is
isomorphic to π1(X).

There is a hyperbolic transformation T ∈ Γ which takes γ̃(0) to γ̃(1). Since T is hyperbolic,
it fixes exactly two points on the Euclidean boundary Rn−1 ∪{∞} of Hn and fixes set-wise the
axis A the unique geodesic that connects the fixed points of T.

There exists a free homotopy ft of γ in X such that the point γ(0) = γ(1) of γ is “homotoped”
onto the projection p(A) in X of the geodesic fixed by T in Hn. By the homotopy lifting
property (Proposition 1.30 from Hatcher), ft lifts to a unique homotopy, f̃t in Hn. Denote
f̃1(γ̃(0)) = z0 and f̃1(γ̃(1)) = z1. Since p(z0) = p(z1) and since f1(γ) is homotopic to γ, we
have that T (z0) = z1.

Recall that any loop in X lifts to a path in the universal cover Hn. Because of the bijection
between elements of the fundamental group π1(X) and Γ, the deck transformation taking the
beginning of the lifted path to its end represents the same element of π1(X) as the loop in X.
Hence any other path with the same end points in Hn represents the same element of π1(X),
so the projections of both paths are homotopic loops.

Therefore, p(f̃1(γ̃)) = f1(γ) is homotopic to p(A). Since homotopy equivalence is an equiv-
alence relation, it follows that γ is homotopic to p(A).

It remains to show that the projection p(A) of the axis of T onto X is a closed geodesic
in X. Consider the points z0 and z1 in A. Since A is fixed by T , any geodesic segment of
A ending at z0 is mapped isometrically under T to a segment of A ending at z1. Similarly,
any geodesic segment of A beginning at z0 is mapped isometrically under T to a segment of A
beginning at z1. Hence, the projection of the segment of A from z0 to z1 is a closed geodesic
in X. �

References

[1] M. P. do Carmo. Riemannian Geometry. Birkhäuser Boston. 1992.
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