
GENERALIZED FACTORIZATION

GRANT LARSEN

Abstract. Familiarly, in Z, we have unique factorization. We investigate the

general ring and what conditions we can impose on it to necessitate analogs

of unique factorization. The trivial ideal structure of a field, the extent to
which primary decomposition is unique, that a Noetherian ring necessarily has

one, that a principal ideal domain is a unique factorization domain, and that

a Dedekind domain has unique prime decomposition, are all covered. The
relationship of quadratic reciprocity and the class group to the question of

factorization is discussed, and Gauss’s method of computing the class number

of quadratic fields and new work generalizing this to many other fields is briefly
advertised.
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1. Introduction

Factoring in Z is something we’re taught to do in elementary school and is taken
for granted. If one doesn’t pursue a mathematics education, one rarely realizes
that the existence of unique factorization is something that needs to be proven.
Fortunately, in Z, the proof is simple number theory. When we generalize to more
interesting rings than Z, unique factorization no longer necessarily holds: the clichéd
example is Z

(√
−5
)
, in which 6 = 2 · 3 =

(
1 +

√
−5
) (

1−
√
−5
)†. So what is to

be done? Luckily, Kummer, Dedekind, Hilbert, and Noether have worked hard
on this question and come up with the concept of ideals - sets of numbers where
we can talk about factoring in all the domains that matter. The first half of this
paper talks about how we can decompose ideals in which situations. The second
half investigates the interesting questions of how factoring works in extensions, how

Date: AUGUST 17, 2007.
†It is not immediate that these numbers are distinct primes, but it is not hard to show.
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quadratic reciprocity is related to the answer, how ideal factoring and numerical
factoring are related, and how to compute the extent to which the latter fails.

2. Conventions

• All rings are assumed to be commutative and have 1 6= 0.
• The whole ring will in general be denoted R.
• The word “unique” always carries the caveat “up to ordering.”

All conventions hold as far as is convenient; deviations will be explicitly noted.

3. Prelimaries

Definition 3.1. Let R be a ring. A non-empty subset a ⊆ R that is closed under
addition, and for which ra ∈ a for each r ∈ R and a ∈ a, is called an ideal of R.
An ideal that is not equal to the ring is called a proper ideal. The ideal {0} is
often denoted 0.

Proposition 3.2. Let F be a ring. Then F is a field if and only if the only proper
ideal of F is 0.

Proof. Suppose F is a field. Let a be a proper ideal, and a ∈ a. Then a 6= 0 implies
that a−1x ∈ F for every x ∈ F , so x ∈ a for every x ∈ F , so a = F , contradicting
the properness of a, so a = 0, since an ideal is defined to be non-empty.

Suppose now that the only proper ideal of F is 0. Let x ∈ F \ 0. Then xF is a
non-zero ideal, since x ∈ xF . By assumption, xF = F . Particularly, 1 ∈ xF , so
there is a y ∈ F such that xy = 1. Therefore F is a field. �

Definition 3.3. Let A be a set. The smallest ideal that contains A can easily be
shown to be

(3.4) a =

{
n∑

i=1

airi | n ∈ N, ai ∈ A, ri ∈ R

}
,

and is called the ideal generated by A, and A is its generating set or set
of generators. We write a = (A). If a is generated by a finite set, say A =
{a1, . . . , an}, we write a = (a1, . . . , an), and say it is finitely generated.

Definition. Set and ideal operations:

(3.5) A+B = {a+ b | a ∈ A, b ∈ B} , A,B ⊆ R.

(3.6) rA = {ra | a ∈ A} , A ⊆ R, r ∈ R.

(3.7) ab =

{
n∑

i=1

aibi | n ∈ N, ai ∈ a, bi ∈ b

}
, a, b ideals of R.

(3.8) a : b = {x ∈ R | xb ∈ a ∀b ∈ b} , a, b ideals of R.

The following are direct consequences of the definitions.

Proposition 3.9. Properties of ideal operations:
(1) a ∩ b is an ideal,
(2) a + b is an ideal,
(3) a : b is an ideal,
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(4) ab is an ideal,
(5) a ⊆ a : b,
(6) (a : b) b ⊆ a,
(7) (⋂

i∈I

ai

)
: b =

⋂
i∈I

(ai : b) ,

(8) (a : b) : c = a : (bc), and
(9) (a) (b) = (ab).

Definition 3.10. Let a be an ideal. Then its radical, Rad (a), is given by
{x ∈ R | ∃n ∈ N such that xn ∈ a}.

Proposition 3.11. Let a be an ideal. Then Rad (a) is an ideal.

Proof. Given x, y ∈ Rad (a), there are m,n ∈ N such that xm, yn ∈ a. Also, there
are αi, µi, νi ∈ N ∪ {0} such that

(3.12) (x+ y)m+n =
m+n∑
i=0

αix
µiyνi .

For each i, µi+νi = m+n, so either µi ≥ m or νi ≥ n. Therefore, xµi ∈ a or yνi ∈ a,
so αix

µiyνi ∈ a for every i. Hence, (x+ y)m+n ∈ a, so x+y ∈ Rad (a), i.e. Rad (a)
is closed under addition. For any r ∈ R, (rx)n = rnxn ∈ a, so rx ∈ Rad (a). Thus,
Rad (a) is an ideal of R. �

4. Primary Decomposition

Definition 4.1. A proper ideal p is prime in R if for every ab ∈ p, a ∈ p or b ∈ p.

Proposition 4.2. If p, pi are all prime ideals and

(4.3)
n∏

i=1

pi ⊆ p,

then there is a k ≤ n such that pk ⊆ p.

Proof. Assume that for each i, pi * p. Then for each i, there is a pi ∈ pi \ p, so

(4.4)
n∏

i=1

pi ∈
n∏

i=1

pi ⊆ p.

But p is prime, so there is a k ≤ n such that pk ∈ p, contradicting the method by
which the pi were selected. Therefore, there is a k ≤ n such that pk ⊆ p. �

Definition 4.5. A primary ideal is an ideal q such that ab ∈ q and a /∈ q imply
there exists an n ∈ N such that bn ∈ q.

Proposition 4.6. Let q be a primary ideal in R. Let p = Rad (q). Then p is a
prime ideal, and for all prime ideals p′ ⊇ q, p′ ⊇ p ⊇ q.

Proof. p is an ideal by Proposition 3.11. If xy ∈ p and x /∈ p, then there is an n ∈ N
such that xnyn ∈ q. Since we assume x /∈ p, it follows that xn /∈ q, so there is an
m ∈ N such that ynm ∈ q, i.e. y ∈ p. Thus, p is prime. q ⊆ p trivially. For any
prime ideal p′ ⊇ q, given x ∈ p, there must be an n ∈ N such that xn ∈ q ⊆ p′. p′

is prime, so x ∈ p′, so p ⊆ p′. �



4 GRANT LARSEN

Definition 4.7. In the situation of the Proposition 4.6, q belongs to p, and it is
called p-primary.

Corollary 4.8. Let q be p-primary. Then:

(1) For any ab ∈ q such that a /∈ p, b ∈ q,
(2) For any ideals ab ⊆ q such that a * p, b ⊆ q, and
(3) a * p implies q : a = q.

Proof. (1) is an immediate consequence of the definitions, and (2) follows immedi-
ately from (1). For (3), we know that (q : a) a ⊆ q, so by (2) , q : a ⊆ q. We also
know that q ⊆ q : a, so q : a = q. �

Definition 4.9. Let a be an ideal. If

(4.10) a =
n⋂

i=1

qi,

where each qi is primary, a has a primary decomposition, a is called decom-
posable, and the qi are called the primary components of the decomposition.
A decomposition in which no qj contains the intersection of the remaining qi is
irredundant. An irredundant decomposition in which all the qi are distinct is a
normal decomposition.

Knowing these terms, we can claim a certain level of uniqueness to primary
decomposition, when it exists:

Theorem 4.11. If the ideal

(4.12) a =
m⋂

i=1

qi =
n⋂

j=1

q′j ,

where both are normal decompositions, qi is pi-primary for every i, and q′j is p′j-
primary for every j, then m = n, and the components can be indexed such that
pi = p′i for every i.

Proof. If a = R, then n = m = 1 and q1 = q′1 = R.
Otherwise, a is a proper ideal. From the finite set {pi}i≤m ∪

{
p′j
}

j≤n
of prime

ideals, we may select one which is not strictly a subset of any other. Assume without
loss of generality that this is pm.

Assume that qm * p′j for all j. Then by Corollary 4.8(3) , q′j : qm = q′j , so

(4.13) a : qm =
n⋂

j=1

(
q′j : qm

)
=

n⋂
j=1

q′j = a.

If m were 1, a would be qm, so by the above, a would be R, the case handled
previously, so in the case at bar, m must be greater than 1. By the selection of
pm, pm * pi for every i < m, since the decomposition is normal. Therefore by
Proposition 4.6, qm * pi. This lets Corollary 4.8(3) be applied, giving qi : qm = qi.
Since qm : qm = R,

(4.14) a : qm =
m⋂

i=1

(qi : qm) =
m−1⋂
i=1

qi.
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Combining (4.13) and (4.14),

(4.15) a =
m−1⋂
i=1

qi.

This contradicts the normality of the decomposition in (4.12), so our assumption
must be false, i.e. there must exist a j ≤ m such that qm ⊆ p′j . By Proposition
4.6, pm ⊆ p′j , so by the selection of pm, pm = p′j . Assume without loss of generality
that pm = p′n. By definition, qm ∩ q′n belongs to pm = p′n. By similar arguments to
those above,

(4.16)
m−1⋂
i=1

qi = a : q =
n−1⋂
j=1

q′j .

Since a : q is an ideal, we are in the same position we started in, now with n − 1
and m− 1.

Assume m < n. After m recursions of the above process, one would get

(4.17) R =
n−m⋂
j=1

q′j ,

but the composition was normal, so all the q′j should have been proper, contradicting
(4.17), so m ≮ n.

A perfectly analogous argument shows n ≮ m, so m = n, and after m = n
steps of this recursive process, all m = n pairs of equal prime ideals have been
identified. �

Definition 4.18. The prime ideals proved to be unique in Theorem 4.11 are called
the prime ideals belonging to a.

5. Noetherian Rings

In general we can’t get any more unique than the above decomposition, and
Theorem 4.11 rests on the condition that such a decomposition exists. We can
make a step in the right direction by demanding the following property:

Definition 5.1. A ring R is Noetherian if, given an ascending chain a1 ⊆ a2 ⊆ . . .
of ideals, there is an m ∈ N such that for all n ≥ m, an = am.

Proposition 5.2. Given a ring R, TFAE:
(1) R is Noetherian;
(2) Every non-empty set of ideals has a maximal element with respect to inclu-

sion;
(3) Every proper ideal is finitely generated.

Proof. Suppose R is Noetherian. Let I be a non-empty set of ideals of R.
If I is finite, the existence of a maximal element is trivial.
Otherwise, pick a1 ∈ I. Given ai ∈ I, there is an a′i ∈ I such that ai ⊆ a′i. Let

ai+1 = a′i. The assumption that R is Noetherian implies that this chain is eventually
the same ideal over and over, and this ideal is necessarily maximal. Therefore, we
have (1) ⇒ (2).

Suppose now that (2) holds. Let a be an ideal of R, let A be the set of finitely
generated ideals contained in a, and let m be a maximal element of A.
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Assume that there is an element x ∈ a\m. Then m+xR is finitely generated, so
m + xR ∈ A. But m + xR ) m, contradicting the maximality of m in A. Therefore
m = a, i.e. a is finitely generated. This reveals that (2) ⇒ (3).

Suppose now that every ideal of R is finitely generated. Let a1 ⊆ a2 ⊆ . . . be an
ascending chain of ideals of R. Let

(5.3) A =
⋃
i∈N

ai.

A is an ideal in R, so it is generated by a finite set, say {a1, . . . , an}, by assumption.
Then for every i ∈ N, ai ⊆ (a1, . . . , an). For every j ≤ n, there is a kj such that
aj ∈ akj . Let k′ = max {kj}j≤n. Then for each j ≤ n, aj ∈ ak′ . Therefore
ak′ ⊇ (a1, . . . , an), so ak′ = (a1, . . . , an). Therefore, for all i ≥ k′, ai = ak′ . So, we
have (3) ⇒ (1). �

In this case, the situation is slightly improved, but in order to see why, we must
introduce a new concept:

Definition 5.4. An ideal a is irreducible if whenever a = b ∩ c, a = b or a = c.
An ideal that is not irreducible is reducible.

Lemma 5.5. If a is an ideal of a Noetherian ring, it is the intersection of a finite
number of irreducible ideals.

Proof. Let I be the set of ideals which cannot be written as finite intersections of
irreducible ideals. By Proposition 5.2, if I is non-empty, it has a maximal element,
m. There exist ideals a, b such that m = a ∩ b, but m cannot be irrdeucible, so
m ( a and m ( b. m is maximal, so a, b /∈ I, i.e. they’re both finite intersections of
irreducible ideals. Therefore, so is m = a ∩ b, so m /∈ I, a contradiction. Therefore
I is empty. �

Lemma 5.6. In a Noetherian ring, all irreducible ideals are primary.

Proof. Let a be an ideal of a Noetherian ring that is not primary, i.e. there are b
and c such that bc ∈ a and b, cn /∈ a for any n ∈ N. Thus, we find that a ( a : (c).
By the properties of ideal operations, a :

(
ck
)
⊆
(
a :
(
ck
))

: (c) = a :
(
ck+1

)
, so

there is an ascending chain:

(5.7) a ( a : (c) ⊆ a :
(
c2
)
⊆ a :

(
c3
)
⊆ . . .

Since the ring is Noetherian, there is an m ∈ N such that a : (cn) = a : (cm)
for all n ≥ m. Let x ∈ (a : (cm)) ∩ (a + (cm)). Since x ∈ a + (cm), there is an
a ∈ a and an r ∈ R such that x = a + rcm. Since x ∈ a : (cm), we must have
xcm = acm + rc2m ∈ a, meaning that rc2m ∈ a, i.e. r ∈ a :

(
c2m

)
= a : (cm)

by the selection of m. Therefore, rcm ∈ a, so x = a + rcm ∈ a. This means that
(a : (cm)) ∩ (a + (cm)) ⊆ a. It is clear that a ( a + (cm), and a ( a : (cm) by (5.7).
Therefore a = (a : (cm)) ∩ (a + (cm)), i.e. a is the intersection of two ideals that
srtictly contain it, so it is reducible. �

Theorem 5.8. Every ideal of a Noetherian ring has a primary decomposition.

Proof. This is the direct combination of Lemma 5.5 and Lemma 5.6. �

So, in Noetherian rings, we have existence of primary decomposition in which the
associated primes are unique, though the decomposition itself it is not necessarily
unique.
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6. Principal Ideal Domains

Of course, we can get unique factorization by imposing strict conditions. We
know that the rational integers have unique factorization, so if we generalize just
enough that the proof needn’t change, then the claims still holds.

Definition 6.1. If there is an a ∈ R such that a = (a) , a is a principal ideal.

Definition 6.2. A ring where all ideals are principal is a principal ideal domain
(P.I.D.).

Unique factorization of ideals in a P.I.D. holds for exactly the same reasons as
unique factorization of rational integers. To repeat that proof here would waste the
time of a reader who knows it, and rob the reader that doesn’t of a crucial exercise.
It can also be found in [4], [6], and [8].

Theorem 6.3. Let R be a P.I.D. Then for any proper ideal a ( R, there exist
proper prime ideals pi ( R such that

(6.4) a =
n⋂

i=1

pi.

This prime decomposition is unique.

Definition 6.5. An element with a multiplicative inverse is a unit.

Remark 6.6. The set of ideals of a P.I.D. is isomorphic to the P.I.D. itself in the
obvious way, i.e.

(6.7) R→ {a ⊆ R} ,

a 7→ (a) ,
where one can check that ab 7→ (a) ∩ (b) = (ab). Units map to R.

Definition 6.8. An element is irreducible if it is a nonzero non-unit r ∈ R such
that r = ab implies that a or b is a unit.

Proposition 6.9. In an integral domain, any prime element is an irreducible ele-
ment.

Proof. Suppose p is a prime element and p = ab. Without loss of generality, assume
p|b, i.e. there is a c ∈ R such that pc = b. Then apc = ab, so ac = 1, i.e. a is a
unit. �

Definition 6.10. A domain is a Unique Factorization Domain, U.F.D. for
short, if any nonzero non-unit can be written uniquely as a product of irreducible
elements.

Corollary 6.11. Any P.I.D. is a U.F.D.

Proof. This is immediate from Theorem 6.3, Remark 6.6, and Proposition 6.9. �

Also, the language of principal ideals lets us prove a conclusion about the ele-
ments of a Noetherian ring:

Proposition 6.12. If R is a Noetherian integral domain, every nonzero non-unit
can be written as the product of finitely many irreducible elements.
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Proof. Analogously to the proof of Lemma 5.5, let I be the set of principal ideals
generated by elements of R that cannot be written as the product of finitely many
irreducibles. If I was nonempty, there would be a maximal element (m) ∈ I, and
since m could not be reducible, there would be non-units a, b ∈ R such that m = ab.
Therefore (m) ( (a) and (m) ( (b), so by the maximality of (m) in I, (a) , (b) /∈ I,
so a and b would both be products of finitely many irreducibles, so ab = m would
be as well. Therefore I is necessarily empty. �

7. Dedekind Domains

The condition of being a principal ideal domain is very strict, so it is natural
to inquire if there is a more general case in which unique factorization holds. This
generalization is what is known as a Dedekind domain, the conditions of which we
need to define.

Definition 7.1. An ideal is maximal if it is not strictly contained in any proper
ideal.

Proposition 7.2. A maximal ideal is prime.

Proof. Let a be a non-prime proper nonzero ideal, i.e. let x, y /∈ a such that xy ∈ a.
Then x ∈ (a : (y)) \ a and 1 /∈ a : (y), so a ( a : (y) ( R, i.e. a is not maximal. �

Proposition 7.3. An ideal m is maximal if and only if R/m is a field.

Proof. The Lattice Isomorphism Theorem for rings states that the ideal structure
of R/m is the same as the ideal structure of R, limited to those ideals containing
m. Therefore, this claim is a direct consequence of Proposition 3.2. �

Definition 7.4. R ⊆ S is an extension of rings/fields if both sets are rings/fields,
and the notions of addition and multiplication agree on R. In the case of fields, one
writes S|R.

Definition 7.5. Let R ⊆ S be an extension of rings. An element s ∈ S that
satisfies a monic polynomial with coefficients in R is said to be integral over R. If
s is integral over R for all s ∈ S, S is an integral extension of, or integral over,
R. The subset of S consisting of all elements integral over R is the integral closure
of R in S. A ring R that equals its integral closure in S is integrally closed in S.
The integral closure of R in its field of fractions† is its normalization. A ring R
that is its own normalization is normal or integrally closed.

Definition 7.6. For a1, . . . , am ∈ S ⊇ R, R adjoin a1, . . . , am is

R [a1, . . . , am] =


n∑

j=1

m∑
i=1

rja
j
i | rj ∈ R,n ∈ N

 ⊆ S.

R [x] will be used in this paper to denote the similar but distinct construct, the
polynomial ring over R.

†The field of fractions takes a bit of effort to construct rigorously, but is essentially as it sounds:
fractions where the numerator and denominator come fom the domain in question. Q is the field

of fractions of Z. For more, see [4], [7], or [10].
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Definition 7.7. An R-module‡ M is finitely generated if there is a finite set
A ⊆M such that for every m ∈M , there are elements ra ∈ R such that

(7.8) m =
∑
a∈A

raa.

Proposition 7.9. The elements s1, . . . , sm ∈ S are integral over R if and only if
R [s1, . . . , sm] ⊆ S is a finitely generated R-module.

Proof. Suppose s ∈ S is integral over R. Let f (x) ∈ R [x] be a monic polynomial
of degree n, such that f (s) = 0, and g (x) an arbitrary polynomial in R [x]. R [x]
is Euclidean, i.e. there are q (x) , ρ (x) ∈ R [x] such that g (x) = q (x) f (x) + ρ (x)
and degρ (x) < n. Then g (s) = ρ (s), a sum of finitely many products of elements
of R and powers of s. Therefore, R [s] is a finitely generated R-module.

Suppose now that R [s] is an R-module generated by {α1, . . . , αk}. Then for
every element t ∈ R [s], there are rij ∈ R such that

(7.10) tαi =
k∑

j=1

rijαj , ∀i.

We know from linear algebra that det (t1k − (rij))αi = 0 for every i.† That is,
for every t ∈ R [s], there is an R-linear transformation (rij) such that t is an
eigenvalue of the transformation. det (t1k − (rij)) = 0 is a monic polynomial for s
with coefficients in R, so s is integral over R.

Observe that R [s1] [s2] = R [s1, s2] and induct. �

Corollary 7.11. If R ⊆ S ⊆ T are ring extensions, where T is integral over S,
and S is integral over R, then T is integral over R.

Proof. Let t ∈ T . Then there is an n ∈ N and si ∈ S such that

(7.12) tn +
n∑

i=1

sit
n−i = 0.

Let M = R [s1, . . . , sn]. By Proposition 7.9, M is finitely generated over R, and
R [t] is finitely genereated over R, so t is integral over R, so T is integral over R. �

Corollary 7.13. The integral closure of a ring in another ring is integrally closed.

Proof. This is immediate from Corollary 7.11. �

Definition 7.14. A Noetherian integral domain that is integrally closed, in which
every nonzero prime ideal is maximal, is a Dedekind domain.

In order to get where we want, we’ll need a couple of lemmas concerning prime
ideals in Dedekind domains:

Lemma 7.15. Any nonzero ideal of a Dedekind domain contains the product of
finitely many prime ideals.

‡A module over a ring is the generalization of a vector space over a field. For more, see [4].
†1k denotes the k × k identity matrix, (δij) in Kronecker delta notation.



10 GRANT LARSEN

Proof. Let I be the set of ideals which do not contain the product of finitely many
prime ideals. By Proposition 5.2, there is a maximal element m ∈ I. m cannot be
prime, so there must be a, b ∈ O such that ab ∈ m and a, b /∈ m. Letting a = m+(a)
and b = m + (b), it is clear that m ( a and m ( b. By the maximality of m, a
and b are supersets of finite products of prime ideals, but a quick check shows that
ab ⊆ m, so m is as well. Therefore I is empty. �

Definition 7.16. Let p be a prime ideal in the Dedekind domain O with field of
fractions K. Then p−1 = {k ∈ K | kp ⊆ O}.

Definition 7.17. A fractional ideal of K is a nonzero finitely generated O-
submodule of K.

Definition 7.18. A principal fractional ideal is a fractional ideal of the form
kO for some k ∈ K. It will be denoted (k).

Remark 7.19. p−1 is a fractional ideal, and the same operations that apply to ideals
apply to fractional ideals.

Lemma 7.20. For a prime ideal p of a Dedekind domain O, p−1 ) O.

Proof. By Definition 7.16 and the definition of ideal, p−1 ⊇ O. Let p ∈ p \ 0. By
Lemma 7.15, there must be nonzero prime ideals pi such that

(7.21)
m∏

i=1

pi ⊆ (p) ⊆ p,

where m is as small as possible. By Proposition 4.2, there is a k ≤ m such that
pk ⊆ p. Assume without loss of generality that k = m. Since O is a Dedekind
domain, pm is maximal, so pm = p. By the minimality of m,

(7.22)
m−1∏
i=1

pi * (p) , i. e. ∃x ∈

(
m−1∏
i=1

pi

)
\ pO, i. e. p−1x ∈ K \ O.

By (7.21) , xp ⊆ (p), so p−1xp ⊆ O, so p−1x ∈ p−1, so p−1 ) O by (7.22). �

Lemma 7.23. For a prime ideal p of O, ap−1 6= a for all nonzero ideals a.

Proof. By Proposition 5.2, there must exist α1, . . . , αn that generate a.
Assume ap−1 = a, so for any x ∈ p−1, there are aij ∈ O such that

(7.24) xαi =
n∑

j=1

aijαj .

Let A = (x1n − (aij)). Then A (α1, . . . , αn)t = 0. We know that det (A)αi = 0
for every i, so det (A) = 0, so x is integral over O. Since O is a Dedekind domain,
this implies that x ∈ O, so p−1 ⊆ O, contradicting the previous lemma. Therefore
ap−1 6= a. �

Theorem 7.25. Every nonzero, proper ideal of a Dedekind domain can be uniquely
factored into nonzero prime ideals.

Proof. Let I be the set of nonzero proper ideals of the Dedekind domain O that do
not factor into prime ideals.

Assume I is non-empty. By Proposition 5.2, there is a maximal element m ∈ I.
Applying Proposition 5.2 to the supersets of m, we find that it is contained in a
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maximal ideal p.† By Lemma 7.20, m ⊆ mp−1 ⊆ pp−1 ⊆ O, so mp−1 is an ideal
of O. By Lemma 7.23, m ( mp−1. It’s simple to show that pp−1 is an ideal, so
since p is maximal, pp−1 = O. We know p is maximal, hence prime by Proposition
7.2, but m cannot be prime, so m ( p, so mp−1 ( pp−1, so mp−1 is a proper ideal
containing m. Since m is a maximal element of I,mp−1 has a prime factorization.
But m = mp−1p, so m also has a prime factorization, so I is necessarily empty.
Therefore all ideals in a Dedekind domain can be factored into primes.

Let the following be two prime factorizations of the same ideal:

(7.26) a =
m∏

i=1

pi =
n∏

j=1

p′j

Since pm is prime, there must be a j′ such that pm ⊇ p′j′ , but prime ideals are
maximal in a Dedekind domain, so pm = p′j′ . Assume without loss of generality
that j′ = n. Since pp−1 = O, by mulitplying by p−1

m , we find that

(7.27)
m−1∏
i=1

pi =
n−1∏
j=1

p′j .

Using this recursive process, and remembering that the ideals are prime, we find
that m = n and pair up all m = n pairs of equal prime ideals. Thus, the factoriza-
tion of ideals in a Dedekind domain into prime ideals is unique. �

8. Factoring in Extensions, Ramification, and Quadratic Reciprocity

But what about factoring in extensions of Dedekind domains?

Remark 8.1. In the situation of a field extension L|K, L is a K-vector space.

Definition 8.2. The degree of the extension L|K is [L : K] = dimKL. If this is
finite, L is called a fintite extension of K.

Definition 8.3. For a field extension L|K and a set A ⊆ L, K adjoin A, de-
noted K (A), is the inersection of all subfields of L containing K and A. If
A = {a1, . . . , an}, we write K (a1, . . . , an).

Definition 8.4. A polynomial is separable over K if all of its irreducible factors
have distinct roots in the algebraic closure ofK. A field extension L|K is separable
if there is a set of roots of separable polynomials over K that, when adjoined to K,
give L.

Definition 8.5. The discriminant of a basis α1, . . . , αn of a separable extension
L|K is d (α1, . . . , αn) = det

(
TrL|K (αiαj)

)
.

Remark 8.6. It can be shown that if L|K is separable, then the discriminant of any
basis is nonzero. See [9] for details.

Henceforth, O denotes a Dedekind domain with field of fractions K, L|K an
extension of fields, and O the integral closure of O in L.

†Actually, in any ring, any proper ideal is contained in a maximal ideal, but the general proof
of this requires Zorn’s Lemma. See [4].
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Lemma 8.7. If O contains α1, . . . , αn, a basis for L|K, and d = d (α1, . . . , αn),
then

(8.8) O ⊆
n∑

i=1

Oαi/d.

Proof. If α ∈ O and

(8.9) α =
n∑

i=1

aiαi ∈ O, ai ∈ K.

Then

(8.10) TrL|K (αiα) =
n∑

j=1

TrL|K (αiαj) aj .

Since TrL|K (αiα) ∈ O, det
(
TrL|K (αiαj)

)
aj ∈ O. But det

(
TrL|K (αiαj)

)
= d,

so

(8.11) α ∈
n∑

j=1

Oαj/d, i. e. O ⊆
n∑

j=1

Oαj/d.

�

Proposition 8.12. If the extension L|K is separable,† then O is a Dedekind do-
main.

Proof. The domain O is integrally closed by assumption.
Let P be a nonzero prime ideal in O. Then for a y ∈ P \ 0, there are m ∈ N,

xi ∈ O such that xm 6= 0 and

(8.13) ym +
m∑

i=1

xiy
m−i = 0,

so xm ∈ P ∩ O, i.e. P ∩ O 6= 0. P ∩ O is clearly a prime, and therefore maximal,
ideal in O, so Proposition 7.3 shows O

P∩O to be a field. By Proposition 3.2, it has
no proper nonzero ideals, so neither can O/P, or else the intersection of such an
ideal with O

P∩O would yield a proper nonzero ideal in O
P∩O . By Proposition 3.2,

O/P is a field, so by Proposition 7.3, P is maximal in O.
Since L|K is separable, let α1, . . . , αn be a basis of L|K contained in O of nonzero

discriminant d. By Lemma 8.7, O is contained in a finitely generated O-module, so
every ideal of O is as well, making every ideal of O a finitely generated O-module.
Since O ⊆ O, an ideal of O is a finitely generated O-module, i.e. O is Noetherian.

Since O is integrally closed, has every prime ideal maximal, and is Noetherian,
it is a Dedekind domain. �

Proposition 8.14. If p is a prime ideal of O, then pO is a proper ideal of O.

Proof. The statement is trivial if p = 0.
Otherwise, let p ∈ p \ p2, so there is some ideal a of O such that pa = pO and

p + a. In this case, p + a = O. Therefore, there exist q ∈ p and a ∈ a such that
q + a = 1. Then a cannot be in p and ap ⊆ pa = pO.

†The separable condition here is actually weaker than necessary, but the proof is trickier and
requires more machinery if one wants to prove this for finite extensions in general. See [1], [7], or

[9] for details. Also, most extensions considered here are separable.
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Assume pO = O. Then aO = apO ⊆ pO. So, there is an x ∈ O ∩K such that
px = a, so a ∈ p, contradicting our earlier conclusion. Hence, pO is a proper ideal
of O. �

Corollary 8.15. A nonzero prime ideal p of O factors uniquely into prime ideals
in O, i.e. there exist unique prime ideals Pi ⊆ O and naturals m, νi ∈ N such that

(8.16) pO =
m∏

i=1

Pνi
i .

Proof. Proposition 8.12 and Proposition 8.14 allow us to apply Theorem 7.25. �

Definition 8.17. In the above situation, νi is the ramification index of Pi over
p. The inertia degree of Pi over p is fi =

[
O
Pi

: O
p

]
.

Proposition 8.18. If L|K is separable, then the above quantities are related to the
degree of the extension L|K in the fundamental identity:

m∑
i=1

νifi = [L : K] .

Proof. Let ϕ : O [x] → O
p [x] be the natural homomorphism. Let ϕ (ω1) , . . . , ϕ (ωn)

be a basis of O
pO over O/p.

Assume the ωi are linearly dependent in K. Then they are linearly dependent
in O. Then there are ai ∈ O and k ≤ n such that ak 6= 0 and

(8.19)
n∑

i=1

aiωi = 0.

This means we can generate a nonzero ideal a = (a1, . . . , an) of O. We can find an
a ∈ a−1 such that a /∈ a−1p, so aa * p. This means that {aai | i ≤ n} ⊆ O, but
{aai | i ≤ n} * p. Therefore, since

(8.20) ϕ

(
n∑

i=1

aaiωi

)
= ϕ (0) = 0,

the ϕ (ωi) are linearly dependent over O/p, contradicting the fact that they form a
basis. Therefore the ωi are linearly independent in K.

Let

(8.21) M =
n∑

i=1

Oωi

and N = O/M . Then O = M + pO, so pN = N. L|K is separable, so O is a
finitely generated O-module, as shown in the proof of Proposition 8.12, so N must
be as well. Therefore, we can find generators αi, . . . , αm of N . Then for every i, j
there must be ρij ∈ p such that

(8.22) αi =
m∑

j=1

ρijαj .

Let A be the matrix (ρij) − 1m, let the minor Bij be the determinant of the
(m− 1)× (m− 1) matrix formed by deleting the ith row and jth column of A, and
let adj (A) be the classical adjoint of A, meaning adj (A)ij = (−1)i+j

Bji. Then we



14 GRANT LARSEN

have A (α1, . . . , αm)t = 0 and adj (A)A = det (A)1m. Therefore,
adj (A)A (α1, . . . , αm)t = (det (A)α1, . . . ,det (A)αm)t = 0, so
det (A)N = 0, so det (A) O ⊆M . Since ρij ∈ p, we find that ϕ (det (A)) = (−1)m.
Thus, we can find that

(8.23) L = det (A)L =
n∑

i=1

Kωi.

Thus, we find that ω1, . . . , ωm is a basis of L|K, so dimO/p

(
O
pO

)
= [L : K].

Now fix i ≤ n. Let Qµ
i = Pµ

i /P
νi
i for each non-negative integer µ ≤ νi. Then

we have O/Pνi
i = Q0

i ⊇ Q1
i ⊇ . . . ⊇ Qνi

i = 0, all of which are O
p -vector spaces.

We also have that Qµ
i /Q

µ+1
i

∼= Pµ
i /P

µ+1
i for all µ < νi. Let q ∈ Pµ

i /P
µ+1
i . Let

ψq : O → Pµ
i /P

µ+1
i , ψq (x) = xq. ψq is a homomorphism, kerψq = Pi, and ψq is

surjective, because Pµ
i = Pµ+1

i + qO. Therefore, Qµ
i /Q

µ+1
i

∼= Pµ
i /P

µ+1
i

∼= O/Pi.

By the definition of inertia degree, fi = dimO/p

(
Qµ

i /Q
µ+1
i

)
, so

(8.24) dimO/p (O/Pνi
i ) =

νi−1∑
µ=0

dimO/p

(
Qµ

i /Q
µ+1
i

)
= νifi.

The Chinese Remainder Theorem tells us that

(8.25)
O

pO
∼=

m⊕
i=1

O/Pνi
i ,

so

(8.26) dimO/p

(
O

pO

)
=

m∑
i=1

dimO/p (O/Pνi
i ) , i. e. [L : K] =

m∑
i=1

νifi,

by (8.24). �

Definition 8.27. Suppose p (x) ∈ O [x], and θ ∈ L such that p (θ) = 0 and
L = K (θ). The conductor of the ring O [θ] is the largest ideal of O, the integral
closure of O in L, contained in O [θ], explicitly given by F = {α ∈ O | αO ⊆ O [θ]}.

Proposition 8.28. Let p a prime of O such that pO + F = O, and let

(8.29) ϕ (p (x)) =
m∏

i=1

ϕ (pi (x))νi

be the factorization of ϕ (p (x)) into irreducibles such that pi (x) is monic for all i.
Then one finds the prime ideals over p of (8.16) by Pi = pO +pi (θ) O. The inertia
degree of Pi is the degree of ϕ (pi (x)). Also,

(8.30) pO =
m∏

i=1

Pνi
i .

Proof. By assumption, pO+F = O, so since F ⊆ O [θ] , O = pO+O [θ], so the natu-
ral homomorphism from O [θ] to O

pO is surjective. Its kernel is pO ∩ O [θ] = pO [θ].
Since p + F ∩ O = O, pO ∩ O [θ] = (p + F) (pO ∩ O [θ]) ⊆ pO [θ]. Therefore
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O
pO

∼= O[θ]
pO[θ] . Let R = ϕ (O [x]) / (ϕ (p (x))). Let φ : O [x] → R be the natu-

ral homomorphism. It is surjective and kerφ is generated by p and p (x). Since
O [θ] = O [x] / (p (x)), we must have O[θ]

pO[θ]
∼= R, so R ∼= O

pO . Since

(8.31) ϕ (p (x)) =
m∏

i=1

ϕ (pi (x))νi ,

the Chinese Remainder Theorem gives us

(8.32) R ∼=
m⊕

i=1

ϕ (O [x]) / (ϕ (pi (x)))νi .

This shows that the prime ideals of R are the principal ideals (φ (pi)), that
[R/ (φ (pi)) : O/p] = degϕ (pi (x)), and that

(8.33) 0 = φ (p) =
m⋂

i=1

(φ (pi))
νi .

Let Φ : O → O
pO be the natural homomorphism. It is surjective, i.e. Φ (O) = O

pO .
Since R ∼= O

pO , the conclusions above hold in O
pO . That is, the prime ideals Φ (Pi)

of Φ (O) correspond to the prime ideals (φ (pi)) and are (Φ (pi (θ))),
[Φ (O) /Φ (Pi) : O/p] = degϕ (pi (x)), and

(8.34) 0 =
m⋂

i=1

Φ (Pi)
νi .

Thus, the preimage of Φ (Pi) , i. e. Pi, is pO = pi (θ) O, and by definition,
fi = [Φ (O) /Φ (Pi) : O/p] = degϕ (pi (x)), as desired.

Since νi = |
{

Φ (P)k | k ∈ N
}
|, Pνi

i = Φ−1 (Φ (Pi)
νi). Also,

(8.35) pO ⊇
m⋂

i=1

Pνi
i , ∴ pO ⊇

m∏
i=1

Pνi
i ,

so, since the fundamental identity states that

(8.36)
m∑

i=1

νifi = [L : K] , pO =
m∏

i=1

Pνi
i .

�

So we want to know more about how a prime ideal factors in an extension, but
we lack the vocabulary to ask about it, hence some definitions:

Definition 8.37. A prime ideal p of O splits completely, or is totally split, in
L if the unique factorization of pO (8.16) has m = [L : K], so νi = fi = 1 for all
i. p is nonsplit, or indecomposed, if n = 1.

Definition 8.38. A prime ideal Pi of O from (8.16) is unramified over O or K if
νi = 1 and O

Pi
|Op is separable. Otherwise, it is ramified. It is totally ramified if it

is ramified and fi = 1. The prime ideal p is unramified if all the Pi are unramified;
otherwise it is ramified. The extension L|K is unramified if all prime ideals p of
K are unramified in L.
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Now, the fun part: What’s the easiest way to figure out just when this total
splitting happens in, say, a quadratic number field, Q (

√
a)?

Definition 8.39. Let a, b ∈ Z. Then a is a quadratic residue of b if there is an
integer k such that k2 ≡ a mod b.

Definition 8.40. The Legendre symbol,
(

a
p

)
, read “a on p,” is defined for any

a ∈ Z and odd prime p ∈ N to be 1 if a is a quadratic residue modulo p, 0 if p|a,
and −1 otherwise. It can be shown that this is equivalent to

(
a
p

)
≡ a

p−1
2 mod p.

Proposition 8.41.
(

a
p

)(
b
p

)
=
(

ab
p

)
.

Proof. This is an immediate consequence of the alternate definition mentioned
above. �

This tool lets us apply Proposition 8.28 rather succinctly in the case of quadratic
fields:

Corollary 8.42. For square-free a and odd prime p - a, we find that
(

a
p

)
= 1 if

and only if (p) is totally split in Q (
√
a).

Proof. It is easily verifiable that Z is a Dedekind domain, so let O = Z, K = Q,
θ =

√
a, p (x) = x2 − a, and L = Q (

√
a). What is less trivial, but not difficult

to show, is that F ⊇ (2). See [4] or [9]. Since p is odd, this means that we can
apply Proposition 8.28 to (p). For square-free a,

(
a
p

)
= 1 is equivalent to the

existence of some α ∈ Z such that x2 − a ≡ (x+ α) (x− α) mod p. Hence, the
decomposition given by (8.29) has all linear factors, i.e. the inertial degrees are all
1, if and only if

(
a
p

)
= 1. a is square-free, so all the ramification indices are 1.

Hence, by the fundamental identity, m = [L : K] , i. e. (p) splits completely, if and
only if

(
a
p

)
= 1. �

If you’re wondering how this makes life any easier, I have the pleasure of intro-
ducing you to one of the truest gems of number theory, Gauss’s famous Quadratic
Reciprocity Law:

Theorem 8.43. For two distinct odd primes p, q ∈ N,
(

q
p

)(
p
q

)
= (−1)

(q−1)(p−1)
4 .

This, along with the two simple supplementary statements below that handle −1
and 2, makes computation of a Legendre symbol as easy as a few steps of modular
arithmetic.

Theorem 8.44. For an odd prime p ∈ N,
(
−1
p

)
= (−1)

p−1
2 and

(
2
p

)
= (−1)

p2−1
8 .

There are literally hundreds of distinct proofs of this law, with 8 by Gauss
himself. The most enlightening, i.e. the one that best answers the question, “But,
why?” that I have encountered is in the section on cyclotomic fields in [9]. There
are other proofs in [5], [6], [7], [8], and [9].

Corollary 8.45. Let q and p be distinct odd primes. Then if (p− 1) (q − 1) /4 is
odd, (q) splits completely in Q

(√
p
)

if and only if (p) does not split completely in
Q
(√
q
)
. If (p− 1) (q − 1) /4 is even, (q) splits completely in Q

(√
p
)

if and only if
(p) also splits completely in Q

(√
q
)
.
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Proof. This is a restatement of Theorem 8.43 in terms of Corollary 8.42. �

9. The Class Group, Gauss, and Bhargava

For Noetherian rings and P.I.D.’s, we used our understanding of ideal structure
to come to conclusions about factorization of elements†. Dedekinds domains are
a subset of the former and a superset of the latter, so is there some analogous
intermediate statement that can be made?

Henceforth, unless otherwise stated, RS is the notation for the localization of R
at S.†

Proposition 9.1. If a ⊇ b are two ideals in a Dedekind domain O, then there is
an a ∈ O such that a = b + (a).

Proof. By Theorem 7.25, there are unique naturals νi ∈ N and prime ideals pi of
O such that

(9.2) b =
n∏

i=1

pνi
i .

Because a ⊇ b, there are integers µi such that 0 ≤ µi ≤ νi and

(9.3) a =
n∏

i=1

pµi

i .

For each i ∈ N such that i ≤ n, let ai ∈ pµi

i \ pµi+1
i . By the Chinese Remainder

Theorem, there is an a ∈ O such that a ≡ ai mod pνi
i for all i ≤ n. Because of

this, every element of the fractional ideal generated by b + (a) in Opi is congruent
to an element of the fractional ideal generated by a in Opi

, and vice versa, i.e. the
two fractional ideals are equal, for every i. In the localization of O at any other
prime ideal, the fractional ideals generated by both are trivially the same. Since
the two ideals generate the same fractional ideals in the localization of O at any
prime ideal of O, b + (a) = a. �

Definition 9.4. Two nonzero proper ideals a and b are relatively prime if they
have no primes in common in their unique factorizations as given by Theorem 7.25.
This can be shown to be equivalent to a + b = R.

Corollary 9.5. Given any nonzero ideals a, b of a Dedekind domain O and b ∈ a,
there exist nonzero ideals a∗b and a∗b of O such that aa∗b is principal, a∗b is relatively
prime to b, and aa∗b = (b).

Proof. The claim for b ∈ a is trivial if b = 0.
Otherwise, (b) ⊆ a is nonzero, so by Theorem 7.25, as in the previous proof,

there exist unique prime ideals pi of O, naturals n and νi, and integers µi such that
0 ≤ µi ≤ νi,

(9.6) a =
n∏

i=1

pµi

i , and (b) =
n∏

i=1

pνi
i .

†Proposition 6.12 and Corollary 6.11, respectively
†Good resources for learning about localization are [4], [5], [7], and [9].
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Let

(9.7) a∗b =
n∏

i=1

pνi−µi

i .

Then aa∗b = (b).
We know ab ⊆ a, so by Proposition 9.1, there is an a ∈ O such that a = ab+(a).

Therefore, a = ab + aa∗a, so O = b + a∗a. Set a∗b to be a∗a. �

Theorem 9.8. A Dedekind domain is a U.F.D. if and only if it is a P.I.D.

Proof. A P.I.D. is necessarily a U.F.D.
Suppose then, that O is a Dedekind U.F.D. Let p be a prime nonzero ideal of O.

There is a nonzero element in p, and by Proposition 6.9, it has an irreducible factor
p. By Corollary 9.5, there are elements a, b ∈ O and nonzero ideals p∗p, p∗a, (p∗a)∗b of
O such that pp∗p = (p), pp∗a = (a) , p∗p + p∗a = O, p∗a (p∗a)∗b = (b), and (p∗a)∗b + p = O.
We can see that (pb) = pp∗pp

∗
a (p∗a)∗b = (a) p∗p (p∗a)∗b . Therefore a|pb, i.e. there exists

a c ∈ O such that ac = pb. Because O is a U.F.D., p|a or p|c.
Assume that p|c. Then there is a d ∈ O such that pd = c, so dp = (p∗a)∗b ,

contradicting their selection as relatively prime. Hence, p|a, i.e. there is an e ∈ O
such that pe = a, so ep∗p = p∗a. This means that any ideal that was a factor
of p∗p would also be a factor of p∗a, which cannot be because they are relatively
prime. Thus, p∗p = O. Since pp∗p = (p) by construction, this argument tells us that
p = (p). �

So our hope seems to have been näıve - in reality, to talk about unique prime
factorization of elements in a Dedekind domain, we necessarily must require it to
be a P.I.D. However, with a new tool, we can measure how far away we are.

Proposition 9.9. The set of fractional ideals form an abelian group under multi-
plication, with 1 = O and a−1 = {k ∈ K | ka ⊆ O}.

Proof. Associativity, commutativity, and identity are all trivial to show.
Lemma 7.23 says that for a prime ideal p, pp−1 ) p, and since O is Dedekind,

this means that pp−1 = O. Therefore, if a is an ideal and

(9.10) a =
n∏

i=1

pi, b =
n∏

i=1

p−1
i

will give ab = O. By this, b ⊆ a−1. If b ∈ a−1, bab ⊆ b, so b ∈ b, remembering that
ab = O. Therefore a−1 = b. Were a a fractional ideal and not an ideal, we could
pick an a ∈ a such that aa is an ideal of O, with an inverse that is easily shown to
be a−1a−1, so aa−1 = O. �

Definition 9.11. The group in Proposition 9.9 is the ideal group of K, denoted
JK .

Corollary 9.12. Every fractional ideal a ∈ JK has unique prime factorization

(9.13) a =
n∏

i=1

pνi
i , νi ∈ Z.

Proof. After realizing that there are ideals b, c such that a = b/c for any fractional
ideal a, this is a direct consequence of Theorem 7.25. �
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Definition 9.14. It is trivial to show that PK = {kO | k ∈ K} is a subgroup of
JK . ClK = JK/PK is the class group of K. |ClK | is the class number of K.

Remark 9.15. It is elementary to show that a domain is a P.I.D. if and only if its
class number is 1.

In a very hands-waving manner, let me say that the class number indicates to
what extent the ideals can vary from being principal, i.e. to what extent unique
prime factorization can fail for elements despite holding for ideals, in a Dedekind
domain. This makes a little more sense if Theorem 9.8 and Remark 9.15 are kept in
mind. The class number is in fact necessarily finite, but the proof of this is outside
the scope of this paper. Different proofs can be found in [5], [7], and [9].

Calculating the class number of a domain is tricky. One way to do it is using
Minkowski’s Lemma.† That is not the subject of this paper, but more about it
can be found in [7] and [9]. One of the more common settings where this is an
issue is the quadratic field, as addressed in the last section. It turns out that Gauss
developed an explicit isomorphism between ideal classes in quadratic rings of a given
discriminant and SL2 (Z)-equivalence classes of binary integral quadratic forms of
the same discriminant D, denoted Cl

((
Sym2 Z2

)∗
;D
)
. Binary quadratic forms

are thoroughly understood, and number theorists have used this correspondence for
centuries to compute the class numbers of quadratic rings. This method, though
powerful, was lamentably limited to the special case of quadratic rings. However, a
few years ago, by finding a correspondence between sets of binary quadratic forms
and the space of 2×2×2 cubes of integers, denoted Z2⊗Z2⊗Z2, Manjul Bhargava
of Princeton found that Gauss’s correspondence was just a special case of a more
general trend, and found 13‡ analogous laws for other spaces, such as the ideal
classes of cubic rings, that is rings in degree 3 extensions of the rationals. These
correspondences ease calculations of determinants, simplify the criteria for finding
which orders in an algebraic number field are maximal, improve our understanding
of the splitting of primes in rings of integers, and aid in determining the invertibility
of ideal classes of a domain that isn’t Dedekind. The correspondences can be
remarkably simple. A teaser is laid out below. For a list of the correspondences
and speculation as to their implications, see [2]. For the paper that fleshes out and
proves the most important and accessible ones, see [3].

Let A = (a, b, c, d, e, f, g, h) ∈ Z2 ⊗ Z2 ⊗ Z2. It’s best to think of this as a cube,
where

MA
1 =

(
a b
c d

)
and NA

1 =
(
e f
g h

)
are the front and back,

MA
2 =

(
a c
e g

)
and NA

2 =
(

b d
f h

)
are the left and right, and

MA
3 =

(
a e
b f

)
and NA

3 =
(
c g
d h

)
are the top and bottom halves, respec-

tively.
A little expansion will show that QA

i = −det
(
MA

i x−NA
i y
)

will give a binary
quadratic form for which Disc

(
QA

1

)
= Disc

(
QA

2

)
= Disc

(
QA

3

)
, so we can define

†This is also known as Minkowski’s Theorem.
‡There are probably more.
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Disc (A) = Disc
(
QA

1

)
. This discriminant can be shown to be the only invariant un-

der the natural action of SL2 (Z)×SL2 (Z)×SL2 (Z), which is shown to be equivalent
to a more geometrically intuitive action by way of this cube correspondence in [3].
After a lot of work, one can show that, given three binary quadratic forms of the
same discriminant D, after modding out by an equivalence relation, this uniquely
determines the cube that would map to them, up to another equivalence relation,

i.e. there is a bijection between Cl
(
Z2 ⊗ Z2 ⊗ Z2;D

)
and Cl

(((
Sym2 Z2

)∗)3

;D
)

.

Moreover, in [3], it is shown how group laws can be formed on Cl
(
Z2 ⊗ Z2 ⊗ Z2;D

)
and Cl

((
Sym2 Z2

)∗
;D
)

such that the above map composed with any projection
is a group homomorphism.
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