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Abstract. This paper gives a brief introduction to the theory of algebraic

numbers, with an eye toward computing the class numbers of certain number
rings. The author adapts the treatments of Madhav Nori (from [1]) and Daniel

Marcus (from [2]). None of the following work is original, but the author does

include some independent solutions of exercises given by Nori or Marcus. We
assume familiarity with the basic theory of fields.

1. A Note on Notation

Throughout, unless explicitly stated, R is assumed to be a commutative integral
domain. As is customary, we write Frac(R) to denote the field of fractions of
a domain. By Z, Q,R,C we denote the integers, rationals, reals, and complex
numbers, respectively. For R a ring, R[x], read ‘R adjoin x’, is the polynomial ring
in x with coefficients in R.

2. Integral Extensions

In his lectures, Madhav Nori said algebraic number theory is misleadingly named.
It is not the application of modern algebraic tools to number theory; it is the study
of algebraic numbers. We will mostly, therefore, concern ourselves solely with
number fields, that is, finite (hence algebraic) extensions of Q.

We recall from our experience with linear algebra that much can be gained by
slightly loosening the requirements on the structures in question: by studying mod-
ules over a ring one comes across entire phenomena that are otherwise completely
obscured when one studies vector spaces over a field. Similarly, here we adapt our
understanding of algebraic extensions of a field to suitable extensions of rings, called
‘integral.’

Whereas Z is a ‘very nice’ ring—in some sense it is the nicest possible ring that
is not a field—the integral extensions of Z, called ‘number rings,’ have surprisingly
less structure. Arbitrary number rings, for example, do not even have unique
factorization into irreducibles—let alone the property of every ideal being principal.
As in other subjects, when we are trying to understand objects of a certain type, we
try to group them into types. A natural ‘class’ of number rings would be the ones
that happen to be PIDs. We will define the ‘class number’ of a ring to measure,
in some sense, how badly a certain ring fails to be a PID. We will then show that
every number ring has finite class number. In other words, every number ring
is ‘somewhat close’ to being a PID. Finally, we will explicitly calculate the class
number of some number rings. This might require some slickness, because in general
there is no good way to calculate the class number explicitly.
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As we will see, our intuition is to translate statements about algebraic numbers
into statements about ideals in the ring of integers. In Z, for example, there is
a one-to-one correspondence between numbers and ideals because Z is a principal
ideal domain. This is not true for a ring that is not a principal ideal domain. This
trouble aside, we will see in Section 3 that ideals of number rings do factor uniquely
into a product of prime ideals. This will allow us to more easily calculate the class
number, as we reduce our examination of the ideals of a number ring to the prime
ones.

Definition 2.1. Let R ⊂ B be rings. We say b ∈ B is integral over R if b is the
root of a monic polynomial with coefficients in R. If b is integral over Z, we say b
is an algebraic integer. A ring extension R ⊂ S is integral if every s ∈ S is integral
over R.

Note that when R is a field, this definition coincides exactly with algebraic
extensions. That is, algebraic extensions of a field and integral extensions of a field
are the same darn thing. We now prove some rudimentary facts about integral
numbers.

Theorem 2.2 (Gauss). Let f ∈ Z[x] monic, and f = gh for g, h ∈ Q[x] monic.
Then g, h ∈ Z[x].

Proof. Let m (respectively, n), be the smallest positive integer so that mg ∈ Z[x]
(respectively, nh ∈ Z[x]). If the coefficients of mg have a common factor d > 1,
then, since g is monic, m is the coefficient of the term with highest degree. Whence
d divides m. Then m > m/d ∈ N and (m/d)g ∈ Z[x], contradicting the minimality
of m. Similarly for nh. If mn > 1, there is a prime p ∈ Z dividing mn. Reducing
the equation mnf = (mg)(nh) modulo (p) we see p divides (mg)(nh) whence
p|mg or p|nh. This contradicts the previous assertion that the coefficients of mg
(respectively nh) are relatively prime. �

If b is an algebraic over K, there is a monic polynomial over K with b as a root.
In fact, we can pick a monic polynomial of this description with the least possible
degree. We call this polynomial the minimal polynomial of b with respect to K. N.B.
that we can really use the word ‘the’ with reference to the minimal polynomial: we
assume familiarity with the fact that K[x] is a Euclidean Domain when K is a
field; from this it follows that the minimal polynomial is unique. Similarly, if b is
an algebraic integer, there is a monic polynomial over Z of minimal degree with b
as a root. We call this polynomial the minimal polynomial of b with respect to Z.
We now go about proving that we can meaningfully use the word ‘the’.

Corollary 2.3. If b is an algebraic integer, a minimal polynomial of b with respect
to Z is irreducible over Q[x].

Proof. Assume not. Then f is the product of g1, g2 ∈ Q[x],with deg(gi) <deg(f).
If gi has leading coefficient ci, then c1c2 = 1 and we can normalize the gi so that
they are monic. By Gauss’ Lemma, gi ∈ Z[x] for i = 1, 2. This contradicts the
assumption that f has least degree. �

Now that we know that a monic polynomial of least degree having b as a root is
irreducible over Q, we have deduced uniqueness: as Q[x] is a Euclidean domain, any
two monic polynomials of least degree with b as a root must divide each other (we are
skipping steps in this argument, as the method is routine). So, we can rightfully use
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the word ‘the’. We may then refine our understanding of the relationship between
minimal polynomials over K and over Z.

If b is integral over Z, it is algebraic over Q, so it has a minimal polynomial with
respect to Q, g ∈ Q[x], and a minimal polynomial with respect to Z, f ∈ Z[x].
As f is irreducible over Q[x], the uniqueness of monic irreducible polynomials over
Q shows that f = g, hence g ∈ Z[x]. We can thus ‘easily decide’ if an algebraic
number b is an algebraic integer: given the monic minimal polynomial of b, it has
coefficients in Z if and only if it is integral. We summarize:

Corollary 2.4. If K is a number field, k ∈ K is an algebraic integer if and only
if the irreducible polynomial in Q[x] lies in Z[x]. In other words, the minimal
polynomial over Z is the same as the minimal polynomial over Q.

Corollary 2.5. A rational algebraic integer is an integer.

Proof. The minimal monic polynomial of q ∈ Q is x − q. Trivially, x − q ∈ Z[x] if
and only if q ∈ Z. �

This property of the integers in their field of fractions is essential, and will come
up again. In order to generalize our results about integral elements, we will first
come up with several equivalent definitions of integral.

Theorem 2.6. For R ⊂ S domains, b ∈ S, the following are equivalent:
(1) b is integral over R
(2) R[b] is finitely generated as an R-module
(3) There is a finitely generated R-module M that is torsion free as an R[b]-

module.

Proof. (1)⇒(2) If b is the root of a monic irreducible polynomial over R of degree
n, then R[b] is in the R-span of A = {1, b, b2, . . . , bn−1}.

(2)⇒(3) Directly: take R[b] = M ; since S is a domain, R[b] is a torsion free
R[b]-module.

(3)⇒(1) Essentially, we use the Cayley-Hamilton Theorem to find the charac-
teristic polynomial of `b, a monic polynomial over R in b. If M is generated by
{α0, . . . , αn}, then we consider the R[b]-endomorphism `b : M → M given by
αi 7→ bαi for all i ∈ {0, . . . , n}, and extend linearly to all of M . Note that `b
is an R-module homomorphism precisely because R[b] is a commutative ring. As
M is both an R[b]-module and an R-module, `b is both an R[b]-module homomor-
phism and an R-module homomorphism. This means that we can represent `b as
a matrix (not necessarily uniquely!) with entries in R[b] and with entries in R.
As an R[b]-module endomorphism, we write `b as the matrix bI; as an R-module
endomorphism, we write `b as the matrix A with coefficients in R. Without loss of
generality, assuming that b 6∈ R, bI and A are distinct matrices. Therefore bI−A is
not identically the 0 matrix. It is, however, the zero endomorphism. We therefore
use the standard determinant trick that is so typical of Cayley-Hamilton. For any
a0, . . . , an ∈ R:

`b


a0

a1

...
an

 = (bI)


a0

a1

...
an

 =


ba0

ba1

...
ban

 = A


a0

a1

...
an


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We see that bI−A is the zero endomorphism. Examining the main diagonal of A,
(let us name it a0, . . . , an), then ai 6= b. BecauseM is torsion free as an R[b]-module,
`b satisfies its characteristic polynomial. That is, det(A − xI) gives a polynomial
for which 0 is a root. �

We can now use that very helpful theorem to deduce several simple facts.

Fact 2.7. Let R ⊂ B be domains. Then OB = {b ∈ B|b is integral over R} is a
ring, called the integral closure of R in B. When the notation is not confusing, we
omit the B and write O.

Proof. It is sufficient to show that, for a0, a1 ∈ O, a0 + a1, a0a1 ∈ OB = O.
From theorem 2.6, we know that R[a0] is finitely generated by X = {x0, . . . , xn},
similarly for R[a1] by Y = {y0, . . . , ym}. We then simply note that R[a0, a1] is
torsion free as a module over itself. It is generated by {xy | x ∈ X, y ∈ Y } over
R. Therefore R[a0, a1] is finitely generated and torsion free as an R module, so it
is finitely generated and torsion free as an R[a0 + a1]-module (respectively, as an
R[a0a1]-module) whence a0 + a1 (respectively a0a1) is integral over R by theorem
2.6. �

In the special case when R is Z and B is a number field, OB is called the the
ring of integers or a number ring.

Example 2.8. As
√

2 and
√

3 are algebraic integers, the previous fact shows that√
2 +

√
3 = α is also an algebraic integer. Using the algorithm outlined in 2.6,

we compute the monic polynomial. First we consider the Q-linear transformation
`α : Q[

√
2,
√

3] → Q[
√

2,
√

3]. As Q[
√

2,
√

3] has Q-basis 1,
√

2,
√

3,
√

6, we see:
1 7→

√
2 +

√
3

√
3 7→ 3 +

√
6√

2 7→ 2 +
√

6
√

6 7→ 3
√

2 + 2
√

3
Whence,

`α =


0 2 3 0
1 0 0 3
1 0 0 2
0 1 1 0

 .

Furthermore, we can can also view `α as an endomorphism of Z[α]-modules. `α
can thus be represented as the matrix αI. Since Z[

√
2,
√

3] is torsion free as a
Z[α]-module, 0 = det (`α − αI) = α4 − 10α2 + 1.

Fact 2.9. Let R ⊂ S ⊂ T be domains. If S is integral over R and T is integral
over S, then T is integral over R.

Proof. For all t ∈ T , t is the root of a monic polynomial a0 + a1x+ · · ·+xn ∈ S[x].
Furthermore, R[ai] is a finitely generated, free R-module for all i ∈ {0, . . . , n− 1}.
Thus R[a0, a1, . . . , an] = A is a finitely generated free R-module and A[t] is a finitely
generated A-module, hence a finitely generated R module. We can thus conclude
that A[t] is a finitely generated free R[t]-module, whence t is integral over R. �

Fact 2.10. Given a number field, K, with number ring, O, the field of fractions of
O is K.

Proof. Given α ∈ K, there is m ∈ Z so that mα ∈ O. If the minimal (not
necessarily monic) polynomial of α is f(x) = anx

n + · · · + a0 ∈ Z[x], then α is
a root of (an)n−1f(x) = g(x). But g(x) is a monic polynomial in anα, whence
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anα = α′ ∈ O. That is, 1
an

= q ∈ Q ⊂ Frac(O), the field of fractions of O.
Therefore, there is q, α′ ∈ Frac(O) so that qα′ = α for all α ∈ K. Therefore
K ⊂ Frac(O). �

Now that we know that the integral closure of a ring is a ring, and that integral
extensions of integral extensions are integral, we have found an interesting sub-
structure of any algebraic extension K of Q. The integral closure of K over Z, OK

is a ring and contains all the algebraic integers of K.

Definition 2.11. For a domain R with field of fractions K, a ring S ⊂ K is
integrally closed if for any k ∈ K \ S, k is not integral over S.

Fact 2.12. Given a number field, K. The integral closure of Z in K, OK , is
integrally closed.

Proof. If k ∈ K is integral over O, then by Fact (2.9), k is integral over Z, whence
k ∈ O. �

As number fields are finite extensions of Q, number rings are the corresponding
integral closures of number fields. What can be said about number rings? Certainly,
as subrings of fields, they are domains. Are they principal ideal domains? Are
they unique factorization domains? We will see the answer to these questions is,
unfortunately, no. What properties do they have? Before moving on to number
rings, we will start by giving some properties of the simplest number ring, the
integers.

Observation 2.13. Z is a principal ideal domain.

Observation 2.14. Z is integrally closed in its field of fractions.

Observation 2.15. Nonzero prime ideals are maximal. (Since, for p ∈ Z prime,
Z/pZ is a field.)

Note that if R is a principal ideal domain, then primes are irreducible. That
is, for 0 6= p ∈ R prime, if there were a proper ideal I containing pR then, as R
is a PID, there is r ∈ R so that I = rR ⊃ pR. This means that there is x ∈ R
so that rx = p. Since rR 6= R, r /∈ R×. Whence, x must be a unit, since p is
irreducible. Then rR = pR and pR is maximal. We have shown that, in a principal
ideal domain, nonzero primes are maximal. Thus, Observation 2.13 ⇒ Observation
2.15. In fact, in general, unique factorization domains are integrally closed in their
field of fractions.

We stated that number rings are not principal ideal domains; in general, they
are not even unique factorization domains. It is time for some examples.

Example 2.16. For d a square free integer, Q
[√

d
]

is a number field with ring of
integers

Z
[√

d
]

if d ≡ 2 or 3 (mod 4)

Z

[
1 +

√
d

2

]
if d ≡ 1 (mod 4) .
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This amounts to calculations. For completeness, we include the calculations;
reader be advised—you are more likely to understand this if you figure it out your-
self. What follows is not the shortest proof, but it is the proof that one finds if one
sets out naively.

Proof. As Q
[√

d
]

is a quadratic extension spanned by 1,
√
d, for any α ∈ Q

[√
d
]
,

α = a+b
√
d for a, b ∈ Q. Then α is the root of (x−(a+b

√
d))(x−(a−b

√
d)) = x2−

2ax+a2−b2d. By Fact (2.4), α is an algebraic integer if and only if 2a, a2−b2d ∈ Z.
As 2a = m ∈ Z, this means that 4b2d ≡ m2 (mod 4).

What remains to be shown, is that this implies that if d ≡ 1 (mod 4) then
2b ∈ Z and 2a ≡ 2b (mod 2) and if d ≡ 2, 3 (mod 4) then a, b ∈ Z.

If d ≡ 1 (mod 4) and m is even then a ∈ Z so 4b2 ∈ 4Z, whence b2 ∈ Z and
b ∈ Q. Because rational algebraic integers are integers, b ∈ Z. Furthermore, a, b ∈ Z
means that 2a ≡ 2b ≡ 0 (mod 4). If m is not even, then 1 ≡ 4b2 (mod 4) so
4b2 ∈ Z. Thus 2b ∈ Z and 2b ≡ 1 ≡ 2a (mod 4).

We have shown that α ∈ Z
[

1+
√

d
2

]
. Furthermore, 1+

√
d

2 is an algebraic integer,

as it is the root of x2 − x+ 1−d
4 . This completes the case when d ≡ 1 (mod 4).

If d ≡ 3 (mod 4) then m2 ≡ 12b2 (mod 4). Then a /∈ Z if and only if m /∈ 2Z
if and only if 1 ≡ 12b2 (mod 4) i.e. 3 ≡ 4b2 (mod 4). So 4b2 ∈ Z means that
(2b)2 ∈ Z whence 2b ∈ Z. But then (2b)2 ≡ 3 (mod 4) which is impossible for
2b ∈ Z. Similarly for d ≡ 2 (mod 4) because 1 ≡ 8b2 (mod 4) means that
8b2 ∈ Z, i.e. (2b)2 ∈ 1

2Z. Since 1
2 is not a square, (2b)2 ∈ Z; whence 2b ∈ Z. But

then (2b)2 ≡ 0 or 1 (mod 4) implies 8b2 ≡ 0 or 2 (mod 4); a contradiction.
For d ≡ 3 (mod 4), if a ∈ Z then m is even and 0 ≡ 12b2 (mod 4). Then

3b2 ∈ 4Z so b2 ∈ 4
3Z implies b2 ∈ 4Z whence b ∈ 2Z. Similarly for d ≡ 2 (mod 4):

a ∈ Z implies that 0 ≡ 8b2 (mod 4), whence 2b ∈ Z. If b /∈ Z, then 2b is odd,
whence (2b)2 ≡ 1 (mod 4). But this would imply 0 ≡ 8b2 ≡ 2 (mod 4), a
contradiction.

In all cases, we have shown a, b ∈ Z, whence α ∈ Z
[√

d
]
. Lastly,

√
d is obviously

integral over Z. This completes the proof. �

We would naturally like to derive properties of these number rings. For d > 0,
we call OQ[

√
d] a real quadratic number ring; likewise, when d < 0, OQ[

√
d] is an

imaginary quadratic number ring.

Fact 2.17. OQ[
√
−5] = Z

[√
−5

]
is not a unique factorization domain.

This will become clear, once we determine some primes in Z
[√
−5

]
. In order to

do that without causing too much of a headache, we will first develop some tools to
analyze the structure of number rings. Using the determinant trick from the proof
of Theorem 2.6, we consider the following.

Definition 2.18. For a field F , and for B a finite dimensional F -algebra, for a fixed
α ∈ B we consider the F -algebra homomorphism rα : B → B given by x 7→ xα for
all x ∈ B. We then define the norm of α (relative to F ), NB/F (α) = detF (rα). If
no confusions arise, for simplicity, we write NF (α) or even N(α).

Fact 2.19. The norm is multiplicative.
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This is immediate, as the determinant is. One might ask if det(rα) = det(`α)
for all α ∈ B. Generally speaking, if the F -algebra is not commutative, this might
not be the case. We will show, however, that if the F -algebra is simultaneously a
division algebra, they are equal. First though, we have an example.

Example 2.20. Recalling the algebraic integer
√

2+
√

3 = α from example 2.8, we
compute NQ(α). This amounts to taking the determinant of the linear transforma-
tion in 2.8, or, because we are lazy, simply plugging in 0 for the minimal polynomial
of α in the determinant already computed. Then N(α) = 1, the constant term of
the monic polynomial of α. The way that we arrived at this computation reveals
that this is not a coincidence—it suggests a deeper phenomenon. We also note that
N(
√

2 +
√

3) ∈ Z× and, indeed,
√

2 +
√

3 ∈ O×.

Claim 2.21. Let B be a division algebra over F a field with dimF (B) = n. Given
b ∈ B with minimal monic polynomial f ∈ F [x], f(x) = xr + a1x

r−1 + · · · + ar,
det(rb) = ((−1)r

ar)
n/r. In particular, det(rb) = det(`b).

Proof. Let L = F [b]. Then dimF L = r and F ⊂ L ⊂ B. Then L is a finite
dimensional integral domain (since B is a division algebra), whence L is a division
algebra, making B an L-vector space. This shows r|n.

The ring L has F -basis 1, b, b2, . . . , br−1. Let B have L-basis 1 = v1, v2, . . . , vr/n.
Then rb|L = r′b is an F -algebra endomorphism. In fact, we can easily calculate the
determinant of r′b : because b is a primitive element, r′b acts very nicely on the basis
formed by powers of b.

(2.1) r′b =


0 0 0 · · · ar

1 0 0 · · · ar−1

0 1 0 · · · ar−2

...
. . .

0 0 · · · 1 a0


so that

det(r′b) = (−1)r−2 det


ar 0 0 · · · 0
ar−1 1 0 · · · 0
ar−2 0 1 · · · 0

...
. . .

a0 0 0 · · · 1

 = (−1)rar

We can extend this calculation to rb, as we have a nice F -basis of B which de-
composes B into n/r invariant subspaces of dimension r. Pick the basis {aib

j |i ∈
{1, . . . , r/n}, j ∈ {0, . . . , r − 1}}, then

rb =

 2 0 0

0
. . . 0

0 0 2


where 2 denotes the matrix previously associated to r′b. A simple linear algebra
trick gives det(rb) = (det(r′b))

n/r, whence the claim. �

Observation 2.22. The usual norm in C of an element a + bi, for a, b ∈ R, is
given by a2 + b2 which happens to equal the product of the complex conjugates
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(a+ bi)(a− bi). Thus the norm as defined in 2.18 coincides with the one we know
(and love).

The following is immediate from the calculation of claim 2.21.

Corollary 2.23. Let K be a number field with integral closure O with respect to
Z. Then for a ∈ O, NK/F (a) ∈ Z.

Corollary 2.24. For α algebraic over F , a field, NF [α]/F (α) is the product of the
conjugates of α.

Proof. The minimal monic polynomial of α, f(x) =
∏

σ∈EmbF (F [α]) (x− σ(α)),
whence the constant term of f is the product of the conjugates, = (−1)r

∏
σ (σ(α)).

�

Corollary 2.25. With K and O and a as before, N(a) = ±1 if and only if a ∈ O×.

Proof. If N(a) = ±1 then the minimal monic polynomial over Z of a has constant
term ±1. For all γ ∈EmbQL, 0 = γ (f(b)) = f (γ(b)) shows that γ(b) ∈ O. But the
product of the conjugates of b is precisely the constant term of f , i.e. ±1. If a ∈ O×,
then there is a−1 ∈ O so that N(a)N(a−1) = N(1) = 1, i.e. N(a) ∈ Z×. �

With this extra machinery, we can now return to the problem of (2.17). Observ-
ing that a + b

√
−5 is conjugate to a − b

√
−5 over Q, we see that N(a + b

√
−5) =

a2 − 5b2. We then conclude that Z
[√
−5

]
has no elements of norm 2 or 3. If

a + b
√
−5 ∈ Z

[√
−5

]
had norm 2, then a2 − 5b2 ≡ a2 − b2 ≡ 2 (mod 4), an im-

possibility. Likewise a2 − 5b2 ≡ a2 ≡ 3 (mod 5) is impossible. We then conclude
that 2, 3, (1+

√
−5), (1−

√
−5) are irreducible. As no algebraic integers in Z

[√
−5

]
have norm 2 or 3, there are no nonunit algebraic integers whose product has norm
4, 6 or 9. However, this means that 6 = 2 · 3 = (1 +

√
−5)(1 −

√
−5) cannot be

written uniquely as the product of irreducibles.

3. Number Rings

We have seen what can go wrong with number rings. Now we would like to come
up with some properties that number rings do have. We return to the observations
about the integers from 2.15.

Definition 3.1. A noetherian module is one in which every submodule is finitely
generated. A noetherian ring R is a noetherian R-module.

Theorem 3.2. The following are equivalent.
(1) A module M is noetherian, i.e. every submodule is finitely generated.
(2) M has the ascending chain condition on submodules.
(3) Every nonempty set of submodules of M has a maximal element.

Proof. (1) ⇒ (2) If I1 ⊂ I2 ⊂ · · · is an infinite chain of submodules of M , then⋃
n∈N In = I is a submodule of R, hence finitely generated: I = Rv1+· · ·+Rvk. For

all i ∈ {1, . . . , k} there is Iji
⊂ R so that vi ∈ Iji

. Therefore maxi∈{1,...,k}(ji) = j
and Ij = I, whence the chain stabilizes.

(2) ⇒ (3) If M has the ascending chain condition on submodules, then given a
nonempty set of submodules {I ⊂ R} = A, we will assume there is no maximal
submodule. As I1 ∈ A is not maximal, there is I2 ∈ A strictly containing I1.
Inductively, if Ik ∈ A is not maximal, there is Ik+1 ∈ A strictly containing Ik.
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There is thus a strictly ascending chain of submodules. By assumption, the chain
terminates, contradicting the strict ascent of the chain—whence there is a maximal
submodule in A.

(3) ⇒ (1) Assume, toward a contradiction, that there is a nonfinitely generated
submodule I ⊂ R. Then let A = {J ⊂ R|J ⊂ I, J finitely generated}. If A
had a maximal element J , then, as I is not finitely generated, there is x ∈ I/J .
J 6= J + xR ∈ A contradicts the maximality of J . �

Corollary 3.3. A submodule of a noetherian module M is noetherian.

Proof. It is sufficient to show that a submodule A ⊂M is noetherian according to
definition (2) of Theorem 3.2. Given any ascending chain of submodules of A, it is
also an ascending chain of submodule in R, whence the chain stabilizes. �

Note that the definition of a noetherian ring can be equivalently reformulated
by replacing the word ‘module’ with ‘ring’ and the word ‘submodule’ with ‘ideal’
in 3.2.

Corollary 3.4. A quotient module M/N of a noetherian module M is noetherian.

Proof. Let π : M → M/N be the quotient map. Much as in 3.3, any ascending
chain of submodules Ai ⊂ M/N pulls back to an ascending chain of submodules
π−1(Ai) ⊂M , since π−1(Ai) stabilizes, so do Ai. �

Fact 3.5. Given M , an R-module, with submodule N ⊂ M so that N and M/N
are noetherian, then M is noetherian.

Proof. 1 Given a submodule A ⊂ M , then N ∩ A = B ⊂ N is a submodule
of N , hence it is finitely generated, i.e. there are a1, . . . , an ∈ M so that B =
Ra1 ⊕ · · · ⊕ Ran. Let π : M → M/N be the natural projection. Then π(A) ⊂
M/N is a submodule, hence it is finitely generated by b1, . . . , bm. Then there are
c1, . . . , cm ∈ M so that π(ci) = bi for each i ∈ {1, . . . ,m}. Now, as M/N is
generated by bi, for every s ∈M , π(s) =

∑m
i=1 αibi, so s =

∑m
i=1 αici + y for some

y ∈ B. Then for every x ∈ A there is a y ∈ B so that x − y is in the R-span of
c1, . . . , cm, whence A = Ra1 ⊕ · · · ⊕Ran ⊕Rc1 ⊕ · · · ⊕Rcm. �

Corollary 3.6. For R a noetherian ring, if M is a noetherian R-module with the
structure of a ring, then it is a noetherian ring.

Proof. Since any M -submodule of M is also a R-submodule, an ascending chain of
M -submodules must stabilize. �

Here, we use the trace-form, which we’ll define as the trace of the linear map
that is multiplication on the left.

Definition 3.7. For x ∈ L a finite extension of K, the trace of x with respect to
L/K is TrL/K(x) =trK(`x), the trace of the multiplication-by-x linear map.

As in the calculation of the norm (2.21), we have the following fact.

Fact 3.8. For L/K separable, TrL/K(x) =
∑

σ∈EmbK(L) σ(x)

1This proof is directly from [4].
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Proof. For x ∈ K, TrL/K(x) = deg(L/K)x, verifying the fact on K. For x ∈ L

with minimal polynomial xn + an−1x
n−1 + · · ·+ a0, consider K[x] = F with basis

1, x, . . . , xn−1. Then `x ∈EndK(F ). With the basis chosen, we refer to equation
2.1 on page 7 to conclude that tr(`x) = an−1, which is the sum of the conjugates of
x. Allowing `x ∈EndK(L), we see TrL/K(`x) = [L : F ]

∑
σ∈EmbK(L) σ(x), finishing

the proof. �

Corollary 3.9. For x integral over a PID R, tr(x) ∈ R. In particular, we care for
the case when R = Z.

Proof. Let f(x) = xn + an−1 + · · · + a0 ∈ R[x] be the monic polynomial of x;
tr(x) = an−1 ∈ R. �

From Fact 3.8, we conclude that the trace is additive and scalars pull out. There-
fore, (x, y) 7→Tr(xy) is a symmetric bilinear form, called the trace form. We now
cite Lang [3], Theorem 5.2, which gives

Fact 3.10. For L/K a finite extension, L/K is separable if and only if the trace-
form (x, y) 7→TrL/K(xy) is nondegenerate, i.e. if and only if the map L→ L∗, the
dual vector space over K, by v 7→trv ∈ L∗, trv(x) =tr(vx), is an isomorphism of
K-vector spaces.

Obviously every PID is noetherian, as each ideal is, in fact, generated by one
element (i.e. every ideal is principal). We showed, however, that some number
rings are not principal ideal domains. Have no fear though, we will show that all
number rings are noetherian.

Definition 3.11. For R a PID, K its field of fractions, L a finite extension of K,
a ring A ⊂ K is an R-order of L if the following conditions hold:

(1) A ⊃ R
(2) A is finitely generated as an R-module
(3) For every k ∈ K there is 0 6= c ∈ R so that ck ∈ A.

Observation 3.12. From before, we saw that a ring of integers is an order. We
also saw that for any order A, A ⊂ OL. We will use this necessary condition of OL

to show that it is noetherian.

Fact 3.13. For R a PID, K its field of fractions, L a finite extension of K, there
is an order R ⊂ A ⊂ K.

Proof. Pick a K basis of L, S = {w1, . . . , wn}. As L is a K-algebra, wiwj ∈ L, let
ai,j,k ∈ K so that wiwj =

∑n
k=1 ai,j,kwk. As there are finitely many ai,j,k ∈ K,

there is c ∈ R\0 so that cai,j,k ∈ R for all i, j, k ∈ {1, . . . , n}. Because (cwi)(cwj) =∑n
k=1(cai,j,k)(cwk), A′ = Rcw1⊕· · ·⊕Rcwn is a finitely generated R-module which

is also closed under multiplication. If we let A = R⊕A′, it is clear that A contains R
and is finitely generated. Furthermore, for k ∈ L, write k =

∑n
i=1 aiwi for ai ∈ K.

Then, because K is the field of fractions of R, there is 0 6= r ∈ R so that rai ∈ R
for all i ∈ {1, . . . , n}. Then rk ∈ Rw1 ⊕ · · · ⊕Rw2, whence crk ∈ A′ ⊂ A. �

Observation 3.14. For R a PID, K its field of fractions, L a finite extension of
K, if A is an R-order then the field of fractions Frac(A) = L.

Proof. Given k ∈ L, there is 0 6= c ∈ R so that 0 6= ck ∈ A. Clearly K ⊂ Frac(A),
so 1

c ∈ Frac(A) ⇒ k ∈ Frac(A). �
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Observation 3.15. The rank of a Z-order A of a number field K is at least the
dimension of the number field.

Proof. For every k ∈ K, there is r ∈ Z so that rk ∈ A. We conclude the generating
set v1, . . . , vn of A spans K. �

Claim 3.16. For R a PID with field of fractions K, and a finite separable extension
L/K, OL is a noetherian ring.

Proof. Pick A an R-order of L with R-basis v1, . . . , vn. Because A is an order,
v1, . . . , vn form a K-basis of L. As L/K is finite and separable, the trace form is
nondegenerate, whence the trvi

form a K-basis of L∗, the K-vectorspace dual to
L, according to notation from 3.10. Furthermore, there is a basis vi ∈ L so that
trvi(v

j) = δi,j . Consider A⊥ = {x ∈ L| tr(αx) ∈ R ∀ α ∈ A}. Because the trace is
linear, A⊥ is an R-module. Then for any α ∈ OL and x ∈ A ⊂ OL, as αx ∈ OL, the
Corollary 3.9 shows that OL ⊂ A⊥. To show OL is noetherian, it is thus sufficient to
show that A⊥ is noetherian, by 3.3. If x ∈ A⊥, let x = q1v

1 + · · ·+ qnv
n for qi ∈ K.

Then, for any vi ∈ A, tr(vix) = qi ∈ R. This proves that A⊥ ⊂ Rv1 ⊕ · · · ⊕Rvn is
a finitely generated R-module, hence a noetherian R-module. In fact, tr(viv

j) ∈ R
shows that A⊥ = Rv1 ⊕ · · · ⊕ Rvn. By Corollary 3.6, OL ⊂ A⊥ is a noetherian
ring. �

In fact, we can improve this proof to bound the index [OL : A]. We consider the
matrix M =

(
tr(vivj)|ni,j=1

)
, the associated matrix to the symmetric bilinear form.

For w1, w2 ∈ L, letting ~w1, ~w2 denote the column vector according to the vi basis,
we see tr(w1w2) = ~w1

T(M) ~w2.

Definition 3.17. The discriminant of a finite separable extension L/K is the
determinant of the trace-form matrix.

Improvement 3.18. Given R a PID with field of fractions K, a finite separable
extension L/K with discriminant d, and an R-order A of L, [OL : A] ≤ d.

Proof. As before, A = Rv1 ⊕ · · · ⊕ Rvn. We seek to compute the basis vi used
in the previous proof. We want a basis vi so that tr(vivj) = δi,j , i.e. we want
~vi

T
(M)~vj = δi,j . This means ~vi

T
(M) = ~vi

T, or (M)T ~vj = ~vi. This amounts to
computing the inverse matrix, for which we invoke the useful Cramer’s Rule: let
N be the matrix of minors of MT, then NMT = det(M)I, where I is the identity
matrix. In particular, N has entries that are polynomials in the coefficients of M ,
hence N has entries in R.

(M)T ~vj = ~vi

N(M)T ~vj = N~vi

det(M)~vj = N~vi

~vj =
1

det(M)
N~vi ∈

1
d
A

Then A ⊂ OL ⊂
⊕n

i=1Rv
i ⊂ 1

dA, whence [OL : A] ≤ det(M) = d. �

Fact 3.19. In number rings, ideals have finite index.
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Proof. For O a number ring of number field K, I an ideal, let 0 6= α ∈ I. Since K is
a domain, N(α) 6= 0. We have already seen in corollary 2.23, that N(α) = m ∈ Z.
Then let β be the product of the nontrivial conjugates of α; in (2.24) we showed
that αβ = m, whence β ∈ K. Since β is integral over Z and in K, β ∈ O, whence
αβ = m ∈ I, and Rm ⊂ I. The quotient R/(Rm) has exactly mdeg K/Q elements:

since R is a free Z-module of rank degK/Q,

“Ldeg K/Q
i=1 Z

”
m

“Ldeg K/Q
i=1 Z

” '
⊕deg K/Q

i=1 Z/mZ.

Then |R/I| < |R/(Rm)|, R/I divides R/(Rm). �

Definition 3.20. The norm of an ideal I / R of a domain is the index [R : I] of
the ideal in the ring, denoted ‖I‖.

Observation 3.21. For principal ideals of a number ring, Rx/R, ‖Rx‖= |R/Rx| =
N(x), this follows because `x : R → Rx and det(`x) = |R/Rx|. More generally,
the norm of an element of an ideal as defined in 2.18 divides the norm of an ideal
containing that element. 3.19 shows that ideals have finite norm. That the index
of ideals is multiplicative shows the norm of ideals to be multiplicative.

Corollary 3.22. In number rings, nonzero primes are maximal.

Proof. For P a prime ideal of O, O/P is an integral domain. In fact, by (3.19), it
is a finite integral domain i.e. a field, whence P is maximal. �

These properties alone turn out to be quite stringent: from these we can deduce
much about our ring. For that reason, it makes sense to name this class of rings.

Definition 3.23. A domain R with the following properties is called a Dedekind
domain:

(1) R is noetherian.
(2) Every nonzero prime is maximal.
(3) R is integrally closed in its field of fractions.

Corollary 3.24. Every number ring is a Dedekind domain.

Proof. We have shown 1 in claim 3.16 and 2 in 3.22. From 2.10 and 2.12, 3 is
immediate. �

We are now in good shape to prove some key facts about Dedekind domains.
And, the best part is that every time we prove something about a Dedekind domain,
we prove something about number rings!

Fact 3.25. In a Dedekind domain, D, every ideal contains a product of prime
ideals.

Proof. If not, then there is a nonempty set of ideals that contain no products of
primes. This set has a maximal member I by definition 3 of a noetherian ring. As
I is not prime (otherwise it would not be in the set of ideals containing no products
of primes), there are a, b ∈ R/I so that ab ∈ I, whence Ra + I, Rb + I are ideals
that are both strictly bigger than I, i.e. containing a product of prime ideals. On
the other hand, (Ra+ I)(Rb+ I) = R2ab+RaI+RbI+ I2 ⊂ I, contains a product
of primes. �

That is a cool fact about number rings that we, otherwise, did not know. If we
think of the simplest Dedekind domain (Z), then the previous fact is stupid-easy
as Z is a PID.
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Lemma 3.26. For A ( D an ideal of a Dedekind domain with field of fractions
K, there is ψ ∈ K\D so that ψA ⊂ D.

Before we prove this Lemma, we state it in terms of Z for concreteness: given a
proper ideal (nZ), n ∈ Z, there is a nonintegral fraction q ∈ Q/Z so that q(nZ) ⊂ Z.
Naturally, we would think to take 1

n = q 6∈ Z because n is not a unit. In the case
where the Dedekind domain in question is not a principal ideal domain, this will
not be so straightforward.

Proof of Lemma. We will examine 0 6= a ∈ A. ThenDa/D means thatDa contains
a product of prime ideals: in particular there is a minimal n so that P1 · · ·Pn ⊂ Da.
Furthermore, there is a maximal (hence prime) ideal I ⊃ A ⊃ P1 · · ·Pn. If Pi 6⊂ I
for all i ∈ {1, . . . , n} then there would be an n-tuple (a1, . . . , an) so that ai 6∈ I
and a1 · · · an ∈ I, contrary to the primality of I. Therefore there is a Pi ⊂ I;
without loss of generality, let P1 ⊂ I. Because, in Dedekind domains, prime ideals
are maximal, P1 = I. Then, as Da cannot contain a product of fewer than n
primes, P2 · · ·Pn\Da is nonempty. Let b ∈ P2 · · ·Pn\Da, then ψ = b/a ∈ K. Since
ψa 6∈ Da, ψ 6∈ D. Furthermore, since P1 ⊃ A, for all α ∈ A, bα ∈ P1 · · ·Pn ⊂ Da
whence bα is a multiple of a and ψα = bα/a ∈ R. �

Claim 3.27. For every ideal I / D a Dedekind domain, there is an ideal I ′ / D so
that II ′ is principal.

Proof. Let 0 6= α ∈ I. Then I ′ = {ψ ∈ D|ψI ⊂ Dα} is an ideal: if a1, a2 ∈ J then
(a1 + a2)I = a1I + a2I ⊂ Dα and, for all b ∈ D, b(a1I) ⊂ b(Dα) ⊂ Dα. Since
α ∈ I ′, I ′ is a nonzero ideal and II ′ ⊂ Dα. Then A = 1

αII
′ ⊂ D is an ideal because

D is commutative.
There are then two possibilities: either A = D or A ( D. If A = D, then

II ′ = Dα, whence the claim. If A ( D, then by 3.26 there is ψ ∈ K\D so that
ψA ⊂ D. Since α ∈ I, I ′ ⊂ A and ψI ′ ⊂ ψA ⊂ D. Also, ψA = ψ 1

αII
′ ⊂ D means

that ψII ′ ⊂ Dα, whence, for all j ∈ I ′, ψ(jI) ⊂ Dα shows that ψj ∈ I ′.
I ′ now looks surprisingly like a D[ψ] module. Since I ′ is finitely generated as

a D-module—because D is a Dedekind domain—it is finitely generated as a D[ψ]-
module, whence ψ is integral over D by property 3 of 2.6. Then, by the integral
closure of Dedekind domains, ψ ∈ D, contradicting 3.26. �

Corollary 3.28 (Cancellation Law). If A,B,C / D, a Dedekind domain, AB =
AC ⇒ B = C.

Proof. By Claim 3.27 there is A′ / D so that A′A is principal, so there is α ∈ D
such that A′A = αD and (αD)B = (αD)C. Trivially: for every a1 ∈ (αD)B there
is a2 ∈ (αD)C so that a1 = a2. Then there is d1, d2 ∈ D and b ∈ B, c ∈ C so that
a1 = αd1b and a2 = αd2c. If K is the field of fractions of D, there is 1

αd1
, 1

αd2
∈ K

so that a1 = a2 ⇒ b = c. �

As we have a suitable cancellation law in multiplication of ideals, we know what
it means for ideals to divide one another. If A,B are ideals of some domain R, then
we say A divides B (written A|B) if there is r ∈ R so that rA = B.

Corollary 3.29. For D a Dedekind domain, if A,B / D then A|B if and only
if A ⊃ B. This is often rephrased simply as: in Dedekind domains, to divide is
precisely to contain.
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Proof. Trivially, A|B means that for every a ∈ A and b ∈ B there is c ∈ D so
that ac = b, whence b ∈ A and B ⊂ A. On the other hand, if A ⊃ B, then for
some α ∈ D there is A′ / D so that AA′ = Dα and BA′ ⊂ Dα. We then see that
C = 1

αBA
′ ⊂ D. Exactly as in the proof of Claim 3.27, C is in fact an ideal. Then

AC = B. �

Elucidating the structure of Dedekind domains, we are now set to prove a very
pleasing result, which (partially) offsets the unpleasantness that there are number
rings that are not unique factorization domains.

Theorem 3.30. Every (proper) ideal in a Dedekind domain D is uniquely repre-
sentable as a product of prime ideals.

While it is not true, that unique factorization domains are Dedekind in general,
this theorem shows that in some sense a Dedekind domain can be worked with in
a similar fashion as a UFD. This theorem is encouraging in that it enables us to
work effectively with ideals of number rings.

Proof. Proof of TheoremWe proceed exactly as in the proof of the fundamental
theorem of arithmetic (that Z is a UFD): first we show every ideal is the product
of primes. We consider the (nonempty) collection S of proper ideals of D which are
not representable as a product of primes. Since D is noetherian, S has a maximal
element M ( D. M is contained in a maximal (hence prime) ideal P . By Corollary
3.29, P divides M and there is ideal Q / D so that M = PQ. Similarly, Q divides
M so Q ⊃ M : we see, from the Cancellation Law 3.28, that Q ) M : if Q = M
then DM = DQ ⇒ D = P , contradicting the primality of P . As Q ) M , Q 6∈ S,
whence Q is a product of primes. But M = PQ shows that M is also, in fact, a
product of primes, contradicting M ∈ S.

Note that the proof has used the same arguments employed in the fundamental
theorem of arithmetic.

We still must show that the representation of an ideal as a product of prime
ideals is unique. Suppose not: then there is a minimal r ∈ N so that there are
equivalent products of prime ideals P1 · · ·Pr = Q1 · · ·Qs for Pi 6= Qj for some
i ∈ {1, . . . , r}, j ∈ {1, . . . , s}. We conclude that P1 ⊃ Q1 · · ·Qs, and, precisely as
in the proof of Lemma 3.26, there is Qi ⊂ P1; without loss of generality Q1 ⊂ P1.
Because P1 is a prime ideal, it is maximal by property 2, hence P1 = Q1. From the
Cancellation Law 3.28, we see P2 . . . Pr = Q2 . . . Qs, contradicting the minimality
of r. �

Corollary 3.31. A number ring has unique factorization into prime ideals.

We finish this section with a nice application of this fact to our understanding
of the ideals of a number ring. This will come up again later, when we talk about
how number rings are ‘almost’ principal ideal domains.

Fact 3.32. For any n ∈ N, there are finitely many ideals I in O so that ‖I‖ = n.

Proof. The norm is multiplicative and takes integer values. Furthermore, primes
ideals take values strictly greater than 1. Because ideals in number rings have
unique factorization into primes, we most simply prove there are finitely many
prime ideals with norm ≤ n. For x ∈ I, any ideal, x satisfies an (irreducible) monic
polynomial with coefficients in Z, whence the constant term of the polynomial is
nonzero, i.e. xr+ar−1+· · ·+a0 = 0 for ai ∈ Z, a0 6= 0. Then a0 = xr+· · ·+a1x ∈ I,
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whence I ∩ Z 6= 0. Therefore, if P is a (proper) prime ideal in O, it contains a
nonzero integer a0 ∈ P . Say a0 = pl1

1 p
l2
2 · · · ple

e the prime factorization of a0 in Z.
Then, by definition of primality, there is a pi ∈ P . If P contained another prime
integer q, then P contains their Z-span, namely, 1, contradicting the primality of
P . Therefore a prime ideal contains only one integer prime. Since ‖P‖ ≥ 2, its
prime factorization must be the power of a prime, i.e. ‖P‖ = pt for t ∈ N. Then
pO factors

∏s
i=1 P

ai
i . If an ideal has norm a power of p, then it contains p. To

divide is to contain implies that the ideal divides pO. But there are only s such
prime ideals. �

4. Ideal Classes

Now that we have seen that some number rings are not principal ideal domains,
we would like some way of measuring how much Z

[√
−5

]
is not a PID. In the

integral closure of a number field, we see that, all (nonzero) principal ideals are a
scalar of one another—i.e. there is an element in the number field that appropriately
scales any (nonzero) principal ideal to any other. This does not seem like it should
be true for ideals in general—if an ideal were a scalar of a principal ideal, it would
be principal. With this in mind we partition the set of ideals into classes under the
following relation.

Definition 4.1. For number field K with ring of integers OK = O, two nonzero
ideals I1, I2 / O are principally equivalent, denoted ∼, if there is α ∈ K so that
I1α = I2. The class number of a ring of integers (or of a number field) is the
number of ideal classes under right principal equivalence.

Fact 4.2. Right principal equivalence is an equivalence relation.

Proof. Obviously every ideal is principally equivalent to itself. As we only concern
ourselves with nonzero ideals, I1α = I2 means that α ∈ K×, whence α−1 ∈ K and
I2α

−1 = I1. I1 ∼ I2 ∼ I3 so that I1α1 = I2 and I2α2 = I3 implies I1α1α2 = I3. �

Observation 4.3. For a number field, the class number is 1 if and only if the
corresponding number ring is a principal ideal domain.

Proof. If the class number is 1, then there is α ∈ K so that every ideal is equivalent
to the nonproper ideal R, whence the ideal is Rα. If the number ring is a principal
ideal domain, then for all nonzero ideals Rα1, Rα2 there is q = α1

α2
∈ K so that

Rα2k = Rα1. �

Fact 4.4. The set of ideal classes of a ring of integers O forms a group under
multiplication.

Proof. It must be checked is that multiplication is well defined on the equivalence
classes. For I1, I2, J /O so that I1 ∼ I2, we must show I1 ·J ∼ I2 ·J . If α ∈ K so that
I1α = I2, then (I1α) · J = I2 · J . As O is a commutative ring, (I1α) · J = (I1 · J)α.
We also note the nonproper ideal O ∼ I for any principal ideal I, whence the set
has an identity element. By Claim 3.27, this commutative monoid is a group. �

There are more nice properties of this abelian group. We will see that the ideal
classes in fact form a finite abelian group. For finiteness, we need to do a bit of
work. First we examine the embeddings of a number ring in R and in C, and then
we use what we know about ideal classes of Dedekind domains (namely, that they
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are generated by prime ideals) to bound the number of distinct ideal classes. We
will make use of an analytic result due to Minkowski about lattices to deduce some
facts about an arbitrary number ring.

Before we define an abstract lattice, let us consider a concrete embedding of
Q

[√
2
]
, for this will give us an embedding of Z

[√
2
]
. As Q

[√
2
]

is a quadratic
number field, there are precisely two embeddings of it in C. Because both of these
embeddings are actually contained in R, it makes sense to embed Z

[√
2
]

into R2.

Observation 4.5. The embedding ϕ : Z
[√

2
]
→ R2 by a+ b

√
2 7→ (a+ b

√
2, a−

b
√

2) preserves the norm of an element. We see that the image of Z
[√

2
]

forms a
discrete subgroup of R2; also the index

[
Z2 : Z

[√
2
]]

is finite.

More generally, for a number fieldK of degree n, there are n embeddingsK → C.
For every embedding σ, if i : C → C is complex conjugation, then i · σ is another
embedding. Furthermore, i · σ = σ if and only if σ(K) ⊂ R. Therefore there
are an even number r′ of complex embeddings (i.e. not contained in R). Let
2r2 = r′ and let r1 be the number of embeddings σ1, . . . , σr1 so that σi(K) ⊂ R.
If we write the complex embeddings (σr1+1, . . . , σr1+2r2) so that i · σi = σi+r2 for
i ∈ {r1+1, . . . , r1+r2}, then the every (ordered) list of embeddings (σ1, . . . , σr1+2r2)
is in one to one correspondence with the (ordered) list of embeddings σ1, . . . , σr1+r2 .
We can thus consider the injective ring homomorphism σ : K → Rr1 × C2r2 by
x 7→ (σ1(x), . . . , σr1+r2(x)).

Definition 4.6. We call σ the canonical embedding of a number field.

As an R-normed vectorspace, Rr1 × Cr2 ' Rn. Therefore the canonical embed-
ding of a number field can be considered as lying in the Banach space Rn.

Definition 4.7. A lattice Γ ⊂ Rn is an additive subgroup which is discrete and in
which Rn/Γ is compact with respect to the quotient topology.

Just as we saw in observation 3.12, that Z
[√

2
]

was a Z order of Q
[√

2
]
, we will

see that the image of Z
[√

2
]

is a lattice of R2. We would like that every number
ring of a number field of degree n embeds to a lattice of Rn.

Claim 4.8. Γ < Rn is a lattice if and only if there is v1, . . . , vn ∈ Rn so that
Γ = Zv1 ⊕ · · · ⊕ Zvn.

Proof. ⇐ Clearly Γ is an additive discrete subgroup.
⊕n

i=1 ([0, 1]vi) = C is compact
because it is a closed and bounded subset of Rn. Since π : Rn → Rn/Γ is continuous,
π(C) is compact. π(C) = Rn/Γ shows the quotient is compact.
⇒ We induct on n. If Γ < R a lattice, then Γ has a positive element (otherwise

R/Γ would not be compact). If the positive elements of Γ are not well ordered then
any positive element v ∈ Γ has infinitely many positive members of Γ less than
it. By compactness, there is a limit point of Γ, contradicting the discreteness of Γ.
Therefore the positive elements of Γ are well-ordered.

Let v ∈ Γ be the least positive element. Then Zv ⊂ Γ. If w ∈ Γ\Zv, then
Zw ⊂ Γ. Using the Euclidean Algorithm, there is q, r ∈ N so that r < v and
w = qv + r. Then r ∈ Γ contradicts v as the least lattice point.

Γ contains a basis for Rn as an R-vector space. If not, there is a vector v ∈ Rn

so that Rv is disjoint from Γ. Then, by discreteness, Γ is bounded away from R,
whence there is a cylinder of infinite length which injects isometrically into Rn/Γ,
showing that the quotient is not compact.
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Assume the statement holds for n − 1. Γ contains a basis for a subspace A '
Rn−1. Then A ∩ Γ = A1 is a lattice, whence there is v1, . . . , vn−1 so that A1 =
Zv1⊕· · ·⊕Zvn−1. Let λ be the orthogonal complement ofA. Consider the projection
π : Γ → λ. Write A2 = λ∩Γ. We will show this projection is discrete, first though,
we’ll show Γ is finitely generated.

Pick w1, . . . , wn ∈ Γ an R-basis of Rn. Then for γ ∈ Γ, there are αi ∈ R
so that γ =

∑n
i=1 αiwi. As is standard, we write {αi} to denote the fractional

part of αi. Then if αi /∈ Q, for all p ∈ N,
∑n

i=1 {pαi}wi ∈
⊕n

i=1[0, 1]wi, the
(compact) unit cube. As the intersection of a compact set and a discrete set is
finite, there are finitely many

∑n
i=1 {pαi}wi. Therefore, there are distinct p, q ∈ Z

so that {pαi} = {qαi} i.e. there are m,n ∈ Z so that pαi −m = qαi − n whence
αi ∈ Q. We conclude Γ ⊂ Qw1 ⊕ · · · ⊕ Qwn and there is a countable generating
set A = {ai,j/bi,jwi} of Γ with ai,j , bi,j ∈ Z, and ai,j , bi,j relatively prime. We can
further specify that ai,j < bi,j , as we know wi ∈ Γ. But, again, A ⊂

⊕n
i=1[0, 1]wi,

whence A is finite.
π(Γ) is discrete. If not, there is a sequence xn in A1⊕A2 so that 0 is a limit point

of π(xn). Then, for every n ∈ N, we can translate xn so that the A1 component is
zero. Therefore 0 is a limit point of Γ, contradicting discreteness. Hence π(Γ) is in
fact a lattice of λ.

Then there is vn ∈ Γ so that π(vn) is closest to 0, whence by the above argument
Zπ(vn) = π(Γ). Therefore Γ is contained in the Z span of v1, . . . , vn. �

We imagine the lattice to be a tessellation of an n-parallelepiped. Thus it makes
sense to define the volume of the lattice to be the volume of that parallelepiped.
Allow µ to denote the Lebesgue measure on Rn.

Definition 4.9. F ⊂ Rn is a fundamental set of Γ if F is measurable and the
natural map

∐
γ∈Γ F + γ → Rn is a bijection.

As every lattice has a Z-basis, it also has a fundamental set, e.g. take F =
[0, 1]v1 ⊕ · · · ⊕ [0, 1]vn.

Fact 4.10. If F1, F2 are fundamental sets for Γ then µ(F1) = µ(F2)

Proof. For any measurable S ⊂ Rn, S =
∐

γ∈Γ (F1 + γ) ∩ S. Thus

µ(S) = µ

∑
γ∈Γ

(F1 + γ) ∩ S

 = µ

∑
γ∈Γ

F1 ∩ (S − γ)

(4.1)

Then µ(F2) = µ

∑
γ∈Γ

F1 ∩ (F2 − γ)


and, by γ 7→ −γ, = µ

∑
γ∈Γ

F1 ∩ (F2 + γ)

 = µ(F1). �

Now we know that it makes sense to define the volume of a lattice µ(Rn/Γ) as
the measure of its fundamental set.

Definition 4.11. Given number field K with Q-basis v1, . . . , vn, the discriminant

of K is
(
|det (σi(vj))

n
i,j=1 |

)2

.
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Fact 4.12. A Z-order, A, of an n dimensional number field K embeds in Rn as a
lattice. Furthermore, if d is the discriminant of K, then µ(σ(A)) = 2−r2

√
|d|.

Proof. Given a Z-order, A, of a number field K, from observation 3.15 we see that
A is a Z-module of rank n: let v1, . . . , vn be the generating set of A. Consider the
canonical embedding of K, σK → Rn. Considering the matrix of σ according to
the generating set,

σ =



σ1(v1) . . . σ1(vn)
...

...
σr1(v1) . . . σr1(vn)

R(σr1+1(v1)) . . . R(σr1+1(vn))
I(σr1+1(v1)) . . . I(σr1+1(vn))

...
...

R(σr1+r2(v1)) . . . R(σr1+r2(vn))
I(σr1+r2(v1)) . . . I(σr1+r2(vn))


= M

With R(z) (respectively I) denoting the real (respectively imaginary) projection
of z ∈ C, we note R(z) = 1

2 (z + z̄), and I(z) = 1
2i (z − z̄). By the alternat-

ing multi-linearity of the determinant, det(M) = (2i)−r2 det(σi(vj))n
i,j=1. By the

linear independence of characters of a group, we see det(σi(vj))n
i,j=1 6= 0, hence

{σ(v1), . . . , σ(vn)} is a linearly independent set in Rn. Then, by claim 4.8, we see
σ(A) = Z(σ(v1)⊕ · · · ⊕Z(σ(vn) is a lattice of Rn. Furthermore, noting the volume
of lattice is the determinant of the embedding finishes the proof. �

Corollary 4.13. A number ring of a number field with r2 C-embeddings not con-
tained in R, being a Z-order of a number field, embeds to a lattice with volume
2−r2

√
|d|.

Now that we have calculated the volume of the lattice into which a number ring
embeds, we would like to calculate the volume of the lattice into which an ideal of
a number ring embeds. We will then use this calculation to deduce the finiteness
of the ideal class group.

Corollary 4.14. An ideal of a number ring, I /R, embeds to a lattice ‖I‖ the size
of the number ring.

Proof. An ideal of a number ring will embed to a rank n torsion-free Z-module,
hence a lattice, by the preceding fact 4.12. The image of I under the embedding
into Rn will still have index [R : I]: we can then find a fundamental set of the
lattice of I composed of [R : I] copies of the fundamental set of the lattice of R. �

Lemma 4.15 (Minkowski). For a lattice Γ < Rn, if C ⊂ Rn a symmetric convex
measurable subset with µ(C) > 2nµ(Rn/Γ), then C ∩ Γ is nonzero.

Proof. Clearly µ( 1
2C) = 1

2nµ(C) > µ(Rn/Γ). For F ⊂ Rn, a fundamental set, and
S = 1

2C, we can apply the computation of (4.1) of fact 4.10.

µ(F ) < µ(
1
2
C) =

∑
γ∈Γ

µ(F ∩ (
1
2
C − γ))

From this we conclude that the µ(F ∩ ( 1
2C − γ)) are not disjoint—hence there are

distinct γ1, γ2 ∈ Γ so that F ∩ ( 1
2C − γ1) ∩ ( 1

2C − γ2) 6= ∅. In particular, there
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are c1, c2 ∈ C so that 1
2c1 − γ1 = 1

2c2 − γ2. As C is symmetric, −c2 ∈ C; and as
C is convex, 1

2 (c1 + (−c2)) = c ∈ C. But 0 6= c = γ2 − γ1 ∈ Γ , completing the
lemma. �

It has been shown that embedding an ideal of a number ring of an n-dimensional
number field into Rn gives a lattice. We have, furthermore, calculated the volume
of the lattice in terms of the index of the ideal and the volume of the lattice of
the number ring, which has been explicitly calculated. If we can show that there is
an ideal in every ideal class of relatively small index, we can bound the size of the
lattices of the ideal classes. We then, will only have to show that there are finitely
many ideals of a given index. To do this, we must calculate the volume of a convex,
symmetric subset of Rn of diameter t ∈ R.

Observation 4.16. For r1, r2 ∈ N so that r1 + 2r2 = n and t ∈ R, the set
Bt = {(x1, . . . , xr1 , y1, z1, . . . , yr2 , zr2) ∈ Rn|

∑r1
i=1 |xi|+

∑r2
j=1

√
y2
1 + z2

1 ≤ t} ⊂ Rn

is convex and symmetric. Furthermore, µ(Bt) = 2r1
(

π
2

)r2 tn

n! .

Proof Sketch. Convexity and symmetry follow, as the ball around the origin of
radius t in Rr1 × Cr2 is convex and symmetric. The volume of the ball is an
elementary exercise in multi-variable calculus. �

Lemma 4.17. For K a number field of degree n with r1 real embeddings and r2
complex embeddings, with number ring O, d the absolute value of the discriminant,
and 0 6= I /O, then there is 0 6= x ∈ I so that

|N(x)| ≤
(

4
π

)r2 n!
nn

√
|d|‖I‖(4.2)

Proof. Given the canonical embedding of K, σ, we consider the ball of radius t ∈ R
around the origin, Bt from 4.16. We make the ball big enough so that a nonzero
lattice point of I is guaranteed to be in Bt, by Minkowski’s Lemma 4.15. That is,
there is t ∈ R so that µ(Bt) = 2n(µ(σ(I)). We have calculated µ(Bt) and µ(σ(I)):

2r1

(π
2

)r2 tn

n!
= 2n2−r2

√
|d|‖I‖.

We conclude that tn = 2n−r1π−r2n!
√
|d|‖I‖. Applying Minkowski’s Lemma, there

is 0 6= x ∈ I so that σ(x) ∈ Bt. Furthermore, |N(x)| =
∏

σi∈EmbC(K) |σi(x)| =∏r1
i=1 |σi(x)|

∏r2
j=1 |σj(x)|2. By the arithmetic-geometric mean inequality, we see

|N(x)| 1n ≤ 1
n

∑r1
i=1 |σi(x)|+ 2

n

∑r2
j=1 |σj(x)| ≤ t

n , since x ∈ Bt. Therefore, |N(x)| ≤(
t
n

)n, and |N(x)| ≤ n−n2n−r1π−r2n!
√
|d|‖I‖. We have shown that x has suffi-

ciently small norm. �

Corollary 4.18. With notation as above, for every ideal class a of O, there is an
I ∈ a so that ‖I‖ ≤

(
4
π

)r2 n!
nn

√
|d|.

Proof. Consider I ∈ a−1. We can scale I by k ∈ K so that I ′ = (kI)−1 ⊂ O; note:
kI may not be in O. In fact, if I ( O, then k 6∈ O, k−1 ∈ O and kO ⊃ O. Then
we say ‖II ′‖ = 1. By lemma 4.17, there is 0 6= x ∈ I ′ so that x has minimal norm;
it is guaranteed to be small as in 4.2. Then J = xI ′ ∈ a, and ‖J‖ = N(x)‖I ′‖ ≤(

4
π

)r2 n!
nn

√
|d|‖I‖‖I ′‖ =

(
4
π

)r2 n!
nn

√
|d|‖II ′‖. We conclude ‖I ′‖ ≤

(
4
π

)r2 n!
nn

√
|d|,

whence we have found an ideal of small norm in a. �

Theorem 4.19. A number ring has finite class number.
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Proof. By corollary 4.17, every ideal class contains an ideal of norm less than some
positive integer. We now recall fact 3.32, that there are only finitely many ideals of a
given norm. This combined shows there can be only finitely many ideal classes. �

We finish the exposition with a brief calculation, demonstrating the strength of
the afore built machinery.

Fact 4.20. Z
[

1+
√

17
2

]
, the number ring of Q

[√
17

]
, is a PID.

Proof. The discriminant of this field is 17 and Minkowski’s bound gives us that in
every equivalence class, there is an ideal of norm ≤ 1

2

√
17 ∼ 2.06. Therefore, we

only need to consider ideals of norm 2. We naively factor 2:

2 =
17− 9

4
=

(3−
√

17)
2

(3 +
√

17)
2

That (3+
√

17)
2 has norm 2 implies it is irreducible. Given a prime ideal of norm 2,

it would contain 2, hence it would contain (3±
√

17)
2 . But a prime ideal containing

(3±
√

17)
2 and having the same index as the principal ideal

(
(3±

√
17)

2

)
means that

the prime ideal was principal. Therefore all prime ideals are principal. �
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