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Abstract. We discuss the relationship between algebras, coalgebras, and
Frobenius algebras. We describe a method of constructing a Frobenius al-

gebra, given a finite-dimensional algebra, and we demonstrate the method

with several concrete examples.

1. Introduction

This paper was written for the 2007 summer math REU at the University of
Chicago. It describes algebraic structures called Frobenius algebras and explains
some of their basic properties. To make the paper accessible to as many readers as
possible, we have included definitions of all the most important concepts. We only
assume that the reader is familiar with abstract linear algebra and basic terminology
from category theory. There are many introductory texts on abstract linear algebra;
for an introduction to category theory, see the first chapter of [1].

Our discussion begins with the definition of an algebra, a coalgebra, and a Frobe-
nius algebra. Then we show how to explicitly construct a coalgebra given a finite-
dimensional algebra. We show that the resulting structure is closely related to a
Frobenius algebra. The paper concludes with several examples.

2. Algebras, Coalgebras, and Frobenius Algebras

In this section we define the three main algebraic structures we wish to consider.

Definition 1. An algebra A over a field K is a vector space over K together with
a K-linear vector multiplication µ : A⊗A → A, (x, y) 7→ x · y and a K-linear unit
map η : K → A such that the following three diagrams commute.

A⊗A⊗A
idA⊗µ

//

µ⊗idA

��

A⊗A

µ

��

A⊗A µ
// A

K ⊗A
η⊗idA //

%%JJJJJJJJJJ A⊗A

µ

��

A

A⊗A

µ

��

A⊗K
idA⊗η
oo

yytttttttttt

A

The rectangular diagram expresses the fact that multiplication is associative, and
the two triangular diagrams express the unit condition.
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If we reverse all arrows in the above diagrams, we obtain the axioms of a coal-
gebra.

Definition 2. A coalgebra A over a field K is a vector space over K together with
two K-linear maps δ : A → A ⊗ A and ε : A → K such that the following three
diagrams commute.

A⊗A⊗A A⊗A
idA⊗δ
oo

A⊗A

δ⊗idA

OO

A
δ

oo

δ

OO

K ⊗A A⊗A
ε⊗idAoo

A

eeJJJJJJJJJJ
δ

OO
A⊗A

idA⊗ε
// A⊗K

A

δ

OO 99tttttttttt

The map δ is called comultiplication, and the map ε is called the counit. The rec-
tangular diagram expresses a property called coassociativity, and the two triangular
diagrams express the counit condition.

Definition 3. A Frobenius algebra is a finite-dimensional algebra A over a field K
together with a map σ : A×A → K which satisfies

σ(x · y, z) = σ(x, y · z)

σ(x1 + x2, y) = σ(x1, y) + σ(x2, y)

σ(x, y1 + y2) = σ(x, y1) + σ(x, y2)

σ(ax, y) = σ(x, ay) = aσ(x, y)

for all x, y, z, x1, x2, y1, y2 ∈ A, a ∈ K, and σ(x, y) = 0 for all x only if y = 0.
This last condition is called nondegeneracy, and the map σ is called the Frobenius
form of the algebra.

3. Dual Spaces and Dual Arrows

In this section we show how to explicitly construct a coalgebra given a finite-
dimensional algebra. If we then compose the multiplication map with the counit
map, we obtain a map which satisfies all of the axioms of a Frobenius form, except
possibly nondegeneracy.

Definition 4. If V is a vector space over a field K, then the dual space denoted
V ∗ is the set of K-linear maps V → K.

Theorem 1. If V is a finite-dimensional vector space over a field K, then V ∗ is a
vector space over K.

Proof. Clearly V ∗ is closed with respect to addition. Since K is a field, the addition
operation is associative and commutative. The zero element of K is an identity for
V ∗, and the inverse of a vector v∗ ∈ V ∗ is simply -1v∗ where -1 is the additive
inverse of the unit element in K. Hence V ∗ is an abelian group with respect to
addition.
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Let v∗ be any vector in V ∗. Since v∗ is K-linear and K is a field, we have

av∗(x) = v∗(ax) ∈ V

a(v∗1 + v∗2) = av∗1 + av∗2

(a + b)v∗(x) = v∗((a + b)x) = v∗(ax + bx)

= v∗(ax) + v∗(bx) = av∗(x) + bv∗(x)

a(bv∗(x)) = (ab)v∗(x)

for all x ∈ V , a, b ∈ K, so V ∗ satisfies all of the axioms of a vector space. �

Theorem 2. If V has a basis e1, . . . , en, then the map e∗i defined by

(∗) e∗i (
n∑

j=1

cjej) = ci

is linear. Moreover, the e∗i form a basis for V ∗.

Proof. We have

e∗i (
n∑

j=1

cjej +
n∑

j=1

djej) = e∗i (
n∑

j=1

(cj + dj)ej)

= ci + di = e∗i (
n∑

j=1

cjej) + e∗i (
n∑

j=1

djej)

and

e∗i (a
n∑

j=1

cjej) = e∗i (
n∑

j=1

acjej) = aci = ae∗i (
n∑

j=1

cjej),

so the map is linear. Now if α1e∗1(x) + · · · + αne∗n(x) = 0 for all x, then surely
α1, . . . , αn = 0, for if x = ei then α1e∗1(x) + · · · + αne∗n(x) = αi. This shows that
the e∗i are linearly independent. The set e∗1, . . . , e

∗
n is clearly a spanning set for V ∗,

so it is a basis for V ∗. �

Theorem 3. The map

ϕV : V → V ∗

ei 7→ e∗i

is a vector space isomorphism.

Proof. Equation (∗) implies a one-one correspondence between the basis vectors of
V and the basis maps of V ∗. Since each map in V ∗ can be represented as a unique
linear combination of the basis maps e∗1, . . . , e

∗
n, this implies that ϕV is injective.

Since the basis maps e∗1, . . . , e
∗
n span V ∗, the map ϕV is also surjective. By Theorem

2, the map ϕV is linear, so ϕV is a vector space isomorphism. �

Theorem 4. If V and W are finite-dimensional vector spaces, then there is an
isomorphism (V ⊗W )∗ ∼= V ∗ ⊗W ∗.

Proof. Since V and W are finite-dimensional, Theorem 3 says that the maps ϕV :
V → V ∗ and ϕW : W → W ∗ are isomorphisms. It follows that the tensor product

ϕV ⊗ ϕW : V ⊗W → V ∗ ⊗W ∗
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is an isomorphism. Theorem 3 also implies that (V ⊗W )∗ ∼= V ⊗W . Thus

(V ⊗W )∗ ∼= V ⊗W
∼=→ V ∗ ⊗W ∗,

and since the isomorphism is transitive, we have (V ⊗W )∗ ∼= V ∗ ⊗W ∗. �

Definition 5. Suppose that V and W are vector spaces over K. If α : V → W is
a K-linear map, then we write

α∗ : W ∗ → V ∗

f 7→ f ◦ α.

and call α∗ the dual map. Note that α sends V into W while α∗ sends W ∗ into V ∗.
In this sense the dual map reverses arrows.

Theorem 5. Suppose that V and W are vector spaces over K. If α : V → W is a
K-linear map, then α∗ is a K-linear map. Moreover, if a : V → W and b : W → Z
are K-linear maps, then a∗ ◦ b∗ = (b ◦ a)∗.

Proof. If α is a K-linear map, then

α∗(f1 + f2) = (f1 + f2)(α) = f1(α) + f2(α) = α∗(f1) + α∗(f2)

and
α∗(af) = af(α) = aα∗(f)

for all f , f1, f2 ∈ W ∗, a ∈ K, so α∗ is a K-linear map. For any map f : Z → K,
we also have a∗ ◦ (b∗ ◦ f) = a∗ ◦ (f ◦ b) = (f ◦ b) ◦ a = (b ◦ a)∗ ◦ f . �

We are now in a position to construct a coalgebra from an algebra. Let A be
a finite-dimensional algebra over a field K. If we replace each vector space in
Definition 1 with its corresponding dual space, and if we replace the arrows with
their corresponding dual arrows, then we obtain the following three commutative
diagrams.

(A⊗A⊗A)∗ (A⊗A)∗
(idA⊗µ)∗
oo

(A⊗A)∗

(µ⊗idA)∗

OO

A∗
µ∗

oo

µ∗

OO

(K ⊗A)∗ (A⊗A)∗
(η⊗idA)∗
oo

A∗

ffMMMMMMMMMMM
µ∗

OO
(A⊗A)∗

(idA⊗η)∗
// (A⊗K)∗

A∗

µ∗

OO 88qqqqqqqqqqq

If we apply Theorems 4 and 5, we obtain a coalgebra A∗ with comultiplication µ∗

and counit η∗. Fix an isomorphism ϕ : A
∼=→ A∗ on basis elements by ϕ(ei) = e∗i ,

where the first basis element is the unit element 1 = η(1). This map transforms
the coalgebra A∗ into a coalgebra A with counit ε = η∗ ◦ ϕ : A → K.

The following theorem shows how this construction relates to Frobenius algebras.

Theorem 6. The map ε ◦ µ has all of the properties of a Frobenius form, except
possibly nondegeneracy.
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Proof. By the definition of ε and µ we have

(ε ◦ µ)(x · y, z) = ε(x · y · z) = (ε ◦ µ)(x, y · z)

for all x, y, z ∈ A. Since ε is linear, we also have

(ε ◦ µ)(x1 + x2, y) = ε((x1 + x2) · y) = ε(x1 · y + x2 · y)

= ε(x1 · y) + ε(x2 · y) = (ε ◦ µ)(x1, y) + (ε ◦ µ)(x2, y)

and
(ε ◦ µ)(ax, y) = ε(ax · y) = aε(x · y) = a(ε ◦ µ)(x, y),

and similarly, (ε ◦ µ)(x, y1 + y2) = (ε ◦ µ)(x, y1) + (ε ◦ µ)(x, y2) and (ε ◦ µ)(x, ay) =
a(ε ◦ µ)(x, y) for all x, x1, x2, y, y1, y2, z ∈ A a ∈ K. This shows that ε ◦ µ has
all of the properties of a Frobenius form, except possibly nondegeneracy. �

Conversely, one can show that every Frobenius algebra has both algebra and
coalgebra structure. This property of Frobenius algebras allows us to define “topo-
logical quantum field theories”, which are useful in topology and physics. For more
information on topological quantum field theories, see [2].

4. Examples

Example 1. One can easily check that the field of complex numbers together
with the inclusion map η : R ↪→ C and ordinary multiplication µ : C⊗ C → C is a
finite-dimensional algebra. Choose the canonical basis {e1 = 1, e2 = i} for C. Then
equation (∗) determines the basis maps for C∗. Since the unit map η is simply the
inclusion, we have

η∗(e∗1) = e∗1(η) = idR

η∗(e∗2) = e∗2(η) = 0.

This proves that ε = < where < is the “real part function” defined by <(x+iy) = x
for real x and y. The map σ(x, y) = <(x · y) is nondegenerate, so it is a Frobenius
form for the algebra.

Example 2. Suppose that G = {t0, . . . , tn} is a finite group written multiplica-
tively with identity element t0. One can show that the set K[G] of formal linear
combinations

∑
citi (ci ∈ K) together with the unit map

η : K → G[K]
a 7→ at0,

and multiplication µ given by multiplication in G, is a finite-dimensional algebra.
Since {t0, . . . , tn} is a basis for G[K], equation (∗) gives a basis {t∗0, . . . , t∗n} for G∗.
Then we have

η∗(t∗0) = t∗0(η) = idK

η∗(t∗0) = t∗i (η) = 0 (i 6= 0).

Since η∗ = ε, we have

ε :K[G] → K

t0 7→ 1

ti 7→ 0 (i 6= 0).
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Finally, since the composite map σ = ε ◦µ is nondegenerate, it is a Frobenius form
for the algebra.

Example 3. It is again easy to check that the set Matn(K) of n×n matrices over
a field K, together with the unit map

η : K → A

a 7→


a 0 . . . 0
0 a . . . 0
...

...
. . .

...
0 0 . . . a


and ordinary matrix multiplication µ : Matn(K) ⊗ Matn(K) → Matn(K), is a
finite-dimensional algebra. Choose the canonical basis e1,1, . . . , en,n for Matn(K)
in which each matrix ei,j contains a 1 in the (i, j) position and 0’s everywhere
else. Then equation (∗) determines a basis e∗1,1, . . . , e

∗
n,n for Matn(K)∗. Since

η∗(e∗ij) = e∗ij(η) and η(1) =
∑

i eii, it follows that

η∗(e∗ij) =

{
1, i = j

0 i 6= j.

By forming linear combinations of these terms, we see that the counit is the matrix
trace obtained by summing all of the coordinates along the main diagonal of a
matrix:

ε = tr(A) =
∑

i

(A)ii.

Since the map tr is nondegenerate, it has all of the properties of a Frobenius form.
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