
INTRODUCTION TO BROWNIAN MOTIONS

DAVID BERGER

Abstract. This paper aims to present some basic facts about Brownian Mo-
tions. It will assume a basic familiarity with probability and random variables.

It will begin by defining Brownian Motion in one dimension on the dyadic ra-

tionals using a countable number of random variables and then proceed to
generalize this to the real line using a continuity argument. Some other conse-

quences of continuity will be proved and then differentiability will be examined.
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1. Introduction

The notion of a Brownian Motion in one dimension may be illustrated by an ant
on a long track, walking back and forth. The ant can only move in one direction,
but it is free to change directions as often as it likes and at whatever speed it likes,
although the ant’s speed is controlled enough that there is some sense of “average”
speed. We also assume that the ant is completely without memory and the track
is entirely featureless, so that the ant’s movement is entirely independent of its
previous decisions and its current location. Assuming the ant starts at 0, we can
consider the probability distribution of the ant’s location at time t, denoted by Wt.
A few characteristics suggest themselves right away:

(1) The probability distribution fWt
(x) should be continuous in x.

(2) The distribution should be symmetric.
(3) The variance of Wt should be increasing with t.
(4) The distribution should be additive, i.e. fWt−s = fWt−Ws .
(5) The distribution should be self-similar, i.e. fWt

= fWt·s · g(s) for some
function g.
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1 is based on assuming that if the ant can travel a certain distance x in time t, that
for some ε the ant can travel x + ε almost as easily. This suggests that we need to
use continuous random variables as opposed to discrete random variables, but it is
important to note that this is not the same as saying Wt is a continuous function
of t. (As illustrated, we should also expect this to be true, because it is equivalent
to saying the ant never teleports, but it will need to be proved, whereas we will
base our definition on the use of continuous random variables.) 2 & 3 should be
obvious from the illustration: the ant has no preference for positive wandering or
negative wandering, so it is as likely to be at x as at -x, but it is more likely to
be farther from its starting point as it has wandered more. 4 is a basic feature
of the assumption that the ant has no memory. 5 is based on picturing the ant
making infinitely many decisions in any time interval, so that as time passes, the
only difference in what the ant may have done is that it may have moved farther
(i.e. the variance may have increased).

2. Formal Definitions

Definition 2.1. A one-dimensional Brownian Motion on a set S ⊂ R is a function
Wt that maps S to the space of real-valued random variables such that W0 = 0 and
if r ≤ s ≤ t then Wt −Ws ∼ N(0, σ2 · (t− s)) and Wt −Ws is independent of Wr.
If σ2 = 1, we call W a standard Brownian motion.

Note how naturally this definition fits our properties outlined above. Normal
random variables are continuous and symmetric, all that changes as more time
elapses is the variance, and since we have defined the distributions for the difference
of variables, additivity comes right away.

The obvious question is for what S is it possible to construct such a function.
For starters, we shall be content to consider S in the non-negative reals, as it saves
our ant considerable trouble if we let it start at a definite point in time. Moreover,
it is easier to begin with a countable domain, so we will use the dyadic rationals,
D, where D =

⋃∞
n=0Dn and Dn =

⋃∞
k=0

k
2n . This will prove to be a particularly

useful choice of domains when we view Brownian Motion as the limit of random
walks, which we will now define.

Definition 2.2. A one dimensional random walk is a function Xt that maps N to
the space of real-valued random variables such that Xt = Σt

i=1Bi, where {Bi} is a
set of i.i.d. random variables that equal 1 or -1 each with probability 1/2.

The important part of this definition is that both the time and space dimensions
are discrete. We will still consider it a random walk if we have as the domain
N
c1

, c1 ∈ N. We will also allow space to be scaled, such that {Bi} are divided by
some constant c2. Thus, we might have as a random walk Xt = Σc1·t

i=1
Bi

c2
. It is

reasonable and correct to think of a Brownian Motion as the limit of rescaling a
random walk, where c1 and c2 go to infinity, i.e. motion in continuous space and
time is the limit of making more frequent but smaller decisions in discrete space
and time.
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3. Construction

Proposition 3.1. If {Xt,n|t · 22n ∈ N}, Xt,n = Σc1(n)·t
i=1

Bi,n

c2(n) is a collection of ran-
dom walks such that c1(n) = 22n, c2(n) = 2n, and the Bi,n are i.i.d. random
variables which equal ±1 with probability 1/2, then Xt,n

n−→ Wt, a standard Brow-
nian Motion.

Remark 3.2. It should be clear from the statement why the dyadics were a good
choice for the domain of our Brownian Motion. Space is being scaled in the simplest
way that includes all lattice points from the nth random walk in the n + 1st and
time is being scaled so as to keep variance constant. Also note that ∀t ∈ D ∃N
such that ∀n ≥ N,Xt,n is defined. Also note that the B′

is have gained an n index,
which is essentially meaningless except to emphasize that after each rescaling, they
are redrawn rather than recycled.

Proof. We have by the Central Limit Theorem that

c2(n) ·Xt,n =
c1(n)·t∑

i=1

Bi,n
a∼ N(0, c1(n) · t)(3.3)

Xt,n =
c1(n)·t∑

i=1

Bi,n

c2(n)
a∼ N(0,

c1(n)
c2(n)2

· t)(3.4)

Since c1(n) = 22n = (2n)2 = c2(n)2, we have

Xt,n
a∼ N(0, t)(3.5)

So let Wt = limn→∞ Xt,n and W0 = 0. Then for t > s we have:

Wt −Ws = lim
n→∞

Xt,n − lim
n→∞

Xs,n(3.6)

= lim
n→∞

22n·t∑
i=1

Bi,n

2n
− lim

n→∞

22n·s∑
i=1

Bi,n

2n
(3.7)

= lim
n→∞

22n·t∑
i=1+22n·s

Bi,n

2n
(3.8)

∼ lim
n→∞

22n·(t−s)∑
i=1

Bi,n

2n
∼ N(0, t− s)(3.9)

It should also be intuitively clear by looking at the indices of summation in (3.8)
that if r ≤ s ≤ t, Xr,n ⊥ (Xt,n − Xs,n) because for all n large enough that
Xr,n, Xs,n, Xt,n are defined, (Xt,n − Xs,n) and Xr,n sum over disjoint Bi,n. We
formally check whether this holds in the limiting case by checking whether the joint
probability density function, fWt−Ws,Wr

, factors into the product of the marginal
densities fWt−Ws · fWr .

fWt−Ws(x) · fWr (y) = lim
n→∞

fXt,n−Xs,n(x) · lim
m→∞

fXr,m(y)(3.10)

= lim
n→∞

lim
m→∞

fXt,n−Xs,n(x) · fXr,m(y)(3.11)

= lim
n→∞

lim
m→∞

fXt,n−Xs,n,Xr,m
(x, y)(3.12)
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To see that fXt,n−Xs,n,Xr,m(x, y) m−→ fXt,n−Xs,n,Wr (x, y) in measure, we check that
(Xt,n − Xs,n) × Xr,m

m−→ (Xt,n − Xs,n) ×Wr in probability for arbitrary n. Let
ε > 0.

lim
m→∞

P (|(Xt,n −Xs,n)×Wr − (Xt,n −Xs,n)×Xr,m| > ε)(3.13)

= lim
m→∞

P (|Wr −Xr,m| > ε) = 0(3.14)

This could be iterated again for n to give (Xt,n−Xs,n)×Xr,m
m,n−→ (Wt−Ws)×Wr.

Plugging this into (3.12), we have

fWt−Ws
(x) · fWr

(y) = fWt−Ws,Wr
(x, y)(3.15)

which is our independence condition. �

4. Continuity

Having neatly defined and constructed a Brownian Motion on D, we would like
to have it continuous, so as to be able to extend D to R.

Theorem 4.1. With probability 1, if R ∈ N the map t 7→ Wt is uniformly contin-
uous on D ∩ [0, R].

Remark 4.2. A statement that something like uniform continuity, which sounds
rather universal, is true with a certain probability, may sound a little bizarre,
perhaps even superfluous since that probability is 1. It makes sense, however, in
the same way that a continuous random variable is equal to 17 with probability
zero: there exist events within the sample space such that the variable equals
17, but those events have probability measure zero. Similarly, we show that the
events which lead to a discontinuous map t 7→ Wt have measure zero (or that their
complement has measure 1, which is equivalent). The only hitch is that it is not
obvious how to make statements about the probability that

∀ε > 0 ∃δ > 0 3 ∀t, s ∈ D ∩ [0, 1], |t− s| < δ ⇒ |Wt −Ws| < ε.

To begin, we translate it to set theoretic notation:⋂
ε>0

⋃
δ>0

|t− s| < δ ⇒ |Wt −Ws| < ε,

which is a fine mess, because we have an uncountable intersection and an uncount-
able union, neither of which is well handled by measure operators. Handling the
implication could also get a little sloppy. Hence, we employ some lemmas to re-
duce uniform continuity to some more tractable statements that involve at most
countable unions and intersections.

Lemma 4.3. If

Zn = sup{|Ws −Wt| : |s− t| ≤ 2−n, s, t ∈ D ∩ [0, 1]},
then Zn → 0 ⇐⇒ W is uniformly continuous.

Proof. “ ⇒ ” Suppose Zn → 0. Let ε > 0. Then ∃N such that ∀n > N , Zn < ε.
Let δ < 2−n. Then |s− t| < δ ⇒ |Ws −Wt| ≤ Zn < ε.
“ ⇐ ” Suppose the map is uniformly continuous. Then given ε > 0∃δ > 0 such
that |t − s| < δ ⇒ |Wt −Ws| < ε. Then ∃N such that n > N ⇒ 2−n < δ. Then,
∀n > N, Zn < ε. �
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Lemma 4.4. Let

M(k, n) = sup
{∣∣∣Wq −W k−1

2n

∣∣∣ : q ∈ D ∩
[
k − 1
2n

,
k

2n

]}
,

Mn = max{M(1, n),M(2, n), . . . ,M(2n, n)}.

Then Mn → 0 ⇐⇒ Zn → 0.

Proof. “ ⇐ ” Rewriting Mn as

Mn = sup{|Wt −Ws| : |s− t| ≤ 2−n, s > t, t ∈ Dn ∩ [0, 1], s ∈ D ∩ [0, 1]}

we see that it is the same as Zn except with more parameters for the supremum.
By monotonicity of the supremum (A ⊂ B ⇒ supA ≤ supB), we have Mn ≤ Zn.
“ ⇒ ” Suppose |s − t| ≤ 2−n & s, t ∈ D ∩ [0, 1]. WLOG, let s < t. Let k be such
that k

2n ≤ t < k+1
2n . Then

k − 1
2n

=
k

2n
− 1

2n
≤ t− 2−n ≤s < t <

k + 1
2n

k − 1
2n

≤s <
k + 1
2n

If s ∈ [ k
2n , k+1

2n ), then

|Ws −Wt| = |Ws −W k
2n

+ W k
2n
−Wt| ≤ |Ws −W k

2n
|+ |W k

2n
−Wt| ≤ 2Mn

If s ∈ [k−1
2n , k

2n ), then

|Ws −Wt| = |Ws −W k−1
2n

+ W k−1
2n

−W k
2n

+ W k
2n
−Wt|

≤ |Ws −W k−1
2n
|+ |W k−1

2n
−W k

2n
|+ |W k

2n
−Wt| ≤ 3Mn

Thus Zn ≤ 3Mn. �

Proof of Theorem 4.1 Claim 1:

P{Mn ≥ ε} = 2nP{M(1, n) ≥ ε} = 2nP{M(1, 0) ≥ 2n/2ε}

Proof of Claim 1: Index q ∈ D ∩ [0, 2−n] by rn(m) = q, m ∈ N. Then

M(1, n) ≥ ε ⇐⇒ ∃m ∈ N 3 Wrn(m) ≥ ε(4.5)

P{M(1, n) ≥ ε} = P

{ ∞⋃
m=1

Wrn(m) ≥ ε

}
(4.6)

Since 2−n/2W2nrn(m) ∼ N(0, (2−n/2)2 · 2n · rn(m)) = N(0, rn(m)), we may rewrite
(4.6) as:

P{M(1, n) ≥ ε} = P

{ ∞⋃
m=1

W2nrn(m) ≥ 2n/2ε

}
(4.7)

= P{M(1, 0) ≥ 2n/2ε},(4.8)

since 2nrn(m) now indexes D ∩ [0, 1]. Also, we may treat M(1, n), . . . ,M(2n, n) as
i.i.d. random variables, independent by our assumption that for r ≤ s ≤ t, (Wt −
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Ws) ⊥ Wr and identically distributed by repeating (4.5)-(4.8), replacing Wrn(m)

with Wk/2n+rn(m) −Wk/2n . Thus,

P{Mn ≥ ε} = P

{
2n⋃

k=1

M(k, n) ≥ ε

}
(4.9)

≤
2n∑

k=1

P{M(k, n) ≥ ε}(4.10)

= 2nP{M(1, n) ≥ ε}(4.11)

= 2nP{M(1, 0) ≥ 2n/2ε}(4.12)

Claim 2:
∀a > 0, P{M(0, 1) ≥ a} ≤ 4P{W1 ≥ a}

We first simplify by symmetry. Let M(0, 1)∗ = sup{Wt|t ∈ D ∩ [0, 1]}. Clearly,
M(0, 1) ≥ M(0, 1)∗ with equality holding half the time. We now use conditional
probabilities:

P{W1 > a|M(0, 1)∗ > a} = P{W1 > a|Wt > a for some t ∈ (0, 1]}(4.13)

≥ P{W1 −Wt > 0|Wt > a, t ∈ (0, 1]}(4.14)

We have proved that (W1 −Wt) ⊥ Wt, thus:

P{W1 −Wt > 0|Wt > a, t ∈ (0, 1]} = P{W1 −Wt > 0} = 1/2(4.15)

Employing the definition of conditional probability and (4.14), we have:

1/2 ≤ P{W1 > a|M(0, 1)∗ > a} =
P{W1 > a ∩M(0, 1)∗ > a}

P{M(0, 1)∗ > a}
(4.16)

Noting that W1 > a ⇒ M(0, 1)∗ > a, we rewrite the numerator as P{W1 > a} and
rearrange the inequality, yielding:

P{M(0, 1)∗ > a} ≤ 2P{W1 > a}(4.17)

If we defined M(0, 1)−∗ = inf{Wt|t ∈ D ∩ [0, 1]}, we would have:

P{M(0, 1) > a} = P{M(0, 1)∗ > a ∪M(0, 1)−∗ < −a}(4.18)

≤ P{M(0, 1)∗ > a}+ P{M(0, 1)−∗ < −a}(4.19)

= 2P{M(0, 1)∗ > a}(4.20)

≤ 4P{W1 > a}(4.21)

We now incorporate our claims and lemmas to conclude:

P{t 7→ Wt is unif. cont.} = P{Mn → 0}(4.22)

Given some sequence {εn}n → 0, we see that if ∃N ∈ N ∀n > N, Mn < εn ⇒
Mn → 0. Thus,

P{Mn → 0} ≥ P

{ ∞⋃
N=1

∞⋂
n=N

Mn < εn

}
(4.23)

by De Morgan’s law = 1− P

{ ∞⋂
N=1

∞⋃
n=N

Mn ≥ εn

}
(4.24)
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We recall a basic proposition of measure theory: for a finite measure space (such
as a probability space), if ∀i ∈ NAN ⊃ AN+1, then

µ

{ ∞⋂
i=1

AN

}
= lim

i→∞
µ{AN}(4.25)

Taking our AN ’s to be
⋃∞

n=N Mn ≥ εn, it is obvious that AN ⊃ AN+1 just by
looking at the indices of the union. Thus,

P

{ ∞⋂
N=1

∞⋃
n=N

Mn ≥ εn

}
= lim

N→∞
P

{ ∞⋃
n=N

Mn ≥ εn

}
(4.26)

≤ lim
N→∞

∞∑
n=N

P{Mn ≥ εn}(4.27)

by claims 1 & 2: ≤ lim
N→∞

∞∑
n=N

2n+2P{W1 ≥ 2n/2εn}(4.28)

Note that we are now essentially done, because all we have to do is choose a sequence
εn → 0 in such a way that the series above converges, because

∞∑
n=N

an < ∞⇒ lim
N→∞

∞∑
n=N

an = lim
N→∞

[( ∞∑
n=1

an

)
−

(
N∑

n=1

an

)]
(4.29)

=

( ∞∑
n=1

an

)
− lim

N→∞

(
N∑

n=1

an

)
(4.30)

=

( ∞∑
n=1

an

)
−

( ∞∑
n=1

an

)
= 0.(4.31)

Since W1 ∼ N(0, 1), we observe that 0 < a ≤ x ⇒ −x2 ≤ −ax, so

Φ(a) =
∫ ∞

a

1√
2π

e−x2/2(4.32)

≤
∫ ∞

a

1√
2π

e−ax/2(4.33)

= −
√

2
π

1
a
e−ax/2

∣∣∣∣∣
∞

a

(4.34)

=

√
2
π

1
a
e−a2/2(4.35)

∴ Φ(2n/2εn) ≤
√

2
π

2−n/2

εn
e−2nε2n/2.(4.36)
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Thus, let εn = 2−n/4. Then

Φ(2n/2εn) ≤
√

2
π

2−n/4e−(2n/2)/2(4.37)

∞∑
n=N

2n+2P{W1 ≥ 2n/2εn} ≤ 4

√
2
π

∞∑
n=N

23n/4e−(2n/2)/2(4.38)

2 < e ⇒ ≤ 4

√
2
π

∞∑
n=N

e
3n−2·2n/2

4(4.39)

= 4

√
2
π

∞∑
n=N

e
3n−2n/2

4︸ ︷︷ ︸
→0

e−
2n/2

4︸ ︷︷ ︸
<e−n, large n

(4.40)

< ∞(4.41)

Combining (4.22),(4.24),(4.28), and (4.41), we get:

P{t 7→ Wt is uniformly continuous on [0,1]} = 1− 0 = 1(4.42)

Note that we really only needed to assume a bounded interval. The proof could
be repeated with some additional constants to prove that the map is uniformly
continuous on [0, N ] with probability 1.

5. Extension

We now look to extend our Brownian Motion from D to R. Given x0 ∈ R∩ [0, 1].
Let xn = max2n

k=0{k/2n ≤ x0}. Then

xn + 1/2n > x0 ⇒0 ≤ x0 − xn < 1/2n

⇒ |x0 − xn| < 1/2n ⇒xn → x0

Proposition 5.1. ∃ limn→∞ Wxn

Proof. Let ε > 0. Uniform continuity lets us assign δε > 0 such that |t− s| < δε ⇒
|Wt − Ws| < ε/4 ∀t, s ∈ D ∩ [0, 1]. Let Nε ∈ N be such that 1/2Nε < δε. Let
n, m > Nε. Because {xn} is non-decreasing, we have xNε

≤ xn. We also know from
the definition that ∀n, xn ≤ x0 and that xNε

+ 1/2Nε > x0. Thus,

xNε ≤ xn ≤ x0 < xNε + 1/2Nε(5.2)

0 ≤ xn − xNε < 1/2Nε(5.3)

|xn − xNε
| < 1/2Nε(5.4)

We could follow the same steps for m and conclude

|xm − xNε
| < 1/2Nε

Thus we get:

|Wxn
−Wxm

| ≤ |Wxn
−WxNε

|+ |Wxm
−WxNε

| < ε/2(5.5)

which makes {xn}n a Cauchy sequence in R, which is a complete space, hence it is
a convergent sequence. �

Definition 5.6.
∀x0 ∈ R ∩ [0, 1],Wx0 = lim

n→∞
Wxn .
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Remarks 5.7. This definition agrees with the former definition on D since {Wxn}n

is eventually constant if x0 ∈ D. We can also easily verify that t 7→ Wt is uniformly
continuous on R. Let ε < 0, |t− s| < δε, n > Nε. Then:

|Wt −Ws| ≤ |Wt −Wtn |︸ ︷︷ ︸
<ε/4

+ |Ws −Wsn |︸ ︷︷ ︸
<ε/4

+|Wtn −W tn+sn
2
|+ |W tn+sn

2
−Wsn |(5.8)

WLOG, let s < t. If we choose n high enough that tn ∈ [s, t], we have

|tn −
tn + sn

2
| = | tn + sn

2
− sn| = | tn − sn

2
| ≤

 |tn − s|︸ ︷︷ ︸
<|t−s|<δε

+ |s− sn|︸ ︷︷ ︸
δε

 /2(5.9)

Thus (5.8) becomes

|Wt −Ws| ≤
4ε

4
= ε(5.10)

Note that, just as before, we could have proved that the map t 7→ Wt is continuous
on R ∩ [0, n] for any n ∈ N, but it would have required using more constants. We
also note that if we did this ∀n ∈ N, we would be able to prove by taking n → ∞
that t 7→ Wt is continuous on R with probability one, but uniform continuity
would not hold. This is a product of the fact that continuity is a feature of points
individually, so a function will be continuous on a union of sets on which it is
contiuous (ignoring the possible messiness of one-sided continuity, which does not
show up here). Uniform continuity, however, is a feature of sets, and as such does
not necessarily survive infinite union.

6. Intermediate Value Theorem

One of the biggest advantages to continuity is that it allows us to invoke the
intermediate value theorem. This is particularly helpful in considering the proba-
bility that Wt takes on a given value for t ∈ A ⊂ R. Because Wt has a continuous
distribution, the probability distribution function is useless in answering this type
of question, since ∀a ∈ R P{Wt = a} = 0 and P

{⋃
t∈A Wt = a

}
cannot be reduced

to a sum if A is uncountable. However, if A is an interval (s, t), we can easily check

P{(Ws ≤ a ∩Wt ≥ a) ∪ (Ws ≥ a ∩Wt ≤ a)}.

Proposition 6.1. With probability one ∀b > 0,∃t > b such that Wt = 0.

Proof. WLOG, let Wb = a0 < 0. Then let

p = Φ(a0) = P{Wb+1 −Wb > −a0} < 1/2(6.2)

and let q = 1− p. If Wb+1 = a1 < 0 then ∃x ∈ R such that

P{Wb+x2 −Wb+1 > −a1} = Φ
(
−a1√

x2

)
(6.3)

Since limx2→∞ Φ(−a1/
√

x2) = 1/2, we may choose an x2 such that Φ(a1/
√

x2) = p.
Thus, P{Wb+1 > 0 or Wb+1 < 0 < Wb+x2} = p + qp. If we continued picking xn in
this way, the probability that the first n − 1 variables are less than 0 but the nth

variable is greater than 0 will be qn−1p. Thus

P

{ ∞⋃
n=1

Wb+xn > 0

}
= p

∞∑
n=0

qn = p
1

1− q
= p/p = 1(6.4)
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Thus, by the intermediate value theorem, with probability one ∃t > b 3 Wt = 0. �

Note that this same argument could be used to prove that the motion eventually
reaches any a with probability one. Interestingly, one need not wait particularly
long for the motion to return to its starting position:

Proposition 6.5. With probability one, ∀ε > 0,∃t ∈ (0, ε) such that Wt = 0.

Proof. We first consider P{∃t ∈ (0, 1) such that Wt = 0}. WLOG, assume W1 =
a0 < 0. The goal is to repeat the trick above, but coming progressively closer to
zero. To do this, we need to know the conditional cdf

t > s, FWs|Wt
(0|Wt = a0 < 0)

which we can realize by examining the corresponding pdf. To make things nota-
tionally simpler, let X = Ws, Y = Wt − Ws, Z = Wt, all of which are normal
random variables. By definition, X ⊥ Y and X + Y = Z. Denote Var(X) = σ2

x

and Var(Y ) = σ2
y. Clearly Var(Z) = σ2

x + σ2
y. Consider:

fX|Z(x|z) =
fX,Z(x, z)

fZ(z)
(6.6)

=
fX,Y (x, z − x)

fZ(z)
(6.7)

=
fX(x)fY (z − x)

fZ(z)
(6.8)

=
1/(2πσxσy) exp(−1/2[x2/σ2

x + (z − x)2/σ2
y])

1/
√

2π(σ2
x + σ2

y) exp(−1/2[z2/(σ2
x + σ2

y)])
(6.9)

=

√
σ2

x + σ2
y

√
2πσxσy

exp

−1
2
·
x2(1 + σ2

y

σ2
x
) + (z − x)2(1 + σ2

x

σ2
y
)− z2

σ2
x + σ2

y

(6.10)

We can tell already that the above is in the form of a normal distribution. If we
expand the numerator of the argument of the exponential, replacing R = σ2

x/σ2
y,

we get:

x2 + x2R−1 + z2 − 2zx + x2 + z2R− 2zxR + x2R− z2

=x2(2 + R−1 + R)− 2zx(1 + R) + z2R

=[x2 − 2zx
1 + R

2 + R−1 + R
+ z2 R

2 + R−1 + R
](2 + R−1 + R)

=[x2 − 2zx
1 + R

2 + R−1 + R
+ z2(

1 + R

2 + R−1 + R
)2

+ z2 R

2 + R−1 + R
− z2 1 + 2R + R2

(2 + R−1 + R)2︸ ︷︷ ︸
=0

](2 + R−1 + R)

=[(x− z
1 + R

2 + R−1 + R
)2](2 + R−1 + R)
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Thus:

fX|Z(x|z) =

√
σ2

x + σ2
y

√
2πσxσy

exp

(
−1

2
(x− z 1+R

2+R−1+R )2

(σ2
x + σ2

y)/(2 + R−1 + R)

)
(6.11)

Simplifying the denominator within the exponential, we have:

(σ2
x + σ2

y)/(2 + R−1 + R) =
σ2

x

2 + σ2
y/σ2

x + σ2
x/σ2

y

+
σ2

y

2 + σ2
y/σ2

x + σ2
x/σ2

y

(6.12)

=
σ2

xσ2
y

2σ2
y + σ4

y/σ2
x + σ2

x

+
σ2

xσ2
y

2σ2
x + σ4

x/σ2
y + σ2

y

(6.13)

=
σ2

xσ2
y · σ2

x

2σ2
yσ2

x + σ4
y + σ4

x

+
σ2

xσ2
y · σ2

y

2σ2
xσ2

y + σ4
x + σ4

y

(6.14)

= σ2
xσ2

y

σ2
x + σ2

y

(σ2
x + σ2

y)2
(6.15)

=
σ2

xσ2
y

σ2
x + σ2

y

(6.16)

Thus, we have:

X|Z=z ∼ N

(
z

[
1 + R

2 + R−1 + R

]
,

σ2
xσ2

y

σ2
x + σ2

y

)
(6.17)

Ws|Wt=a ∼ N

(
a

[
1 + s/(t− s)

2 + (t− s)/s + s/(t− s)

]
,
s(t− s)

t

)
(6.18)

∼ N

(
a

[
1 + s/(t− s)

1 + s/(t− s) + t/s

]
, s− s2

t

)
(6.19)

∼ N

(
a

[
t− 6 s+ 6 s

6 t− 6 s+ 6 s + t2/s− 6 t

]
, s− s2

t

)
(6.20)

∼ N

(
a
s

t
, s− s2

t

)
(6.21)

Thus, if we fix t to be ε, we can see:

P{Ws > 0|Wε = a} = Φ

(
−a(s/ε)√
s− s2/ε

)
(6.22)

= Φ
(
−a
√

sε√
1− s

)
s→0−→ Φ(0) = 1/2(6.23)

Thus, for any p ∈ (0, 1/2), we may choose some s ∈ (0, ε) such that P{Ws > 0|Wε =
a} = p. We may thus repeat the same trick as above and conclude

∀ε > 0 P{∃s ∈ (0, ε) such that Ws = 0} = 1(6.24)

Note that there is a difference between the above statement and the goal of the
proposition. We need to get the ∀ε > 0 inside the probability sign. We can
accomplish this by taking a monotonic sequence converging εn → 0, taking the
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intersection, and invoking (4.25) like so:

P

{⋂
n∈N

∃s ∈ (0, εn) such that Ws = 0

}
(6.25)

= lim
n→∞

P {∃s ∈ (0, εn) such that Ws = 0} = 1(6.26)

�

7. Non-Differentiability

Theorem 7.1. With probabiility one, the map t 7→ Wt is differentiable nowhere in
(0, 1).

Proof. We begin with some observations about differentiable functions.
Claim 1 Suppose ∃t ∈ (0, 1) such that Wt is differentiable. Then ∃δ > 0, C < ∞
such that ∀ε ∈ (0, δ), s, s′ ∈ [t− ε, t + ε] ⇒ |Ws −Ws′ | ≤ Cε.
Proof of Claim 1

|Ws −Ws′ |
2ε

≤ |Ws −Wt|+ |Wt −Ws′ |
2ε

(7.2)

Using the Taylor expansion, we get:

=
|Wt + (s− t)W ′

t + R(s)−Wt|+ |Wt + (s′ − t)W ′
t + R(s′)−Wt|

2ε
(7.3)

≤ |s− t|
2ε︸ ︷︷ ︸
≤1/2

|W ′
t |+

|s′ − t|
2ε︸ ︷︷ ︸
≤1/2

|W ′
t |+

2|R(s)|
2ε

,(7.4)

where R is the remainder function. Note that the existence of the derivative guar-
antees that |R(s)|/ε

δ→0−→ 0. Thus, we may choose δ such that |R(s)|/ε ≤ |W ′
t |,

which means C = 4|W ′
t | completes the proof of the claim.

Claim 2 Let

M(k, n) = max
{∣∣∣W k

n
−W k−1

n

∣∣∣ , ∣∣∣W k+1
n
−W k

n

∣∣∣ , ∣∣∣W k+2
n
−W k+1

n

∣∣∣}
Mn = min{M(1, n), . . . ,M(n, n)}

Then if ∃t ∈ [0, 1] such that Wt is differentiable, then ∃C < ∞, n0 such that
∀n ≥ n0, Mn ≤ C/n.
Proof of Claim 2 Suppose Wt is differentiable at t ∈ [0, 1]. We apply Claim 1 and
get

∃δ > 0, C < ∞ ∀ε ∈ (0, δ) : s, s′ ∈ [t− ε, t + ε] ⇒ |Ws −W ′
s| ≤ Cε

Choose n0 such that 1/n0 < δ. Then for n > n0, we let ε = 1/n. Let k be such
that t ∈ [ k

n , k+1
n ]. It follows that

k − 1
n

,
k

n
,
k + 1

n
,
k + 2

n
∈ [t− ε, t + ε]

Thus, by Claim 1,

|W k
n
−W k−1

n
|, |W k+1

n
−W k

n
|, |W k+2

n
−W k+1

n
| ≤ Cε =

C

n
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Thus, Mn ≤ M(k, n) ≤ C
n .

Next we use the assumption that Wt is a Brownian Motion and consider

P
{

M(k, n) ≤ C

n

}
= P


k+2⋂
j=k

∣∣∣W j
n
−W j−1

n

∣∣∣ ≤ C

n

(7.5)

independence ⇒ =
j=k+2∏

j=k

P
{∣∣∣W j

n
−W j−1

n

∣∣∣ ≤ C

n

}
(7.6)

identical distributions ⇒ =
[
P
{∣∣∣W 1

n

∣∣∣ ≤ C

n

}]3
(7.7)

=
[
Φ
(

C

n

√
n

)
− Φ

(
−C

n

√
n

)]3
(7.8)

=

[
1√
2π

∫ C√
n

− C√
n

e−x2/2dx

]3

(7.9)

Since e−x2/2 ≤ 1 ∀x, we may use the bound

P
{

M(k, n) ≤ C

n

}
≤

[√
2

πn
C

]3

(7.10)

Using Claim 2, we consider the event

∃t ∈ [0, 1] such that ∃W ′
t ⊂ ∃C, n0 ∀n > n0,Mn ≤ C/n(7.11)

P{∃t ∈ [0, 1] such that ∃W ′
t} ≤ P

{ ∞⋃
C=1

∞⋃
n0=1

∞⋂
n=n0

Mn ≤ C/n

}
(7.12)

≤
∞∑

C=1

∞∑
n0=1

P

{ ∞⋂
n=n0

Mn ≤ C/n

}
(7.13)

by(4.25) =
∞∑

C=1

∞∑
n0=1

lim
n→∞

P {Mn ≤ C/n}(7.14)

=
∞∑

C=1

∞∑
n0=1

lim
n→∞

P

{
n⋃

k=1

M(k, n) ≤ C

n

}
(7.15)

≤
∞∑

C=1

∞∑
n0=1

lim
n→∞

nP
{

M(k, n) ≤ C

n

}
(7.16)

≤
∞∑

C=1

∞∑
n0=1

lim
n→∞

n

[√
2

πn
C

]3

= 0(7.17)

�

Thus the probability of t 7→ Wt being differentiable anywhere on [0, 1] is zero.
As before, we could make the same argument for an arbitrary interval, say [0, n].
Since the probability of being differentiable on the union of these intervals would
be less than or equal to the sum of the probabilities for each interval, it follows that
the probability of being anywhere differentiable is zero.
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Note that being continuous everywhere and differentiable nowhere is rather special.
There are certainly ways to explicitly define such functions, but they generally
seem highly contrived. With Brownian Motion, we have a process that generates
infinitely many such functions which is really rather intuitive.


