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Abstract. In the game called Traveler’s Dilemma, the standard game theo-
retic analysis cannot explain why people choose to play the strictly dominated

strategy of the game except by saying that they are not maximizing their ex-

pected payoff, i.e. acting irrationally. In this paper, we look at how people
might choose to play irrationally.

1. Introduction

In 1994, Kaushik Basu formulated a simple game Traveler’s Dilemma. Like many
other games in economics, it comes with a story. Here it is:

Just as you return from your wonderful summer vacation, you find that the airline
has smashed your recently purchased antique. Fortunately, an airline manager
says that he is happy to compensate for the antique. He also informs you that,
coincidentally, the airline also misplaced the identical antique from another traveler
Bob.

The manager, unwilling to pay more than he has to and having no idea what the
actual price of the antique is, figures out a scheme to determine the true price. He
asks you and Bob to write down any integer between 2 and 100 without conferring
together. If you and Bob write the same number, then the manager will take that
to be the true price and pay you and Bob that amount. If the number is different,
then the manager will take the lower number to be the true price, and assume that
the person with higher number is lying. So, in this case, the manager will pay
you and Bob the lower number with the reward of 2 dollar for the person with the
lower number and the penalty of -2 dollar for the person with higher number. For
example, if you choose 84 and Bob chooses 48, then you get 46 and Bob gets 50
dollars. What number should you write down?

2. Game Theoretic Analysis

It may seem obvious at first that the best choice 100. However, a rational person
would choose 2.

To see this, first assume that both players are rational, in the sense that they
always choose their strategy to maximize their payoff. We define few things.

Definition 1. Let Si where i = 1, 2 be a set of strategies for player i, and let
πi(s1, s2) be a payoff for player i given some strategies s1 ∈ S1 and s2 ∈ S2. A
strategy for player 1, s1, is strictly dominated by s′1 if

π1(s′1, s2) > π1(s1, s2) for all s2 ∈ S2.

Date: 7/5/2007.

1



2 SATORU KUDOSE

2 · · · 99 100
2 (2,2) · · · (4,0) (4,0)
...

...
. . .

...
...

99 (0,4) · · · (99,99) (101,97)
100 (0,4) · · · (97, 101) (100, 100)

Table 1. The payoff matrix for Traveller’s Dilemma

Similarly, a strategy for player 2, s2, is strictly dominated by s′2 if

π2(s1, s
′
2) > π2(s1, s2) for all s1 ∈ S1.

So no rational person would choose strictly dominated strategy, because he can
always do better by choosing other strategy.

Definition 2. A Nash equilibrium is a pair of strategies (s∗1, s
∗
2) such that

π1(s∗1, s
∗
2) ≥ π1(s1, s

∗
2) for all s1 ∈ S1,

and

π2(s∗1, s
∗
2) ≥ π1(s∗1, s2) for all s2 ∈ S2.

Now, we prove that (2, 2) is the unique Nash equilibrium, and that (100, 100)
is strictly dominated in Traveler’s Dilemma. Note the payoff matrix for Traveler’s
Dilemma is

π(x, y) =


(x + 2, x− 2) if x < y

(x, x) if x = y

(y − 2, y + 2) if x > y where x, y ∈ {2, . . . , 100}

So given other player choose to play n, your best choice is to choose n− 1.

Lemma 1. In Traveler’s Dilemma, the strategy 100 is strictly dominated by 99.

Proof. By symmetry of the game, it suffices to check the condition for player 1.
Suppose s2 ∈ S2. If s2 = 100, then we have

π1(100, 100) = 100 < 101 = π1(99, 100).

If s2 < 100, then we have

π1(100, s2) = s2 − 2 < 99 ≤ π1(99, s2).

Hence, the strategy for 100 is strictly dominated by99. �

Lemma 2. In Traveler’s Dilemma, (2, 2) is the unique Nash equilibrium.

Proof. By symmetry of the game, it suffices to check the condition for player 1.
Consider some n > 2, then we have

π1(2, 2) = 2 ≥ 0 = π1(n, 2) for all n > 2.

So (2, 2) is a Nash equilibrium.
Now, we show uniqueness. Consider (m,n) where m,n > 2. If m 6= n, suppose

without loss of generality that m > n, then we have

π1(n− 1, n) = n + 1 > n− 2 = π1(m,n).
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If m = n, then we have

π1(n− 1, n) = n + 1 > n = π1(m,n).

Hence, no (m,n) where m,n > 2 can be a Nash equilibrium. Hence, (2, 2) is the
unique Nash equilibrium. �

These results hold for more general game with payoff matrix

π(x, y) =


(x + R, x−R) if x < y

(x, x) if x = y

(y −R, y + R) if x > y

where x, y ∈ {2, . . . , 100} and R ≥ 2. So, no matter what the R (reward/penalty)
is, we expect both players to choose 2 and never choose 100. However, this is
not what people actually do. Several experiments show that many people actually
play high numbers 90 ∼ 100. In effect, yielding higher payoff for those who play
irrationally. Also, we see that people tend to behave more rationally when R is big.
Because such choice is very prominent, there may be a good reason for choosing
100 even this is not what a rational person would choose.

3. A Model

The choice of 90 ∼ 99 can be accounted for rather nicely by assuming that the
other player might play 100. This analysis is published by Becker, Carter and Naeve
(2005). But why would anybody play 100 knowing that 99 is always better? To
explain such a behavior, it seems reasonable to look at what people actually do,
and cast aside the tension between the theory and experiment for a moment.

Often, it is clear that some game is better played cooperatively, while some game
is better played without cooperation. For example, in one shot Prisoner’s dilemma,
both players choosing to cooperate leads to a better outcome, but, in the game of
chess, cooperation clearly does not work. In particular, in the game like Prisoner’s
dilemma, both players being rational leads to an undesirable end. So, instead,
people may want to cooperate. How then do we decide whether to actually choose
cooperative strategy or not?

We attempt to make a model that describe such decision. Here is the hypothesis:
people choose to play cooperatively or not to play cooperatively depending on the
game and their beliefs. We restrict attention to the game with a payoff matrix of
Traveler’s Dilemma, and measure the player’s inclination to cooperate and not to
cooperate. Recall that the payoff matrix for Traveler’s Dilemma is:

π(x, y) =


(x + R, x−R) if x < y

(x, x) if x = y

(y −R, y + R) if x > y

where x, y ∈ {2, . . . , 100} and R ≥ 2. We make a definition to refer to the cooper-
ative solution of the game namely (100, 100).

Definition 3. Let cooperative strategies (CS) be set of all strategies (s1, s2) such
that

π1(s1, s2) = π2(s1, s2).
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Let cooperative equilibrium strategies (CE) be strategies (s∗1, s
∗
2) such that

πi(s∗1, s
∗
2) ≥ πi(s1, s2) for all s1, s2 ∈ CS.

This is basically what the players would choose if they are cooperating. So, in
Traveler’s Dilemma, (100, 100) is the unique cooperative equilibrium and (2, 2) is
the unique Nash equilibrium.

Let CE be the strategy for cooperative equilibrium and NE be the strategy for
Nash equilibrium. We define inclination to cooperate (IC) to be:

IC = k
pπ(CE)

(1− p)π(NE)
.

where k is some experimentally determined constant and p is a player’s estimate of
the probability that other player would play cooperatively (How much you expect
other will cooperate.). We see that pπ(CE)

(1−p)π(NE) measures how much better it is for
the player to cooperate than to play rationally. The constant k accounts for the
factors outside of the game that makes a person cooperate more; it should account
for the individual differences.

We define inclination not to cooperate (IN) to be

IN =
π(CE)− 1 + R

π(CE)
.

Note that π(CE) − 1 + R corresponds to the maximum possible gain in playing
without cooperation for this particular game. So, if the player believes the other
player would cooperate with probability p, then p(π(CE)− 1 + R) is the expected
payoff. So p(π(CE)−1+R)

pπ(CE) measures how much better it is to not to cooperate than
to play cooperatively.

We turn the hypothesis, that people decide to play cooperatively or not depend-
ing on their belief and on the game at hand, into an inequality.

Model. Suppose we have a game with positive unique Nash equilibrium and coop-
erative equilibrium as in Traveller’s Dilemma. If IC > IN , then the player decides
to cooperate and choose CE strategy. Otherwise the player do not cooperate.

Rearranging the inequality, if

k >
1− p

p
· π(NE)(π(CE)− 1 + R)

π(CE)2
,

then the player chooses CE strategy. We note several points in regard to general-
ization. First, this model may be able to account for the game with multiple NE by
letting π(NE) be the average of π(NE). If no cooperative equilibrium exists, then
we can arbitrary let πCE be some number very close to zero, so that people are
less likely to cooperate. We now note several points in regard to the behavior of p.
For a game with n > 2 players, we expect that p is smaller than that of two player
game (perhaps pn?), so that people cooperate less in the crowd. For repeated game,
the value of p changes according to the previous choices. In particular, if players
know each other, we expect p to be higher leading to more cooperation. All of this
assertion must be experimentally verified.

Because the value of k and p are not known, we cannot make a precise prediction
of the proportion of people who choose to cooperate. However, we can make some
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qualitative observations. We see that if Nash equilibrium is very small in compari-
son to the cooperative solution, then people are more likely to choose to cooperate,
i.e. choose 100. Players see the effect of playing rationally and choose not to do
so. We see that people choose to not to cooperate if the reward for not doing so is
high. We see that people who rule out the possibility of other player choosing to
cooperate (the case where p ≈ 0) do not cooperate; so the case where we assume
that p ≈ 0 corresponds to the assumption that both players act rationally.

If we let k′ = p
1−p and assume that k′ is distributed normally with mean 0.18

and standard deviation .025, then we can calculate the proportion of people who
cooperate, which is 0.189. Since the Nash equilibrium is 2 and the cooperative
equilibrium is 100, people who cooperate must satisfy k > .0202 from above in-
equality. We evaluate the area under the normal curve with lower limit 0.0202, and
we get ∼0.189. So this model gives a correct number for proportion of people who
cooperate for this particular payoff matrix. But, of course, these numbers are pre-
cisely chosen to do so for the specific sample in the paper by Becker et al.. So this
must be tested further experimentally with different sample and different value of
R. The determination of the mean and distribution for the value of k′ also requires
experiments with different payoffs. (The mean is probably dependent on the game
while the distribution is more or less independent. It’s hard to say without any
data.)

Furthermore, if both player believes that the other player would choose to play
cooperatively or not depending on the game and his belief, then we see that a
rational (payoff maximizing) person would naturally consider the Bayesian model
of the game as in Becker et al. where it is assumed that the probability of the
other player playing 100 is nonzero. (Unless they hold a firm belief that all humans
always maximize their payoffs.) Players who choose 2 are ruling out the possibility
of others choosing to play cooperativlely. In Traveler’s Dilemma, we see that this
assumption is not actually profitable. And we see that there is something ”rational”
about choosing 100 though the choice does not maximize player’s payoffs; this choice
is in fact a product of thoughtful consideration based on the game at hand.
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