
COBORDISM AND CONFUSION

PETER MAY

We had a great deal of confusion today, some inflicted by me, some by others. I
decided to bang out something pedantically rigorous, as least as far as the absolutely
precise definition of the objects and the morphisms of the category 2-COB, starting
more generally with n-COB. Being precise here will allow us to be a little more
informal when we perform verifications later on.

1. What are the objects of the cobordism category?

Well, we want a nice small category, so we should be thinking perhaps of a
skeleton of some larger category. Remember from the first talk that identity is a
silly notion of sameness, the right notion being isomorphism. The large class of
objects we are thinking of is the class of smooth closed oriented n − 1-manifolds.
The right notion of isomorphism is orientation-preserving diffeomorphism, and we
agree to choose one such oriented manifold from each isomorphism class and let
these be the objects of n-COB.

That much works in general; now focus on the case n = 2, so that n − 1 = 1.
It is silly to think of the circle as having two isomorphism classes, one for each
orientation, because that pretends that the only isomorphism between circles is the
identity map, which of course does not preserve orientation.

Lemma 1.1. There is an orientation-preserving diffeomorphism from a circle with
one orientation to a circle with the other orientation.

Proof. Draw little circles of the same size around (1, 0) and (−1, 0) in R2 and reflect
one to the other through the y axis. �

Lemma 1.2. Every smooth closed oriented 1-manifold is isomorphic to a disjoint
union of n circles, each with its standard orientation.

That determines the objects of 2-Cob. There is one object, the disjoint union of
n oriented circles, for each n ≥ 0. We write that object as n. Except that no such
convenient choice of objects seems likely, we can make a conceptually analogous
choice in the case n > 2. We shall not bother to introduce notation that would
help us talk about the general case.

An oriented n-manifold M with boundary induces orientations of its boundary
components, but how does it do so? Let Σ be such a boundary component and let
x ∈ Σ. Choose a basis [v] for the tangent plane Tx(Σ) at a point x ∈ Σ. The normal
bundle of the embedding Σ ⊂ M is trivial, and there are vectors w ∈ Tx(M) such
that [v, w] is a basis for Tx(M). A neighborhood of x in M looks like a half plane
Hn, and Tx(M) looks like a copy of Rn, with Hn inside M and its complementary
half-plane outside of M . So the vector w points outside M or points inside M ; that
is, identifying a small neighborhood of x in M with 0 ∈ Hn ⊂ Rn, w is outside Hn

or it is inside Hn.
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One way to specify the induced orientation on Σ is to say that [v] is positive if
[v, w] is positive in the given orientation of M whenever w is outside M . This is
independent of the choice of w. We don’t want to focus attention on either this
induced orientation or the alternative one that is obtained by saying that [v] is
positive if [v, w] is positive in the given orientation of M whenever w is inside M .
Note however that these are the only two choices of an orientation of the boundary
component Σ.

Definition 1.3. An orientation of the boundary of an oriented n-manifold M with
boundary is a choice of orientation of each boundary component. The boundary
component Σ is an out-boundary component if the chosen orientation agrees with
the induced orientation; it is an in-boundary component if it does not. The disjoint
union of the in-boundary components is called the in-boundary. The disjoint union
of the out-boundary components is called the out-boundary. When n = 2, define
the source of M to be m, where m is the number of in-boundary components, and
define the target of M to be n, where n is the number of out-boundary components.

Intuitively, we think of M as a morphism m −→ n, but that doesn’t really
make much sense until we fix a geometric connection between the fixed chosen
disjoint unions of circles m and n and the in-boundary and out-boundary of M .
These are obviously not “the same” in any silly sense. For each n-manifold M with
source m and target n, we choose an isomorphism (in the orientation-preserving
diffeomorphism sense above) from m to the inboundary of M and from n to the
outboundary of M ; call these i and o. We use the notations i and o generically, using
the same letter for different manifolds. We think of triples (M, i, o) as morphisms
from m to n. There are zillions of them and, again, we don’t want to have too
many morphisms in 2-COB. We now reduce the number not by choosing one among
many isomorphic ones but rather by identifying two if they are suitably equivalent.

Definition 1.4. Triples (M, i, o) and (N, i, o) are equivalent if there is an orientation-
preserving diffeomorphism f : M −→ N that makes the following diagram com-
mute.
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This specifies an equivalence relation, and we write [M, i, o] (or just [M ] or some-
times even M when no confusion seems likely) for the equivalence class of [M, i, o].
Intuitively, we think of f as a diffeomorphism that fixes the boundary. The set (it
is indeed a set) of equivalence classes [M, i, o] is the set of morphisms m −→ n in
the category 2-COB.

For any closed oriented (n−1)-manifold Σ, Σ×I has a canonical product orienta-
tion. Taking the in-boundary to be Σ×{0} and the out-boundary to be Σ×{1} and
using the obvious maps i0 and i1 as i and o, we may define the identity morphism
on Σ to be [M × I, i, o]. We must still define composition. To be continued.


