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Abstract. The aim of this paper is to introduce finite spaces and their sim-

plicial complexes. Next, we give an application to combinatorics in the form
of a relation between the Euler characteristic and the Möbius function. We

begin by giving an overview of finite topological spaces. We introduce beat

points and weak homotopy equivalences. Then, we show that finite spaces are
weak homotopy equivalent to their associated simplicial complexes. Lastly,

we discuss the Euler characteristic of finite spaces. We introduce the Möbius

function of posets to show its relation to the Euler characteristic.
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1. Finite topological spaces and preordered sets

We begin with an exposition of finite topological spaces as an analogy to finite
preordered sets.

Definition 1.1. A finite topological space is a topological space with only a finite
number of points.

Definition 1.2. A finite preordered set is a set along with a binary relation “≤”
that compares elements and designates when one element is greater than another.
For a preordered set P and elements a, b, c ∈ P , the relation follows two properties:

• a ≤ a,
• If a ≤ b and b ≤ c then a ≤ c.

We now show that these two concepts are in fact the same. Given a finite
topological space X, first note that the intersection of arbitrary open sets is open,
as there are only a finite number of open sets to begin with. Thus for each x ∈ X,
define the minimal open set Ux to be the intersection of all open sets in X containing
x. The set of these Ux forms a basis for the space X; call this basis the minimal
basis. This is called the minimal basis because any other basis B for X must
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contain the minimal basis: if Ux is not an element of B, then it must be the union
of elements of B. But if that were the case, then one of those elements must contain
x, and thus that element must be Ux as it cannot contain anything outside of Ux.
Therefore, the minimal basis is a subset of B.

Now, we define a preorder on a finite topological space X as x ≤ y if x ∈ Uy.
Now if X were a finite preordered set, we can define a topology on X as the topology
with a basis of sets {y ∈ X | y ≤ x} for all x ∈ X. According to this definition, if
y ≤ x, then y is contained in every basis element that also contains x. Thus y is
contained in their intersection, and thus y is contained in Ux. On the other hand,
if in a finite topological space y ∈ Ux, then y ≤ x. Thus, according to these two
definitions, y ≤ x if and only if y ∈ Ux, which implies that these two definitions are
mutually inverses.Thus finite topological spaces and finite preordered sets are in a
one-to-one correspondence.

A common axiom used in topology is the T0 separation axiom.

Definition 1.3. A space satisfies the T0 axiom if no two points have an exactly
identical set of open neighborhoods.

Likewise, a common extension of the idea of a preordered set is to that of a
partially ordered set.

Definition 1.4. A partially ordered set, also known as a poset, is a preordered set
under the restriction that if x ≤ y and y ≤ x, then x = y.

Remark 1.5. If X is a T0 finite topological space with x, y ∈ X, then x ∈ Uy and
y ∈ Ux implies that x and y are the same point. Translating this over to preordered
set terminology, x ≤ y and y ≤ x implies x = y. But this is exactly the requirement
for a preordered set to be a poset. Thus posets and T0 topological spaces are in
one-to-one correspondence as well.

This correspondence between finite spaces and preordered sets is interesting, but
what is really important about it is that the correspondence extends to maps of
these spaces.

Definition 1.6. A map f : X → Z between preordered sets is order preserving if
x ≤ y implies that f(x) ≤ f(y) for all x and y in X.

We now show that these maps correspond exactly to continuous maps between
finite topological spaces.

Lemma 1.7. A function f between finite spaces is continuous if and only if it is
order preserving.

Proof. Consider a function f : X → Y between finite spaces. Let x and y be
elements of X with x ≤ y. If f is continuous, then f−1(Uf(y)) is open. But

y ∈ f−1(Uf(y)), and since x ≤ y, it follows that x ∈ f−1(Uf(y)). Thus f(x) ∈
f−1(Uf(y)), so f(x) ≤ f(y), and thus f is order preserving.

Now let f be order preserving. Since the set of Ux’s constitutes a basis, we only
need to show that f−1(Uz) is open for all z ∈ Z. Suppose y ∈ f−1(Uz). As x ≤ y,
f(x) ≤ f(y) ≤ z. Thus x ∈ f−1(Uz). Thus f is continuous as Uz is a union of
minimal basis elements with maximums in the set f−1(z). �
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2. Connectedness and Homotopies of finite spaces

Before this section, note that throughout this paper we will make use of the term
map between topological spaces generally to refer to continuous maps.

Definition 2.1. A path between points x and y in X is a map α : I → X such
that α(0) = x and α(1) = y.

Proposition 2.2. If x, y ∈ X for X a finite space, and x ≤ y, then there is a path
connecting x to y.

Proof. We prove this by constructing a path α. Define α to be the function such
that

α(t) =

{
x if 0 ≤ t < 1

y if t = 1.

Now we show that α is a continuous. For all open subsets U ⊂ X, α−1(U) is either
∅, [0, 1), or [0, 1] since if U contains y then U also contains x. Thus α is continuous
and thus is a path. �

Proposition 2.3. Suppose x, y ∈ X for X a finite space. If there is a path con-
necting x to y, then there exists a sequence of points x1, x2, ..., xn with x = x1 and
y = xn such that xi is comparable to xi+1.

Proof. Let X be a finite space and let x ∈ X. Let

S = {y ∈ X | ∃ x1, x2, ..., xn with x = x1, y = xn and xi is comparable to xi+1}.
But then S is open as if z ∈ S, then so is Uz. On the other hand, if z 6∈ S then
neither is Uz. Thus X \ S is open, and S is closed. But since S is both open and
closed, and X is connected, it must be the case that S = X. �

Now we examine homotopies of maps using the mapping space.

Definition 2.4. Let X and Y be topological spaces. The mapping space Y X

denotes the set of maps from X to Y . Y X can be considered a topological space
by using the compact-open topology, which is the topology having a subbasis of sets
of the form

W (C,U) = {f | f(C) ⊂ U}
for all C compact in X and U open in Y .

Definition 2.5. For X and Y finite spaces and f, g ∈ Y X , the pointwise order on
Y X is defined byf ≤ g if f(x) ≤ g(x) for all x ∈ X.

Proposition 2.6. For X and Y finite spaces, the intersection of all open sets in
Y X containing a map g is {f ∈ Y X | f ≤ g}.

Proof. Let V denote the intersection of all open sets containing g. We know that
V is open as X and Y are finite. Let f ≤ g. g is an element of V , thus f ∈ V .
Conversely, if f is in V then fix an x ∈ X. g is in W ({x}, Ug(x)), thus f ∈
W ({x}, Ug(x)). Thus f(x) ∈ Ug(x) and therefore f(x) ≤ g(x). �

Proposition 2.6 can be restated as saying that the pointwise ordering coincides
with the preordering associated with the compact-open topology.

Throughout algebraic topology, one of the most important ideas is that of a
homotopy relation.
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Definition 2.7. Two maps f, g : X → Y between topological spaces X and Y
are homotopic if there exists a map G : X × I → Y such that for all x ∈ X,
G(x, 0) = f(x) and G(x, 1) = g(x). If two maps f and g are homotopic, we write
f ' g.

Definition 2.8. Two spaces X and Y are said to be homotopy equivalent if there
exist maps f : X → Y and g : Y → X such that g ◦ f ' idX and f ◦ g ' idY . We
write X ' Y .

We use this opportunity to introduce some language that will be useful later.

Definition 2.9. A strong deformation retract of a space X is a subspace A such
that there exists a map F : X × I → X with F (x, 0) = x, F (x, 1) ∈ A, and
F (a, t) = a for all x ∈ X, a ∈ A, and t ∈ I.

In other words, let i : A ↪→ X denote the inclusion. F is a homotopy between
idA and a map i ◦ r for some map r : X → A. If A is a deformation retract of X,
then clearly X and A are homotopy equivalent.

Definition 2.10. A space is contractible if there exists a homotopy from the iden-
tity map on that space to a constant map.

Now we return to the context of finite spaces.

Proposition 2.11. For finite spaces X and Y , the homotopies h : X × I → Y are
in bijective correspondence with the paths j : I → Y X .

Proof. This correspondence is given by h(x, t) = j(t)(x). �

Proposition 2.11 implies that homotopy classes of maps between finite spaces are
equivalent to path components in the mapping space.

Proposition 2.12. Let f and g be maps between two finite topological spaces X
and Y . Then f ' g if and only if there exist maps f1, ..., fn with f1 = f , fn = g,
and such that f1 ≤ f2, f2 ≥ f3,f3 ≤ f4, f4 ≥ f5, and so on.

Proof. First suppose that there is a string of maps f1, ..., fn that satisfy the con-
ditions above. Since for all i, either fi ≤ fi+1 or fi+1 ≤ fi, we have a path α
connecting fi with fi+1 in Y X given by

α(t) =

{
min(fi, fi+1) if 0 ≤ t < 1

max(fi, fi+1) if t = 1

Since this is order-preserving, it is continuous under the compact-open topology.
Since paths in Y X correspond to homotopies, fi ' fi+1 for all i. Inductively,
f ' g.

If f ' g, then by proposition 2.11 we know that there is a path between f and
g in Y X . Let Z be the set of points that are on this path. Thus Z is a connected
subspace of Y X . But then by proposition 2.3, all maps including g are connected to
f by exactly a sequence f1, ..., fn such that f1 = f , fn = g, and such that f1 ≤ f2,
f2 ≥ f3,f3 ≤ f4, and so on. �

So far, we have mainly been dealing with finite spaces in general. However, alge-
braic topology usually only concerns itself with identifying spaces up to homotopy,
and in the case of finite spaces it turns out that every space is homotopy equivalent
to a T0 finite space. We show this below.
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Lemma 2.13. Every finite space X is homotopy equivalent to a finite T0 space X0.

Proof. If X is a finite space, let X0 denote the space X/ ∼ where x ∼ y if x ≤ y
and y ≤ x. Immediately we see that X0 is a T0 space as if x ≤ y and y ≤ x in X0,
then x = y by the definition of X0 and quotient space. Thus, X0 as a preordered
set satisfies antisymmetry, which is the requirement for a preordered set to be a
poset. As we showed in remark 1.5, X0 being a poset is exactly the same as the
space X0 being T0.

All that remains to be shown is that X0 is indeed homotopy equivalent to X.
Since X0 is a quotient of X, there is a quotient map q : X → X0. Let p be the
function such that q ◦ p = idX0 . Thus p ◦ q is order preserving, and furthermore,
p ◦ q ≤ idX as it only sends elements to themselves or to something less than or
equal to themselves. Thus p is a homotopy inverse of q, and X ' X0. �

This implies that from now on we only need concern ourselves with T0 finite
spaces up to homotopy.

3. Beat points and cores

Definition 3.1. A down beat point x of a finite T0 space is a point such that there
exists a y such that y ≤ x, and if z ≤ x then z ≤ y. An up beat point x of a finite
T0 space is a point such that there exists a y such that y ≥ x, and if z ≥ x then
z ≥ y.

Definition 3.2. A beat point is a point that is either an up beat point or a down
beat point.

Intuitively, a beat point is a point with a point directly above or below it, that
is to say, there is nothing between the two points.

Definition 3.3. A minimal finite space is a space without beat points. A core of
a finite T0 space X is a minimal finite space that is a deformation retract of X.

Proposition 3.4. Let X be a finite T0 space and let x ∈ X be a beat point of X.
Then X \ {x} is a deformation retract of X.

Proof. Let x be a down beat point of X. Let y be as in definition 3.1. The retraction
r : X → X \ {x} is given by r(x) = y, and otherwise r is the identity. This is an
order-preserving map. Additionally the inclusion i : X \ {x} → X implies that
i ◦ r ≤ idX . Thus i ◦ r ' idX , and thus r is deformation retraction. A similar proof
works for up beat points. �

It immediately follows from the previous result that every finite T0 space has a
core as one can remove beat points until none are left. Since the removal of beat
points constitutes a deformation retract, then one would be left with a minimal
deformation retract which is a core.

Proposition 3.5. If X is a minimal finite T0 space and f : X → X is homotopic
to idX , then f = idX .

Proof. First suppose f ≥ id. Then f(x) ≥ x for all x ∈ X. We proceed with
induction. For the base case: if x is a maximal point ofX, then necessarily f(x) = x.
For the inductive step: fix a y and suppose f(x) = x for all x ≥ y. Thus for all
x ≥ y, x = f(x) ≥ f(y) ≥ y. But if f(y) 6= y, then y is a beat point by definition.
This contradicts the minimality of X, so y = f(y) for all y inductively. A similar
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argument works to show that if f ≤ id, then f is the identity. Since we have already
shown that any map homotopic to the identity has a sequence of comparable maps
between it and the identity, by induction they must all be the identity map, and
thus any map homotopic to the identity must be the identity. �

Corollary 3.6. A homotopy equivalence between minimal finite spaces is a home-
omorphism.

Proof. Let X and Y be minimal finite spaces, and let f be a homotopy equivalence
between them. Let g be the homotopy inverse of f , and thus f ◦ g ' id. By
proposition 3.4, f◦g = id and similarly g◦f = id. ThusX and Y are homeomorphic.

�

Since two cores of a space are homotopy equivalent to the original space, and
they are both minimal, this implies that cores are unique. Additionally, it follows
that two finite spaces are homotopic if and only if they have homeomorphic cores.

4. Weak homotopy equivalences and Simplicial Complexes

Definition 4.1. A continuous map f : X → Y between topological spaces is called
a weak homotopy equivalence if f∗ : π0(X)→ π0(Y ) is a bijection and for all n ≥ 1,
f∗ : πn(X,x0)→ πn(Y, f(x0)) is an isomorphism for every base point x0.

Homotopy equivalences are all weak homotopy equivalences, and in many cases
weak homotopy equivalences are homotopy equivalences. Whitehead has shown
that weak homotopy equivalences between CW-complexes are in fact homotopy
equivalences. However, this is not true for general spaces. Weak homotopy equiv-
alences are very important in the study of finite spaces, and while we will not go
too deeply into this, we will see some of their uses.

Now we will state a key theorem about weak homotopy equivalences without
proof. This is a theorem that allows maps to be identified as weak homotopy
equivalences if they are locally weak homotopy equivalences, in a sense. This is
a theorem from general algebraic topology, its proof can be found at [2, corollary
4K.2]. It will be useful at the end of this section to prove that a specific map is a
weak homotopy equivalence.

Definition 4.2. A basis like open cover U of a space X is an open cover such that
for each U1, U2 ∈ U and x ∈ U1∩U2, there exists U3 ∈ U such that x ∈ U3 ⊂ U1∩U2.

Theorem 4.3. Let f : X → Y be a continuous map between spaces X and Y . If
there exists a basis like open cover U of Y such that for each U ∈ U ,

f |f−1(U) : f−1(U)→ U

is a weak homotopy equivalence, then f is a weak homotopy equivalence.

Now we introduce the concept of a simplicial complex that is associated to each
finite T0 space X.

Definition 4.4. A simplicial complex K consists of a set VK of vertices and a set
SK of finite and nonempty subsets of VK called the simplices. It is also required
that all single points of VK are simplices, and all subsets of simplices are simplices.

Often we just refer to something as being in K if it is in one of these two sets,
and context will make it clear which one. The dimension of a simplex is one less
than the number of vertices it contains.
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Definition 4.5. Let σ = {v1, ..., vn} be a simplex in K. Then the closed simplex

σ is the set of convex combinations
n∑
i=0

αivi for αi ≥ 0 and
n∑
i=1

αi = 1. This is given

the metric topology with metric

d(

n∑
i=0

αivi,

n∑
i=0

βivi) =

√√√√ n∑
i=0

(αi − βi)2.

Associated to each simplicial complex, there is a useful notion of its geometric
realization.

Definition 4.6. The geometric realization |K| of a simplex K, consists of the set
of all convex combinations

∑
v∈VK

αvv such that {v | αv > 0} ∈ SK . Note that each

σ is a subset of |K|. |K| is given the topology such that U ∈ |K| is open if U ∩ σ
is open in σ for each σ ∈ SK , otherwise known as the final topology.

In the case that K is a finite simplex, the topology on |K| coincides with the
metric topology under the metric

d(
∑
v∈VK

αvv,
∑
v∈VK

βvv) =

√ ∑
v∈VK

(αv − βv)2.

Now let X be a finite T0 space. The simplicial complex associated with X is
denoted K(X), and it is the simplicial complex whose simplices are the nonempty
chains in the poset X. If f : X → Y is a map between topological spaces, then the
associated simplicial map K(f) : K(X) → K(Y ) is defined to be K(f)(x) = f(x).
Categorically, K(X) is a functor from finite T0 spaces to simplicial complexes.

The geometric realization of a simplicial complex associated to a poset |K(X)|
consists of points k =

n∑
i=1

tixi with x1 < x2 < ... < xn being a chain in X, and with

n∑
i=1

ti = 1 and ti > 0 for all i.

Definition 4.7. The support of a point k in the geometric realization of a simplicial
complex of a finite poset is the set {x1, x2, ..., xn}.

Now we come to a map which is useful to showing relations between a poset and
its associated simplicial complex.

Definition 4.8. The K-McCord map of a finite T0 space X is µX : |K(X)| → X
such that µX(k) = min(support(k)).

Lastly we prove a useful theorem showing a deep relation between a poset and
its associated simplicial complex.

Theorem 4.9. The K-McCord map for a finite T0 space X is a weak homotopy
equivalence between X and |K(X)|.

Proof. The idea of this proof is to first show that µX is continuous. Then we apply
theorem 4.3 on the minimal basis of X by showing that for all x ∈ X both Ux and
µ−1X (Ux) are contractible.

Let X be a finite space and fix an x ∈ X. Since the minimal basis is a basis and
since x was chosen arbitrarily, to show that µX is continuous, it suffices to show
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that µ−1X (Ux) is open. In order to do this we first assign L = K(X \ Ux). Now we
will show that

µ−1X (Ux) = |K(X)| \ |L|.
First, let α ∈ µ−1X (Ux). Let v = min(support(α)). Thus, v ∈ Ux. By definition of
µX , α ∈ K(K). But since v ∈ Ux, α 6∈ |L| as the support of anything in |L| cannot
contain anything in Ux.

Next suppose α ∈ |K(X)| but α 6∈ |L|. Since α 6∈ |L|, there must exist some
w ∈ support(α) such that w ∈ Ux as otherwise α would be in |L|. Again let
v = min(support(α)), and thus v ≤ w ≤ x. Thus µX(α) = v ∈ Ux. Therefore
we have shown µ−1X (Ux) = |K(X)| \ |L|. But Ux is open, so X \ Ux is closed, and

|K(X \ Ux)| = |L| is closed. Thus µ−1X (Ux) is open, and µX is continuous.
We now show that |K(X)| \ |L| strong deformation retracts onto |K(Ux)|. Once

we’ve shown this, showing |K(Ux)| is contractible will imply that |K(X)| \ |L| is
also contractible.
|K(Ux)| is a subset of |K(X)| \ |L| as if x ∈ |K(Ux)|, then x ∈ K(X), and x 6∈ |L|.

Let α ∈ |K(X)| \ |L|. The support of α then contains elements from |K(Ux)|, and
possibly elements from |L|. But since min(support(α)) is an element of |K(Ux)|, at
least one element of the support of α must be from |K(Ux)|. Thus α can be written
as a linear combination of an element in |K(Ux)| and an element in |L|. So

α = βt+ γ(1− t)

for β ∈ |K(Ux)|, γ ∈ |L|, and 0 < t ≤ 1. Now let i : |K(Ux)| ↪→ |K(X)| \ |L| be the
inclusion map. Let r : |K(X)| \ |L| → |K(Ux)| be defined by r(α) = β. For each
σ ∈ K(X), r|(|K(Ux)|)∩σ : |K(Ux)|) ∩ σ → σ is continuous. Since (|K(X)| \ |L|) has
the final topology with respect to each σ, it follows that since r is continuous on
each restriction, r is continuous overall.

Now we can construct a strong deformation retract H between |K(X)| \ |L| and
|K(Ux)|. Let H : |K(X)| \ |L| × I → |K(X)| \ |L| be given by

H(α, s) = (1− s)α+ s(r(α)).

Since the simplexes involved are finite, they have the metric topology as stated
below definition 4.6. Since r is continuous, and H is a linear function, between
(1− s)α and s(r(α)) it follows that H is continuous with respect to the referenced
metric.

We check that H satisfies the conditions to be a strong deformation retract.
H(α, 0) = α. H(α, 1) = r(α) ∈ |K(Ux)|. And lastly, for all δ ∈ |K(Ux)|, r(δ) = δ.
So H(δ, t) = (1− t)δ+ tδ = δ. Therefore |K(Ux)| is a strong deformation retract of
|K(X)| \ |L|.

We now turn toward the goal of showing Ux and µ−1X (Ux) are contractible. Ux
has a maximum value, namely x. Let c : Ux → Ux be the constant map sending
everything to x. Thus idUx

≤ c, and thus Ux is contractible by proposition 2.12.
|K(Ux)| is contractable by the homotopy J : |K(Ux)| × I → |K(Ux)| given by

J(y, t) = (1− t)y + tx.

J is well-defined and continuous because for every simplex σ in |K(Ux)|, σ ∪ {x} is
also a simplex in |K(Ux)|. Because |K(Ux)| is contractible, so must be |K(X)| \ |L|.

Since we have shown that on the minimal basis of X, µX is continuous and takes
contractible basis elements to contractible basis elements. This shows that µX is
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locally a weak homotopy equivalence. Thus by theorem 4.3, µX is a weak homotopy
equivalence. �

5. The Euler Characteristic

The Euler characteristic is an important invariant throughout mathematics. If
the homology of a topological space X is finitely generated and all the groups Hn

are zero for some arbitrarily large n then the Euler characteristic is well defined.
the Euler characteristic is given by

χ(X) =
∑
n≥0

(−1)nrank(Hn(X)).

For compact CW complexes, the euler characteristic is given by

χ(X) =
∑
n≥0

(−1)nαn,

where αn is the number of n-cells in X.
Now choose a finite T0 space X. It is a result from general topology that weak

homotopy equivalences induce isomorphisms in the homology groups of spaces.
This can be found at [2, proposition 4.21]. By theorem 4.9, X is weak homotopy
equivalent to the geometric realization of K(X). Because of this, we see that the
Euler Characteristic of X is:

χ(X) =
∑

C∈C(X)

(−1)|C|+1,

where C(X) is the set of chains in K(X), and |C| is the number of points in a chain
C.

This next theorem is a combinatorial approach to proving that the Euler char-
acteristic of finite spaces is a homotopy invariant.

Theorem 5.1. If X and Y are finite T0 spaces and X ' Y , then χ(X) = χ(Y ).

Proof. The main idea of this proof relies on the fact that cores of homotopic spaces
are homeomorphic. Let Xc and Yc be the cores of X and Y respectively. Since
Xc is homeomorphic to Yc, it follows that χ(Xc) = χ(Yc). Since cores of spaces
are formed by removing beat points, it suffices to show that the Euler charac-
teristic is invariant under removal of beat points. (If we can show that, then
χ(X) = χ(Xc) = χ(Yc) = χ(Y ) and we are done.)

Consider an arbitrary finite T0 space P with beat point p. Since p is a beat point,
there is a q such that if x ∈ P is comparable with p, then x is comparable with p.
Let C(P ) be the set of chains of P . For every chain containing p and q, there is a
chain identical except without q in it. Conversely, for every chain containing p and
not containing q, there is a chain identical except with q inserted directly after p.
This implies the set of chains containing q in bijection with the set of chains not
containing q.
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Now, consider

χ(P ) =
∑

C∈C(P )

(−1)|C|+1 =
∑

C∈C(X)
C3p

(−1)|C|+1 +
∑

C∈C(X)
C 63p

(−1)|C|+1

=
∑

C∈C(X)
C3p

(−1)|C|+1 + χ(P \ {p})

∑
C∈C(X)
C3p

(−1)|C|+1 =
∑

C∈C(X)
C3p
C3q

(−1)|C|+1 +
∑

C∈C(X)
C3p
C 63q

(−1)|C|+1.

As {C ∈ C(X) | p ∈ C, q 6∈ C} is in bijection with {C ∈ C(X) | p, q ∈ C},∑
C∈C(X)
C3p
C 63q

(−1)|C|+1 =
∑

C∈C(X)
C3p
C3q

(−1)(|C|+1)+1.

(The only difference is adding in the q directly after p, so the cardinality increases
by 1.) Thus∑
C∈C(X)
C3p
C3q

(−1)|C|+1 +
∑

C∈C(X)
C3p
C 63q

(−1)|C|+1 =
∑

C∈C(X)
C3p
C3q

(−1)|C|+1 +
∑

C∈C(X)
C3p
C3q

(−1)|C| = 0.

Thus χ(P ) = χ(P \ {p}), and therefore χ(X) = χ(Y ). �

6. The Möbius Function

The Möbius function is an important function that branches across a couple fields
including combinatorics and number theory. We will end this paper by defining it,
and showing it’s connection to the Euler characteristic, a topological property.

Definition 6.1. Let P be a finite poset. The incidence algebra U(P ) on P is the
set of complex valued functions on P × P such that f(x, y) = 0 unless x ≤ y.

Addition on these functions is defined pointwise, multiplication is defined to be

(fg)(x, y) =
∑
z∈P
x≤z≤y

f(x, z)g(z, y).

The identity element of the incidence algebra is

δ(x, y) =

{
1 if x = y

0 if x 6= y.

Another important function is the zeta function, which is

ζ(x, y) =

{
1 if x ≤ y
0 otherwise.
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The Möbius function µ is defined to be the inverse of the zeta function. We can
find a basic recurrence for the Möbius function from the relation µζ = δ. For x 6= y,
we have

0 = δ(x, y) = (µζ)(x, y) =
∑

x≤z≤y

µ(x, z)ζ(z, y) =
∑

x≤z≤y

µ(x, z).

So

µ(x, y) = −
∑

x≤z<y

µ(x, z).

Since this recurrence is only for x 6= y, we must add the condition that µ(x, x) = 1.

Now we compute the Möbius function more explicitly and show how it is directly
related to the Euler characteristic. By Taylor series expansion,

ζ−1 = (δ + ζ − δ)−1 =
∑
k≥0

(−1)k(ζ − δ)k.

Define the length of a chain to be one less than the number of points in it.

Lemma 6.2. In a poset P with x, y ∈ P , (ζ − δ)k(x, y) represents the number of
chains of length k between x and y.

Proof. We see that (ζ − δ)(x, y) = 1 if x < y, and 0 otherwise. This is exactly the
amount of length 1 chains that there are between x and y. But then (ζ − δ)k(x, y)
counts the number of chains of length k, as there is one counted for every unbroken
k length sequence of 1-chains between x and y. �

Thus we get Hall’s theorem.

Theorem 6.3.

µ(x, y) = C0 − C1 + C2 − C3 + ...,

where Ci is the number of chains of length i going from x to y.

Now we define P̂ = P ∪{0, 1}. By this we mean the poset P̂ is identical to P but
with maximum and minimum elements adjoined to it. By Hall’s theorem, along
with the characterization of the Euler characteristic of finite posets from before, we
get the following theorem.

Theorem 6.4. With respect to the incidence algebra on P̂ of a poset P ,

µ(0, 1) = χ(P )− 1.
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