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1. INTRODUCTION

For a number fieldK, that is, a finite extension of Q, and a prime number p, a fundamental theorem
of algebraic number theory implies that the ideal (p) ⊆ OK factors uniquely into prime ideals as
(p) = pe11 · · · p

eg
g . In this paper we explore different interpretations of this using the factorization of

polynomials in finite and p-adic fields and Galois theory. In particular, we present some concrete
applications for which these different interpretations are useful:

• We use the Cebotarev Density Theorem to prove Dirichlet’s Theorem by computing the
Frobenius element in a cyclotomic field in Section 3.1.
• We prove quadratic reciprocity in Section 3.2 by using two different methods to determine

how a prime splits in a particular number field.
• We will also investigate in Section 3.3 under what conditions the existence of a rational root

to a polynomial is guaranteed given a real root and a root in Qp for each prime. This is
known as the Hasse Principle, and we will show that it holds for irreducible polynomials
in one variable, and also construct a counterexample to show that it doesn’t hold for every
polynomial in one variable.
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• Lastly, since many of our methods are made easier by working in a monogenic ring of in-
tegers, that is when OK = Z[α] for some α, in section 3.4 we will construct an example of
a non-monogenic ring of integers to show that we can’t hope to always be working in the
simpler monogenic case.

Before getting to these applications we first collect some facts about the relationship between factor-
izations of polynomials over finite and p-adic fields and factorizations of a prime in a ring of integers
in sections 2.1 and 2.2. We also build some machinery which we need to do arithmetic in the p-adic
numbers, such as Hensel’s lemma. Finally we discuss (in the Galois case) how Gal(K/Q) acts on
the primes lying above p in section 2.3, before moving on to the aforementioned applications.

2. SOME INTERPRETATIONS OF A PRIME FACTORIZATION

2.1. Number Fields and Ring of Integers.

Definition 2.1. A number field K is a finite extension of Q. Its ring of integers, OK , is the set of
roots in K of monic polynomials in Z[x].

As the name suggests, OK is a ring (Theorem 2.1 of [2]). The motivation for calling OK the ring
of integers is that its relationship withK is similar to the relationship that Z has with Q. In particular,
Z is the ring of integers of Q, and K is the field of fractions of OK .

Definition 2.2. An integral domain that is not a field is called a Dedekind domain if every nonzero
proper ideal I factors into prime ideals

I = pe11 pe22 · · · pegg (2.1)

Theorem 2.3. OK is a Dedekind domain (Theorem 3.29 of [2])

Corollary 2.4. For a number field K and a rational prime p, there is a unique factorization of (p)
into prime ideals in OK of the form

(p) = pe11 pe22 · · · pegg (2.2)

Definition 2.5. In the notation of Theorem 2.4, we say that p ramifies in K if ej > 1 for some j.
Otherwise, we say p is unramified. Also, the inertial degree of pj is [OK/pj : Z/pZ]

As is suggested by the definition for inertial degree, OK/pj is a field, and is a finite extension of
Z/pZ. We will address a few different ways to consider the factorization given by Corollary 2.4, as
well as the relationship between them. We first consider the case when OK = Z[x]/f(x) for some
f(x) irreducible over Q. That is, OK = Z[α] for some α. We call such a ring monogenic. This begs
the question: How often is the ring of integers of a number field monogenic? In sections 3.1 and 3.2
we will discuss a few problems in which it is useful to work in K = Q(ζn), a cyclotomic field, in
which case the ring of integers is monogenic, generated by a primitive nth root of unity. We also will
deal with a few examples involving quadratic number fields, which are monogenic. One might ask
whether there even exist any non-monogenic examples. It turns out that they do exist, and we will
construct an example in section 3.4. In the monogenic case, there is a direct correspondence to the
factorization of (p) in OK , and the factorization of f(x) modulo p.



APPLICATIONS OF PRIME FACTORIZATION OF IDEALS IN NUMBER FIELDS 3

Theorem 2.6. Suppose that OK = Z[x]/f(x). If

(p) = pe11 pe22 · · · pegg ,
f(x) ≡ f1(x)

E1f2(x)
E2 · · · fG(x)EG (mod p) (2.3)

are the factorizations of (p) and f(x) in OK and Fp respectively, then g = G, and up to some
permutation we have Ej = ej and deg fj is the inertial degree of pj .

Proof. We prove our claim by directly constructing a prime factorization of (p), which then must
be equal to the factorization in our hypothesis by the uniqueness of prime factorizations. Let qj =
(p) + (Fj(α)), where α is a root of f(x) and Fj(x) ∈ Z[x] reduces to fj(x) modulo p. These are
prime ideals, as OK/(p, Fj(α)) ∼= Fp[x]/fj(x), and the latter is a field since fj(x) is irreducible
over Fp. We see that the qj are the only primes lying above (p) by considering the correspondence
between primes lying above (p) in OK and primes in OK/pOK ∼= Fp[x]/(f(x)), and noting that the
only maximal ideals in Fp[x]/(f(x)), and hence the only prime ideals since in a finite ring all prime
ideals are maximal, are (fj(x)). Therefore we have, where Sr is the set of subsets of {1, 2, ..., k} of
size r, ∏

j

q
ej
j =

k∑
r=1

(
(p)k−r

∑
S∈Sr

∏
j∈S

Fj(α)
ej

)

= (p)
k−1∑
r=1

(
(p)k−r−1

∑
S∈Sr

∏
j∈S

Fj(α)
ej

)
+ (F1(α)

e1F2(α)
e2 · · ·FG(α)eG) (2.4)

Since the qj are the only primes lying above (p), we must have qj = pj up to some permutation.
Also, the coefficients ej are the minimal integers such that (p) divides (F1(α)

E1 · · ·FG(α)EG). This
gives ej = Ej , since in Fp[x]/f(x) we have

∏
(fj(x)

Ej) = 0, and the Ej are minimal with that
property. It only remains to show that the inertial degree of pj is deg fj . This is trivial, as deg fj =
[Fp[x]/fj(x) : Z/pZ] = [OK/pj : Z/pZ]. �

Another way to look at this factorization is to consider the canonical mapOK → OK/pOK . Since
this map is surjective, there is a one-to-one correspondence between prime ideals in OK containing
(p) and prime ideals inOK/pOK . This correspondence is what motivates our choice of (p)+(Fj(x))
as a candidate for pj .

Although this theorem only applies to the monogenic case, all hope is not lost in the non-monogenic
case. Instead of factoring over Fp, we will work in the field of p-adic numbers, Qp.

2.2. p-adic Numbers.

Definition 2.7. If m,n ∈ Z are not divisible by p, and x = pk m
n

, then we can define a norm
|x| = p−k. We define the field of p-adic numbers, Qp, to be the completion of Q with respect to the
metric induced by | · |.

We also give an alternate definition that is often used for Zp, and as before let Qp be its field of
fractions. First, we must define inverse limits for a sequence of ring homomorphisms.
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Definition 2.8. Suppose we have a sequence of rings with homomorphisms

· · · → Rn+1 → Rn → · · · → R2 → R1 (2.5)

where fn : Rn+1 → Rn. Then the inverse limit is the ring

lim
←
Rn :=

{
(xn)n ∈

∏
n

Rn : fn(xn+1) = xn for all n

}
(2.6)

with addition and multiplication defined as in
∏

nRn.

Definition 2.9. Zp is the inverse limit

Zp = lim
←

Z/pnZ (2.7)

with the map Z/pn+1Z→ Z/pnZ given by mapping each element to its residue modulo pn.

We give both of these equivalent definitions because in some of our applications it will be useful
to use them interchangeably. They are equivalent since the natural map Z → lim← Z/pnZ can be
extended to the completion of Z with respect to the p-adic metric because for any cauchy sequence
in Z, and for any n, from an index up every term of the sequence will have the same residue modulo
pn. Another useful way of thinking of a p-adic number x ∈ Qp is by its unique representation as a
formal power series

x =
∞∑

j=−∞

ajp
j (2.8)

where aj ∈ {0, 1, ..., p− 1} and there exists some n ∈ Z such that aj = 0 for all j < n.

In the following theorem, the inverse limit definition will be the most useful.

Theorem 2.10. Let K = Q[x]/f(x). If pOK = pe11 pe22 · · · p
eg
g , and f(x) factors over Qp as f(x) =

f1(x) · · · fG(x), then g = G, and up to a permutation deg fj is the product of ej and the inertial
degree of pj .

Before proving this, we define a notion similar to Qp for a number field K.

Definition 2.11. For a number field K and a prime ideal p in OK , we define Kp as the field of
fractions of the inverse limit

lim
←
OK/pn (2.9)

We now prove the theorem.

Proof. (Theorem 2.10) Our proof boils down to writing K ⊗Qp in two different ways. We first note
that

K ⊗Q Qp = Q[x]/f(x)⊗Q Qp = Qp[x]/f(x) =
∏

Qp[x]/fi(x) (2.10)
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We may also write

K ⊗Q Qp = (OK ⊗Z Zp)[1/p] = (OK ⊗Z lim←
Z/pnZ)[1/p] = (lim

←
(OK ⊗Z Z/pnZ))[1/p]

= lim
←

(OK/pnOK)[1/p] =

(
lim
←

g∏
j=1

OK/pnj

)
[1/p] =

(
g∏
j=1

lim
←
OK/pnj

)
[1/p]

=

g∏
j=1

Kpj (2.11)

To see the third equality, consider the isomorphism

(OK ⊗Z lim
←

Z/pnZ)→ lim
←

(OK ⊗Z Z/pnZ) (2.12)

given by mapping x ⊗Z (an)n to (x ⊗Z an)n. This works because OK is a Z module of finite rank.
Now suppose that for fields Fj, Ej , we have

∏m
j=1 Fj

∼=
∏n

j=1Ej . Then considering the surjective
map

ϕ :
m∏
j=1

Fj → Ek (2.13)

we note that its kernel must be a maximal ideal, hence for some ` it is
∏

j 6=` Fj , and thus we find
Ek ∼= F`. Repeating this argument, we find that in fact m = n and up to some permutation Fj ∼= Ej .
Applying this fact to the products ∏

Qp[x]/fi(x) ∼=
∏

Kp (2.14)

we conclude that Kpj
∼= Qp[x]/fj(x) up to some permutation. The conclusion about deg fj follows

from a more careful analysis of the relation betweenOK and its completion at pj , which we omit. �

2.3. Galois Theory. We now move on to a different perspective on these factorizations. Let G =
Gal(K/Q) for a Galois number field K, and recall that G acts transitively on the primes lying over p
in OK . For such a prime p, we define the following subgroup of G:

Definition 2.12. The decomposition group Dp of p is the group

Dp = {σ ∈ G : σ(p) = p} (2.15)

The crucial observation about this group is that since Fp := OK/p is a finite field of characteristic
p, there is a natural homomorphism

ϕ : Dp → Gal(Fp/Fp) (2.16)

Since galois groups of finite extensions of finite fields are cyclic and generated by the frobenius map
x 7→ xp, a lot of information about Dp, and hence a lot of information about the factorization of
(p), can be obtained by knowing which elements of Dp corresponds to the frobenius under the above
natural map. We have a name for these elements:

Definition 2.13. A Frobenius Element is any element of Dp that maps to the frobenius under ϕ.
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Note that Frobp has the property that Frobp(x) − xp ∈ p for all x. Another interesting thing to
note about the map ϕ : Dp → Gal(Fp/Fp) is that in the case where p is unramified, it is actually an
isomorphism (Corollary 9.3.7 of [4]).

In an abuse of notation, we will use the term Frobenius element to mean what we specified above, as
well as the following:

Definition 2.14. For a prime p of Z, The Frobenius Element Frobp is defined to be any element of
the set

Frobp = {Frobp : p|(p)} (2.17)

Lemma 2.15. If p is unramified, then Frobp is a conjugacy class in G

Proof. This is a result of the fact that the Galois group acts transitively on the primes lying above p.
It suffices to show that Frobσ(p) = σFrobpσ

−1. This is straightforward; for any x ∈ OK , we have

Frobp(σ
−1(x))− σ−1(x)p ∈ p (2.18)

And thus

σFrobp(σ
−1(x))− xp ∈ σp (2.19)

And thus Frobp is a conjugacy class in G. �

3. APPLICATIONS

3.1. Dirichlet’s Theorem is a Special Case of Cebotarev’s Density Theorem.

For a number field K with G := Gal(K/Q), there is a theorem by Cebotarev concerning the distri-
bution of the Frobenius element in G over the set of primes. First, we define a notion of the density
of a subset of ther primes.

Definition 3.1. We say that the set of primes S ⊆ P has density δ if

lim
n→∞

#S ∩ [1, n]

#P ∩ [1, n]
= δ (3.1)

Theorem 3.2 (Cebotarev Density Theorem). For any conjugacy class C ⊆ G, the density of the set
of primes whose Frobenius element is C is |C||G| .

Proof. See Theorem 3.21 of [1]. �

This has a close relationship with Dirichlet’s Theorem:

Corollary 3.3 (Dirichlet’s Theorem). If (m,n) = 1, then the density of the set of primes p with
p ≡ m (mod n) is 1/ϕ(n).

In fact, Dirichlet’s Theorem is a special case of the Cebotarev Density Theorem corresponding to
K = Q(ζn).
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Proof. Our first observation is that in the case K = Q(ζn) of the Cebotarev Density Theorem, we
have G ∼= (Z/nZ)∗, by identifying a ∈ (Z/nZ)∗ with the map σa, the unique map sending ζn to
ζan. As this group is abelian, each of its conjugacy classes is a single element. Hence, there are
ϕ(n) conjugacy classes, each with the same number of elements, so we are done if we can show that
p ≡ a (mod n) if and only if Frobp = {a}. Note that since we aim to prove a result about density in
the set of primes, we may disregard what happens in any finite set, and thus we may safely assume
that (p, n) = 1.

Now consider the map σp ∈ G mapping ζn to ζpn, and note that since OK = Z[ζn][3], any element
can be written as

∑ϕ(n)−1
j=0 αjζ

j
n for αn ∈ Z, so modulo p we have

σp

ϕ(n)−1∑
j=1

αjζ
j
n

 ≡ ϕ(n)−1∑
j=1

αjζ
pj
n ≡

ϕ(n)−1∑
j=1

αpjζ
pj
n ≡

ϕ(n)−1∑
j=1

αjζ
j
n

p

(3.2)

The second congruence is because αpj ≡ αj (mod p) for any integer αj , while the first and third
congruences follow from the fact that (a + b)p = ap + bp in characteristic p. So by definition, σp
must be the Frobenius element, and thus we are done. �

Corollary 3.4. σp is the Frobenius element for p in K.

3.2. A Proof of Quadratic Reciprocity.

Some facts we have proved about the Frobenius element can be used to prove in a very natural
way the classic result of Quadratic Reciprocity, originally due to Gauss. To simplify notation, for
p, q odd primes we set

p′ =

{
p p ≡ 3 (mod 4)
−p p ≡ 1 (mod 4)

(3.3)

Note that this ensures p′ ≡ 3 (mod 4). We will also define the Legendre symbol.

Definition 3.5. The Legendre Symbol for an odd prime p is the function mapping an integer a to(
a

p

)
=

 1 : a is a quadratic residue modulo p
−1 : a is a quadratic non-residue modulo p
0 : a ≡ 0 (mod p)

(3.4)

A quadratic residue modulo p is an integer y such that for some x, we have x2 ≡ y (mod p).

An important property of the Legendre Symbol is that it is multiplicative in a. With this notation,
quadratic reciprocity can be stated very succintly.

Theorem 3.6 (Quadratic Reciprocity). For any odd primes p, q, we have(
q

p

)(
p′

q

)
= 1 (3.5)
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Proof. The key idea of this proof is to consider whether q splits in Q(
√
p′) in two different ways.

The first way is to compute the frobenius element for q in K.

First consider Q(ζp), whose Galois group G over Q is cyclic of order p − 1, and is generated by
the map σa, the unique map sending ζ to ζa, where a is a primitive root modulo p. Then the squares
in G form a subgroup of index 2, H :=

{
σk :

(
k
p

)
= 1
}

. Let K be the fixed field of H , and note
that by Galois theory it is a quadratic extension of Q. Also,

P := TrQ(ζp)/K(ζ) = ζ + ζ4 + ζ9 + · · · (3.6)

is in K, where the sum is over the quadratic residues modulo p. Let

P ′ =
∑

j nonresidue

ζj (3.7)

and combining these sums we get a geometric series,

P + P ′ = ζ + ζ2 + · · ·+ ζp−1 = −1 (3.8)

Therefore, P − P ′ ∈ K. We also have

(P − P ′)2 =

(
p−1∑
n=1

(
n

p

)
ζn

)2

=

p−1∑
m,n=1

(
m

p

)(
n

p

)
ζm+n (3.9)

For a fixed m, as t ranges over {1, 2, ..., p− 1} so does mt (modulo p). Thus, we may replace n with
mt in the above sum, obtaining

(P − P ′)2 =
p−1∑
m=1

p−1∑
t=1

(
m2t

p

)
ζm(1+t) =

p−1∑
m=1

p−1∑
t=1

(
t

p

)
ζm(1+t)

=

p−1∑
t=1

(
t

p

) p−1∑
m=1

ζm(1+t) (3.10)

But
p−1∑
m=1

ζm(1+t) =

{
−1 : t 6= p− 1
p− 1 : t = p− 1

(3.11)

Thus

(P − P ′)2 =
(
−1
p

)
(p− 1)−

p−2∑
t=1

(
t

p

)
=

(
−1
p

)
p = p′ (3.12)

And thus
√
p′ ∈ K, so since K is a quadratic extension we may conclude that K = Q(

√
p′).

Therefore, (
q

p

)
= 1 ⇔ σq ∈ H ⇔ σ fixes K = Q(

√
p′) (3.13)
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By Corollary 3.4, σq is the Frobenius element of q in Q(ζp). Then for any x ∈ K, since we have
σq(x) ≡ xq (mod q) for any prime q in Z[ζ] lying above q, we see that for any prime q′ in OK lying
above q, we must similarly have σq|K(x) ≡ xq (mod q′), and thus σq|K is the Frobenius element
for q in K. Then σq|K has order [OK/q′ : Z/qZ], where q′ was any prime in OK lying above q.
Therefore, σq fixes K if and only if q splits completely in K.

Therefore, we are done if we can show that q splits completely in K if and only if
(
p′

q

)
= 1. Before

we characterized whether q splits using the frobenius element, and now we will do it by factoring
the minimal polynomial for 1+

√
p′

2
. Note that OK = Z

[
1+
√
p′

2

]
, since p′ ≡ 3 (mod 4). The minimal

polynomial for 1+
√
p′

2
is f(x) = x2 − x + 1−p′

4
. We know from the correspondence established by

Theorem 2.4 that q splits in K if and only if f(x) factors modulo q, but the discriminant of f(x) is
p′, so f(x) factors modulo q exactly when

(
p′

q

)
= 1.

Through this chain of equivalences, we have thus established that
(
q
p

)
= 1 ⇔

(
p′

q

)
= 1, thus

quadratic reciprocity is proved.
�

3.3. The Hasse Principle.

The Hasse Principle says that for nice enough polynomials one can construct a solution over the
rationals using solutions in the p-adics for every prime, as well as a real solution. This cannot be
done for all polynomials.

Theorem 3.7. The polynomial

f(x) = (x2 − 2)(x2 + 7)(x2 + 14) (3.14)

has solutions in Qp for every p, and also a real solution, yet no solutions in Q.

Proof. Clearly it has real solutions and no rational ones, so it remains to show that it has a solution
in the p-adic numbers Qp for every p.

First consider any prime p 6= 2, 7 and note that there is a solution to f(x) in Fp because if there

is no solution to x2− 2 or x2 +7, that means that
(

2
p

)
=
(
−7
p

)
= −1, and thus

(
−14
p

)
= 1, so there

is a solution to x2 + 14 modulo p. We will use a version of Hensel’s Lemma which will allow us to
lift such a solution to a solution in Qp.

Lemma 3.8 (Hensel’s Lemma). For f(x) ∈ Z[x], if for some a ∈ Zp we have |f(a)| < |f ′(a)|2,
where | · | denotes the p-adic metric, then there exists some α ∈ Qp with f(α) = 0 and |α − a| =
|f(a)/f ′(a)| < |f ′(a)|.

Applying this lemma to each of the quadratic factors of f(x), we know that f(x) has a root in
Qp, since at least one of x2 − 2, x2 + 7, and x2 + 14 has a solution modulo p, and it will satisfy
the hypotheses of Hensel’s lemma for p 6= 2, 7. We now need only check 2, 7. Since -7 is a square
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modulo 8, say g(x) = x2+7, then we have |g(1)| < 1/8 < 1/4 = |g′(1)|2. This ensures that there is
a solution to g(x), and hence a solution to f(x) in Q2. Lastly we consider Q7. But for h(x) = x2−2,
note that h(3) = 7 and h′(3) = 6, so we easily see that there is a solution in Q7. �

Therefore, the Hasse Principle does not hold for f(x), so we will have to be more picky than just
hoping for it to hold for all polynomials. We now prove Hensel’s Lemma.

Proof. (of Lemma 3.8) Recall Newton’s method of approximation from calculus: with starting point
a0, we recursively define the sequence an+1 = an − f(an)

f ′(an)
. Unfortunately this won’t always con-

verge, but we know that when it does converge, its limit is a root of f . The analogous sequence in
the setting of Qp will always converge under our hypotheses, as we will see, thus we will be able to
construct a root.

Set a0 = a, and define the sequence {an}n in the same way as above. Set t =
∣∣∣ f(a0)f ′(a0)2

∣∣∣, and by
hypothesis we have t < 1. We claim that for all n, we have that an ∈ Zp, |f ′(an)| = |f ′(a0)|, and
|f(an)| ≤ |f ′(a0)|2t2

n . We proceed by induction, noting that it is clear for the base case t = 0.
Assuming that these facts are true for n, we see that∣∣∣∣ f(an)f ′(an)

∣∣∣∣ = |f(an)|/|f ′(a0)| ≤ |f ′(a0)|t2n ≤ 1 (3.15)

and thus f(an)/f ′(an) ∈ Zp, so an+1 ∈ Zp as well. To show that |f ′(an)| is constant, we note that
for any polynomial p(x), x− y divides p(x)− p(y), and thus for some F (x, y) ∈ Zp we have

|f ′(an+1)− f ′(an)| = |an+1 − an||F (x, y)| ≤ |an+1 − an| =
|f(an)|
|f ′(an)|

=
|f(an)|
|f(a0)|

≤ |f ′(a0)|t2
n

< |f ′(a0)| = |f ′(an)| (3.16)

Since |x| < |y| implies |y| = |x− y|, we may conclude that in fact |f ′(an+1)| = |f ′(an)| = |f ′(a0)|.
Lastly, we need to prove that |f(an+1)| ≤ |f ′(a0)|2t2

n+1 . To see this, observe that for f(x) =
c0 + c1x+ · · ·+ cdx

d, we have

f(x+ y) = c0 +
d∑
j=1

cj(x+ y)j = c0 +
d∑
j=1

cj(x
j + jxj−1y + g(x, y)y2)

= f(x) + f ′(x)y + g(x, y)y2 (3.17)

Thus,

f(an+1) = f

(
an −

f(an)

f ′(an)

)
= f(an)− f ′(an)

(
f(an)

f ′(an)

)
+ r

(
f(an)

f ′(an)

)2

= r

(
f(an)

f ′(an)

)2

(3.18)
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for some r ∈ Zp. Then we have

|f ′(an+1)| ≤
|f(an)|2

|f ′(an)|2
=
|f(an)|2

|f ′(a0)|2
≤ |f(a0)|2t2

n+1

(3.19)

Thus by induction we have proved all three of our initial claims. Now all we need to do is prove the
convergence of an. But with the above facts this is easy, as

|an+1 − an| =
|f(an)|
|f ′(an)|

=
|f(an)|
|f ′(a0)|

≤ |f ′(a0)|t2
n

(3.20)

Thus we may conclude that {an} is Cauchy and hence convergent, since
n∑

j=m

t2
j ≤

∞∑
j=m

t2
j

(3.21)

which can of course be made arbitrarily small by choosing m large enough, as it is the tail of a
convergent series. Thus the sequence converges, and its limit α ∈ Qp must then be a root of f(x).
It remains to show that |α − a| = |f(a)/f ′(a)| < |f ′(a)|. Note that |a1 − a| = |f(a)/f ′(a)|. For
n ≥ 1, we have by Eq 3.20 that

|an+1 − an| ≤ |f ′(a)|t2
n

< |f ′(a)|t = |f(a)/f ′(a)| (3.22)

If |an − a| = |f(a)/f ′(a)|, then |an+1 − a| = |an − a| = |f(a)/f ′(a)| since |an+1 − an| <
|f(a)/f ′(a)| = |an − a|. By induction we conclude that |an − a| = |f(a)/f ′(a)| for all n, thus by
taking limits we see that |α− a| = |f(a)/f ′(a)| < |f ′(a)|. �

However, the Hasse Principle can be shown to hold for certain classes of polynomials.

Theorem 3.9 (Hasse Principle for Irreducibles). If f(x) ∈ Q[x] is irreducible, has solutions in Qp

for each p, and has a real solution, then it must have a rational solution, hence must be linear.

This theorem tells us that there are no nontrivial examples of irreducible polynomials with local
solutions everywhere.

Proof. Let α ∈ R be a root of f(x). We will first prove the theorem assuming that Q(α)/Q is Ga-
lois, that is K := Q(α) is the splitting field of f over Q. Note that viewing the Galois group G as a
subgroup of Sn, where n = deg f , the conjugacy classes of G are exactly the cycle types. If K 6= Q,
then G is nontrivial, so there is some nontrivial cycle cycle type in G, and thus by the Cebotarev
density theorem there are infinitely many primes p which don’t totally split in OK . In particular
there is one such prime p, but this contradicts that f(x) has a root in Qp.

Now we extend to the case where Q(α)/Q isn’t Galois. Let L be the splitting field of f(x), and
H = Gal(L/K) ⊆ G. We note that if f(x) has a root in Qp, this corresponds to a prime pj above p
in K with ej = fj = 1. This implies that Frobpj ∈ H . But by Cebotarev Density Theorem, every
conjugacy class in G is the Frobenius element for some prime, and thus every conjugacy class in G
intersects H . But since G is a finite group, we get a contradiction by a counting argument, since this
implies that G =

⋃
g gHg

−1 where the union is taken over a set of coset representatives for G/H .
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This is a union of |G|/|H| sets, each of which has H elements, so since the union has |G| elements,
it must be a union of disjoint sets. However, the identity is in all of them, so this is not the case.

�

3.4. Monogenic Rings of Integers. We now return to the problem of proving that there exist non-
monogenic rings of integers. We first prove the following lemma:

Lemma 3.10. IfOK is monogenic, sayOK = Z[α], and p splits completely inOK , then [K : Q] ≤ p.

Proof. For each degree 1 prime p lying above p we obtain the map OK → OK/p = Fp, so the
number of such maps is at least the number of primes lying above p, since they are all distinct as the
map corresponding to p has kernel p. But since each map is uniquely determined by its value at α,
there are at most p such maps, hence there are at most p primes above (p). If p splits completely,
then the number of primes above it is [K : Q], which then must be at most p. �

Therefore, if we can find a degree 3 extension in which 2 splits completely, then we know that it
is not monogenic.

Theorem 3.11. The number field K = Q[x]/g(x) is not monogenic, where

g(x) = x3 − 6x2 + 27x− 6. (3.23)

Proof. This is indeed a field, as g(x) is irreducible by Eisenstein’s criterion at 3. Also, it satisfies the
hypotheses of Hensel’s lemma with p = 2 and a ∈ {1, 2, 3}, so we may conclude that it has roots
α1, α2, α3 ∈ Q2 with |αk − k| < |g′(k)|. We compute |g′(1)| = |18| = 1/2, |g′(2)| = |15| = 1,
|g′(3)| = |18| = 1/2. Suppose αi = αj for some i 6= j. Then we get

|i− j| = max(|αi − i|, |αi − j|) = max(|αi − i|, |αj − j|) < max(|g′(i)|, |g′(j)|) ≤ 1 (3.24)

Since |i− j| < 1 and i, j ∈ {1, 2, 3}, i and j must be 1 and 3. Then

1/2 = |3− 1| = |i− j| < max(|g′(1)|, |g′(3)|) = 1/2 (3.25)

This is a contradiction, so we may conclude that αi = αj implies i = j, so g(x) has 3 distinct roots in
Q2. ThereforeK is a degree 3 extension of Q in which 2 splits completely, so it isn’t monogenic. �

The motivation for constructing g(x) was to start with

f(x) = (x− 1)(x− 2)(x− 3) = x3 − 6x2 + 11x− 6 (3.26)

and to perturb the coefficients by small amounts with respect to the 2-adic metric, while simultane-
ously obtaining a polynomial that is irreducible over Q. One way to do this is to consider polynomials
of the form f(x) + 2nx, since Eisenstein’s criterion applies whenever n is even.
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