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Abstract. Following Kukie la, we show how to generalize some results from

May’s book [4] concerning cores of finite spaces to cores of Alexandroff spaces.

It turns out that finite space methods can be extended under certain local
finiteness assumptions; in particular, every bounded-paths space or count-

able finite-paths space has a core, and two bounded-paths spaces or countable

finite-paths spaces are homotopy equivalent if and only if their cores are home-
omorphic.
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1. Introduction

An Alexandroff space is a topological space in which arbitrary intersections of
open sets are open. These spaces were first introduced by P. Alexandroff in 1937 in
[1] under the name of Diskrete Räume. Finite spaces are a special case of Alexan-
droff spaces. There is a close relationship between Alexandroff spaces, and posets.
For a set X, the Alexandroff space topologies (X,U ) are in bijective correspon-
dence with the preorders (X,≤). The topology U corresponding to ≤ is T0 if and
only if the relation ≤ is a partial order.

In Section 2, we review the facts from finite space theory that shall be general-
ized. We will set up some terminology for Alexandroff spaces and posets, and recall
some results about cores of finite spaces from May’s book [4]. For a finite space X,
it is possible to construct a core recursively by removing beat points. As May [4]
pointed out, removing beat points is a strong deformation retraction of the space
X. In this case, we can remove beat points one by one until there are no more
beat points left. The remaining points form a core. Thus, every finite space has a
core. If X is a minimal finite space, C(X,X) is the space of endomorphisms of X
in the compact-open topology, and f ∈ C(X,X) is in the same path component as
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idX , then f = idX . We will use this statement to prove that two finite spaces are
homotopy equivalent if and only if their cores are homeomorphic. In the remainder
of the paper, we shall generalize these results to infinite Alexandroff spaces.

In Section 3, we first introduce some classes of Alexandroff spaces, including
finite-chains spaces, locally finite spaces, finite-paths spaces, and bounded-paths
spaces. Next, we present Kukie la ’s generalizations [3]. If an infinite Alexandroff
space is sufficiently well-behaved, then we can get a core by recursively removing
sets of beat points until no more beat points are left. Compared to the cores of
finite spaces, we have the following results. Every bounded-paths space or count-
able finite-paths space has a core, and if X is a minimal finite-paths space, then
the connected component of idX in C(X,X) is a singleton. Moreover, if X and Y
are fp-spaces that both have cores, then X is homotopy equivalent to Y if and only
if their respective cores are homeomorphic.

2. Preliminaries

Strong [6] first introduces the concept of cores of finite spaces, then May [4]
and Kukie la [3] popularize his work. Before we start exploring the cores of infinite
Alexandroff spaces, we will set up some terminology for Alexandroff spaces and
posets, and recall a few properties and some results from May’s book [4]. Every-
thing here is from May [4] and Kukie la [3]. The reader is assumed to have some
background in point set topology.

2.1. Alexandroff Spaces and Posets.
First we recall the definition of an Alexandroff space and then we show how to

associate Alexandroff spaces with preorders and posets.

Definition 2.1. A topological space X is an Alexandroff space if and only if arbi-
trary intersections of open sets in X are open.

Lemma 2.2. A finite space is an Alexandroff space.

Proof. In a finite space, arbitrary intersections of open sets are still finite. Since
finite intersections of open sets are open, so are arbitrary intersections. �

Definition 2.3. A preorder on a set X is a reflexive and transitive relation, denoted
≤. This means that for all x ∈ X, x ≤ x and that for all x, y, z ∈ X, x ≤ y and
y ≤ z imply x ≤ z. A preorder is a partial order if it is antisymmetric, which means
that for all x, y ∈ X, x ≤ y and y ≤ x imply x = y. In this case, (X,≤) is called a
poset. If x, y ∈ (X,≤) are comparable, which means x ≤ y or x ≥ y, then we shall
write x ∼ y.

Now we associate Alexandroff spaces with preorders and posets, and describe
bases for Alexandroff spaces.

Definition 2.4. Let X be an Alexandroff space. For x ∈ X, define Ux to be the
intersection of all open sets that contain x. Define a relation ≤ on the set X by
x ≤ y if x ∈ Uy, or equivalently, Ux ⊆ Uy. Write x < y if the inclusion is proper.

Lemma 2.5. Let X be an Alexandroff space. The set of all open sets Ux is a basis
B for X. If C is another basis, then B ⊆ C , therefore B is the unique minimal
basis for X.
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Proof. The first statement follows from Definition 2.4. For each x ∈ X, there is Ux
such that x ∈ Ux ∈ B. If x ∈ B′ ∩ B′′ where B′, B′′ ∈ B , then by minimality of
Ux, it follows that x ∈ Ux ⊆ B′ ∩B′′.

Suppose C is another basis. Take an element Ux in B. Note Ux is open in X,
and x ∈ Ux. Since C is a basis, there is an open set V in C such that x ∈ V ⊆ Ux.
By minimality of Ux, V = Ux. This proves B ⊆ C . �

Through the following lemmas, we can detect whether or not an Alexandroff
space is T0 in terms of its minimal basis.

Lemma 2.6. Let X be an Alexandroff space. Two points x and y in X have
the same neighborhoods if and only if Ux = Uy. Therefore X is T0 if and only if
Ux = Uy implies x = y.

Proof. If x and y in X have the same neighborhoods, then Ux = Uy. Conversely,
if x ∈ U where U is open, then x ∈ Ux = Uy ⊆ U . Since y ∈ Uy, then y ∈ U . A
similar argument shows that if y ∈ U where U is open, then x ∈ U . Thus, x and y
have the same neighborhoods. �

Lemma 2.7. Let X be an Alexandroff space. The relation ≤ on X is reflexive and
transitive, so that the relation ≤ is a preorder. The relation ≤ is antisymmetric if
and only if X is T0.

Proof. The relation ≤ on the set X is defined by x ≤ y if Ux ⊆ Uy. For all
x, y, z ∈ X, Ux ⊆ Ux, and Ux ⊆ Uy and Uy ⊆ Uz imply Ux ⊆ Uz. Thus the relation
≤ is a preorder. The second proof follows Lemma 2.6. �

Lemma 2.8. A preorder (X,≤) determines a topology U on X with basis the set
of all sets Ux = {y ∈ X | y ≤ x}. It is called the order topology on X. The space
(X,U ) is an Alexandroff space. It is a T0-space if and only if (X,≤) is a poset.

Proof. If x ∈ Uy and x ∈ Uz, then x ≤ y and x ≤ z, hence x ∈ Ux ⊂ Uy ∩Uz. Thus
{Ux} is a basis for a topology. Now we show the space (X,U ) is an Alexandroff
space. We claim that arbitrary intersections of open sets U =

⋂
i∈I Ui are still

open. Suppose x ∈ U , then Ux ⊆ Ui for each i. Thus U =
⋃
x∈U Ux, hence U is

open. Since Ux = Uy if and only if x ≤ y and y ≤ x, the Lemma 2.6 implies that
(X,U ) is T0 if and only if (X,≤) is a poset. �

We put the results of Lemma 2.7 and 2.8 together to get the following conclusion.

Proposition 2.9 ([4, Prop. 1.6.4]). For a set X, the Alexandroff space topologies
on X are in bijective correspondence with the preorders on X. The topology U
corresponding to ≤ is T0 if and only if the relation ≤ is a partial order.

Not only are Alexandroff spaces related to preorders and posets by the propo-
sition above, but also the continuous maps between Alexandroff spaces correspond
to order-preserving functions between preorders. We have the following.

Definition 2.10. Let X and Y be preorders. A function f : X → Y is order-
preserving if for every m,n ∈ X, m ≤ n in X implies f(m) ≤ f(n) in Y .

Lemma 2.11. A function f : X → Y between Alexandroff spaces is continuous if
and only if it is order-preserving.
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Proof. Suppose w, v ∈ X, such that w ≤ v.
(⇒) Let f be continuous. Note that Uf(v) is open in Y . By continuity of f ,

f−1(Uf(v)) is open in X. Since Uv is the intersection of all open sets that contain

v, and w ≤ v, it follows that w ∈ Uv ⊆ f−1(Uf(v)). Therefore f(w) ∈ Uf(v), which
means that f(w) ≤ f(v).
(⇐) Suppose f is order-preserving, and let V be open in Y . We need to show
f−1(V ) is open in X. If f(v) ∈ V , then f(v) ∈ Uf(v) ⊂ V . Since w ≤ v, it follows
that w ∈ Uv and f(w) ≤ f(v). Thus f(w) ∈ Uf(v) ⊂ V . Therefore w ∈ Uv implies

w ∈ f−1(V ). Hence f−1(V ) =
⋃
v∈f−1(V ) Uv, which is open. �

We introduce the Principle of Well-Founded Induction, which will be used many
times in the rest of this paper.

Definition 2.12. A poset (X,≤) is well-founded if X has no infinite strictly de-
scending sequence.

Proposition 2.13. A poset (X,≤) is well-founded if and only if every non-empty
subset of X contains a minimal element.

Proof. (⇒) Let (X,≤) be well-founded a poset, and P ⊆ X be a non-empty subset
of X. Suppose there is no minimal element in P . Then take an element x0 ∈ P .
Since x0 is not minimal, it follows that there exists an x1 ∈ P such that x0 > x1.
Then we can construct an infinite strictly descending sequence x0 > x1 > x2 > ...
through this process. This is a contradiction.
(⇐) Assume every non-empty subset of X contains a minimal element. Let x0 >
x1 > x2 > ... be a strictly descending chain in X. Write P = {xi | i = 0, 1, 2, ...},
and let xk ∈ P be the minimal element in P . Thus xi = xk for all i ≥ k, which is
a contradiction. �

Proposition 2.14. (Principle of Well-Founded Induction, also called Noetherian
Induction) Suppose (X,≤) is a well-founded poset, and P (x) is a property of the
elements of X. If for all x ∈ X, P (y) is true for all y < x implies P (x) is true,
then P (x) is true for every x ∈ X.

Proof. Suppose for all x ∈ X, P (y) is true for all y < x implies P (x) is true, but
there exists an x ∈ X such that P (x) is false. We will seek a contradition.

Suppose F = {x ∈ X |P (x) is false}. F has a minimal element because by
assumption F 6= ∅ and X is a well-founded poset. Let x0 ∈ F be a minimal
element. Then:

1. x0 ∈ F implies P (x0) is false.
2. for all y < x0, P (y) is true because x0 is minimal in F .

By our initial assumption, 2. implies P (x0) is true, a contradiction. �

2.2. Cores of Finite Spaces.
Now recall some results on the cores of finite spaces from May’s book [4]. For

the remainder of this paper, all spaces are assumed to be A-spaces (T0-Alexandroff
spaces) unless stated otherwise.

Definition 2.15. Let Y be a subspace of a space X, with the inclusion denoted
by i : Y → X. We say that Y is a strong deformation retract of X if there is a
map r : X → Y such that r ◦ i is the identity map of Y and there is a homotopy
h : X × I → X from the identity map of X to i ◦ r such that h(y, t) = y for all
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y ∈ Y and t ∈ I. In other words, a strong deformation retraction leaves points in
the subspace Y fixed throughout the homotopy.

Definition 2.16. Let X be an A-space.

(a) A point x ∈ X is upbeat under ux if there is a ux ∈ X such that ux > x
and for every z ∈ X, z > x implies z ≥ ux.

(b) A point x ∈ X is downbeat over dx if there is a dx ∈ X such that dx < x
and for every z ∈ X, z < x implies z ≤ dx.

(c) A point x ∈ X is a beat point if it is either an upbeat point or a downbeat
point.

X is a minimal space if it has no beat points. A core of a space X is a subspace
Y ⊆ X that is minimal and a strong deformation retraction (SDR) of X.

Remark 2.17. The following is part of a Hasse diagram of an upbeat x under ux.

x

ux

z2z1 · · · zn

From this picture, we can see that for an upbeat x, there exists a smallest element
ux among all the elements bigger than x. If we turn this picture upside down, it is
exactly how part of a Hasse diagram of a downbeat point x looks. The key point
of this picture is that for any upbeat or downbeat point, there is exactly one edge
connecting to it from above or connecting to it from below.

Theorem 2.18. [4, Thm. 2.4.4] Any finite space X has a core.

Proof. (sketch) Construct a strong deformation retraction from X to X minus one
beat point. After finitely many such deformation retractions, there are no more
beat points left. The remaining points form a core. �

Definition 2.19. If X, Y are topological spaces, then C(X,Y ) denotes the space
of continuous maps X → Y in the compact-open topology.

Proposition 2.20. For a finite space X and f, g ∈ C(X,X), the following are
equivalent:

1. f and g are in the same path component of C(X,X),
2. there is a sequence of maps {f = f1, f2, ..., fq = g} such that fi ∼ fi+1 for

i = 1, ..., q − 1.

A proof can be found following Proposition 2.2.12 in May’s book [4].

Remark 2.21. Kukie la [3] studies the behavior of the compact open topology on
C(X,Y ), where X and Y are Alexandroff spaces. He proves that the compact open
topology on C(X,Y ) is Alexandroff if X is finite and Y is any Alexandroff space.
Also he shows that the space C(X,X) is never an Alexandroff space if X is infinite.
But generally speaking, the compact open topology on C(X,Y ) is weaker than the
Alexandroff topology induced by the order on C(X,Y ).

Theorem 2.22. If X is a minimal finite space, and f ∈ C(X,X) is in the same
path component as idX , then f = idX .
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Proof. Let f : X → X be a continuous map in C(X,X) . Since f ∈ C(X,X) is in
the same path component as idX , according to the above proposition, without loss
of generality, assume f ≤ idX . We will show that f = idX .

Since X is a finite space, X contains no strictly decreasing infinite sequence,
which means that X is well-founded. So we can use Noetherian induction. Take
y ∈ X and suppose f(x) = x for all x < y. We will show that if f(y) < y, then
y is a downbeat point over f(y), contradicting minimality of X. Hence, we must
have f(y) = y, and by Noetherian induction, f = idX . So, suppose f(y) < y. For
any x < y, x = f(x) ≤ f(y) < y by induction and monotonicity. This means y
is a downbeat point over f(y), contradiction. By the previous remarks, it follows
f = idX .

A similar argument shows that if f ≥ idX , then f = idX .
Therefore, for the sequence of maps {f = f1, f2, ..., fq = idX} where fi ∼ fi+1

for i = 1, ..., q − 1, fi = idX for each i. �

We will give the proof for a generalization later in this paper. See the proof of
Theorem 3.17 and Remark 3.18 for details.

Corollary 2.23. Finite spaces X and Y are homotopy equivalent if and only if they
have homeomorphic cores XC and Y C , respectively. In particular, the core of X is
unique up to homeomorphism.

Proof. (⇐) If XC is homeomorphic to Y C , then XC is homotopy equivalent to Y C .
Since X, Y are homotopy equivalent to their cores XC and Y C , this implies X is
homotopy equivalent to Y .
(⇒) We use Theorem 2.22 to prove this direction. Suppose X is homotopy equiv-
alent to Y . Since the cores XC and Y C are strong deformation retracts of X
and Y , XC is homotopy equivalent to Y C . Therefore there exist continuous maps
f : XC → Y C and g : Y C → XC , such that g ◦ f ' idXC , and f ◦ g ' idY C . It
follows that g ◦ f and f ◦ g are in the same path components of idXC and idY C
respectively. By the theorem above, g ◦ f = idXC , and f ◦ g = idY C . Therefore,
g = f−1, and XC ∼= Y C .

Suppose XC
0 and XC

1 are two cores of a finite space X. Take X = Y . Then X
homotopy equivalent to X implies that XC

0 is homeomorphic to XC
1 . �

3. Cores of Alexandroff Spaces

3.1. Some Classes of Alexandroff Spaces.
In this part, we introduce some classes of Alexandroff spaces that will be needed

later. These spaces satisfy finiteness conditions that will allow us to construct cores.
Following Kukie la’s paper [3], we have the following definitions.

Definition 3.1. Let X be an Alexandroff space. A (finite or infinite) sequence
(xn) of elements of X is an s-path if xi 6= xj for i 6= j and xi−1 ∼ xi for all i > 0.
Given a finite s-path k = (x0, . . . , xm), we say m is the length of k and call k an
s-path from x0 to xm.

Definition 3.2. An Alexandroff space X is:

1. a finite-chains space if every chain in X is finite,
2. a locally finite space if for every x ∈ X, the set {y ∈ X : y ∼ x} is finite,
3. a finite-paths space (fp-space) if every s-path of elements of X is finite,
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4. a bounded-paths space (bp-space) if there exists an n ∈ N such that every
s-path of elements of X has less than n elements.

Remark 3.3. Bp-spaces form a strict subclass of fp-spaces and both fp-spaces and
locally finite spaces are strict subclasses of finite-chains spaces. Moreover, the
connected components of the spaces, which are both fp-spaces and locally finite,
are finite. This can be proved using Proposition 3.4 in Kukie la [3]. The following
picture shows the relationship between different classes of Alexandroff spaces.

finite-connected components

3.2. Cores of Infinite Alexandroff Spaces.
In this part, we generalize results about cores of finite spaces to the infinite case.

All these results originate from Kukie la [3].
Recall the definition of beat points. We have the following.

Definition 3.4. Let X be an Alexandroff space (with distinguished point p). A
(basepoint-fixing) retraction r : X → r(X) is called:

1. a comparative retraction if r(x) ∼ x for every x ∈ X.
2. an up-retraction if r(x) ≥ x for every x ∈ X.
3. a down-retraction if r(x) ≤ x for every x ∈ X.
4. a retraction removing a beat point, if there exists an x ∈ X being an upbeat

point under some ux ∈ X or a downbeat over some dx ∈ X such that
r(x) = ux or r(x) = dx, and r(y) = y for all y 6= x.

Remark 3.5. Every comparative retraction can be written as a composition of an
up-retraction and a down-retraction. If r : X → A is a comparative retraction,
then r = rd ◦ ru, where

ru(x) =

{
r(x) if r(x) ≥ x
x if r(x) ≤ x

and

rd(x) =

{
r(x) if r(x) ≤ x
x if r(x) ≥ x .

Definition 3.6. Let X be an Alexandroff space (with distinguished point p). Let
C be the class of all comparative retractions and I be the class of {retractions
removing a beat point} ∪ {identity maps}. The space X is called a C-minimal
space (or an I-minimal space) if there is no retraction r : X → r(X) in C (or I)
other than idX . The space X is called a C-core (or an I-core) if X is a C-minimal
subspace (or an I-minimal subspace) that is a strong deformation retraction of X.
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Proposition 3.7. A space X is I-minimal if and only if it has no beat points.

Proof. (⇒) This direction follows from the definition above. Since in the class of
I, there is no retraction of removing a beat point other than idX , it follows that
there are no beat points in X.
(⇐) If X has no beat points, then the retractions of removing a beat point are
the same as the identity maps. This means idX is the only retraction in I, which
implies X is I-minimal. �

Remark 3.8. In Kukie la ’s paper, a C-minimal space (or an I-minimal space) is
called a C-core (or an I-core). We are changing the terminology because in May’s
book [4], cores are required to be strong deformation retracts of the space they are
contained in.

Corollary 3.9. Suppose X is a finite-chains space. Then X is C-minimal if and
only if X is I-minimal.

Proof. (⇐) Suppose X is I-minimal and that r : X → r(X) is a C-retraction.
Factor r as rd ◦ ru with ru an up-retraction, rd a down-retraction. Then rd ≤ idX ,
ru ≥ idX and proceed as Theorem 2.22 to show rd = ru = idX . This will prove
C-minimality.
(⇒) A retraction removing a beat point is also a comparative retraction. So if X
is C-minimal, then there is no comparative retraction, and hence no I-retraction,
other than idX . Therefore X is I-minimal. �

Definition 3.10 ([3, Defn. 5.9]; cf. Exercise 24 in Chapter 4 of [5]). Let γ be
an ordinal and X be an Alexandroff space (with the distinguished point p). Let
{rα : Xα → Xα+1}α<γ be a family of of (basepoint-fixing) retractions from C (or
I) such that X0 = X, Xα+1 = rα(Xα) for all α < γ and Xα =

⋂
β<αXβ for

limit ordinals α < γ. By transfinite recursion, we define a family of retractions
{Rα : X → Xα}α≤γ such that:

1. R0 = idX ,
2. Rα+1 = γα ◦Rα,
3. for a limit ordinal α and an x ∈ X, if there exists β0 < α such that
Rβ(x) = Rβ0(x) for all β0 ≤ β < α, then Rα(x) = Rβ0(x), and if not, we
leave Rα(x) undefined.

The recursion ends when Rγ is defined or when Rα cannot be totally defined for
some limit ordinal α. In the first case we say the family {rα}α<γ is infinitely
composable and X is C-dismantlable (or I-dismantlable) to Xγ (in γ steps). In the
second case we say the family {rα}α<γ is not infinitely composable.

Definition 3.11. Let X be a finite-chains space. Let uX : X → X be given by:

uX(x) =

{
ux if x is upbeat under ux
x otherwise

Since uX(x) ≥ x for every x ∈ X and X is a finite-chains space, it follows that for
every x ∈ X there exists an Nx ∈ N such that (uX)n(x) = (uX)Nx(x) for every
n ≥ Nx. Let UX : X → UX(X) be an up-retraction given by UX(x) = (uX)Nx(x).
Similarly, we define the down-retraction DX : X → DX(X).

Remark 3.12. It is easy to check that that uX and UX are order-preserving, as well
as dX and DX . Given x, y ∈ X such that x < y, we will show uX(x) ≤ uX(y).
Note that we can assume x < y here, because if x = y, then uX(x) = uX(y).



CORES OF ALEXANDROFF SPACES 9

(a) If neither x nor y is upbeat point, then uX(x) = x < y = uX(y).
(b) If x is an upbeat point under ux and y is not an upbeat point, then uX(x) =

ux ≤ y = uX(y).
(c) If y is an upbeat point under uy and x is not an upbeat point, then uX(x) =

x < y < uy = uX(y).
(d) If both x and y are upbeat points, then uX(x) = ux ≤ y < uy = uX(y).

Now we check UX is order-preserving. Note that for any pair x ≤ y, there is
some N � 0 such that UX(x) = uNX(x) and UY (y) = uNX(y). Since uX is monotone,
UX(x) ≤ UX(y) by induction.

Similarly, we can check dX and DX are order-preserving as well.

Definition 3.13. Given an ordinal γ and a finite-chains space X, we define a
sequence of retractions {rα : Xα → Xα+1}α<γ by transfinite recursion.

Let X0 = X, Xα+1 = rα(X) and Xα =
⋂
β<αXβ if α is a limit ordinal. For

α = 0 or α a limit ordinal and n a finite ordinal, let

rα+n =

{
DXα+n

if n is even
UXα+n

if n is odd

We call this sequence of retractions {rα : Xα → Xα+1}α<γ the standard sequence
of X (of length γ).

Theorem 3.14 ([3, Thm. 4.18]). Let X, Y be Alexandroff spaces and {fα : X → Y }α≤γ ,
where γ is a countable ordinal, be a family of continuous map such that:

1. if α = β + 1, then fα ∼ fβ,
2. if α is a limit ordinal, then for every x ∈ X exists βαx < α such that

fβ(x) ≤ fα(x) for all βαx ≤ β ≤ α.

Then f0 is homotopic to fγ .

Definition 3.15. An Alexandroff space X (with distinguished point p) is count-
ably C-dismantlable (or I-dismantlable) to X ′ ⊆ X if it is C-dismantlable (or I-
dismantlable) to X ′ in γ steps, where γ is a countable ordinal.

The above theorem and definition imply that when an Alexandroff space X
is countably C-dismantlable (or I-dismantlable) to a C-minimal subspace (or an
I-minimal subspace), we can build a strong deformation retraction from X. By
Corollary 3.9 above, a C-core of X is the same as an I-core. For convenience, we
call it a core of X in the rest of paper.

We now present the main theorems on cores from Kukie la’s paper [3].

Theorem 3.16. Every bp-space or countable fp-space X has a core. Moreover, if X
is a bp-space with path length bounded by some n ∈ N, then X can be C-dismantled
to a core in fewer than 2n+ 2 steps.

Recall that in the finite case, we can construct a core by removing beat points
one by one until we obtain a minimal space. Since removing a beat point is a SDR,
this produces a core. However, in the infinite case, we use the standard sequence
to remove many beat points at a time, and repeat. After countably many steps, X
is C-dismantled to a core. The following is the sketch of the proof, and details can
be found in Theorom 5.14 [3].
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Proof. (Sketch) Assume X is an infinite Alexandroff space. Let Ω be the first
ordinal of cardinality greater that X. Let {rα : Xα → Xα+1}α<γ be the standard
sequence of X of length Ω.

First, we claim that if X is an fp-space, then the standard sequence is infinitely
composable. If not, then for some limit ordinal α, rα could not be totally defined
and we could construct an infinite s-path in X, using a point that moves infinitely
often. This would contradict that X is an fp-space. Since the standard sequence of
X is infinitely composable, it will be constant beginning with some α0 < Ω. If not,
then X would have cardinality at least Ω, which is a contradiction. Thus we obtain
an I-minimal space at α0. If X is countable, then Ω = ω1, the first uncountable
ordinal. Therefore α0 < ω1 is countable, and we can construct a SDR to Xα0

by
Theorem 3.14. Thus Xα0

is a core of X.
If X is a bp-space with path length bounded by some n ∈ N, one can show that

the standard sequence is constant after 2n + 2 steps. For if not, then X would
contain an s-path of length greater than n, which is a contradiction. �

Recall C(X,X) denotes the space of all continuous maps X → X in the compact-
open topology. We have the following theorem.

Theorem 3.17. If X is a I-minimal fp-space, then the connected component of
idX in C(X,X) is a singleton.

To be consistent with May’s notation in Definition 2.2.2 [4], we shall write
W (K,U) = {f : X → Y | f(K) ⊆ U} for the canonical subbasis elements of
C(X,Y ). Details can be found in Theorom 5.16 [3].

Proof. (Sketch) One first shows that for every x ∈ X, there exists a subspace
x ∈ Ax ⊆ X such that:

1. Ax is finite,
2. if y ∈ Ax is not maximal in X, then |Ax ∩max{z ∈ X | z < y}| ≥ 2,
3. if y ∈ Ax is not minimal in X, then |Ax ∩min{z ∈ X | z > y}| ≥ 2.

Ax can be thought of as the image of a tree (but the order on the tree is not the
same as the order on X). If Ax is not finite, we could construct a tree Ax, where at
each node, there are at most 4 new branches. König’s Lemma1 would imply that if
Ax is infinite, then X has an infinite s-path, which contradicts that X is an fp-space.

Since for all y ∈ Ax ⊆ X, idX(y) = y ≤ y, it follows that idX ∈
⋂
y∈AxW ({y}, Uy),

which is an open neighborhood of idX . We can show that this
⋂
y∈AxW ({y}, Uy)

is also closed. Thus
⋂
y∈AxW ({y}, Uy) is a clopen set containing idX . From point

set topology, the connected component of idX is a subset of the intersection of all
clopen sets

⋂
y∈AxW ({y}, Uy) containing idX , therefore the component of idX is

contained in
⋂
x∈X

⋂
y∈AxW ({y}, Uy).

Next, one can show that for every x ∈ X, if f ∈
⋂
y∈AxW ({y}, Uy), then

f |Ax = idAx . If not, then one may inductively construct an infinite, strictly de-
creasing sequence in Ax, which is a contradiction as well. Thus the connected
component of idX is contained in

⋂
x∈X

⋂
y∈AxW ({y}, Uy) = {idX}, and hence the

connected component of idX is exactly {idX}. �

1König’s Lemma: Let P be a well-founded poset, and S(x) = min{y ∈ P | y > x} be the set
of immediate successors of x. If for all x ∈ P , S(x) is finite, and there exists an x ∈ P such that

the set {y|y ≥ x} is infinite, then there exists an infinite ascending chain in P .
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Remark 3.18. We can get Theorem 2.22 from Theorem 3.17 directly: if X is finite,
then it is an fp-space. If X is also minimal, then it satisfies the conditions of
Theorem 3.17. If f and idX are in the same path component, then they are in the
same connected component, hence equal by Theorem 3.17.

Corollary 3.19. Suppose X and Y are fp-spaces, and suppose that they both have
cores XC and Y C . Then X is homotopy equivalent to Y if and only if XC is
homeomorphic to Y C .

The proof of the corollary above is identical to the proof of Corollary 2.23.

Lastly, we introduce the concept of chain-complete posets. Although they do not
belong to one of those classes of infinite Alexandroff spaces considered in Definition
3.4, we still have similar results.

Definition 3.20. A poset P is called chain-complete if every chain in P has both
a supremum and an infimum in P .

Definition 3.21. An antichain in a poset P is a subset A ⊆ P such that no two
elements in A are comparable.

Theorem 3.22 ([3, Thm. 5.8]; cf. Thm 6.11 [2]). Every chain-complete poset X
with no infinite antichains has a finite core.

Remark 3.23. In Corollary 3.19, instead of requiring X and Y to be fp-spaces, we
only need XC and Y C to be fp-spaces. Also note that if XC is a finite core, then
it is an I-minimal fp-space, so we can use Theorem 3.17 above. In this case, it
is straightforward to prove that if any two chain-complete posets X, Y without
infinite antichains have finite cores XC and Y C , respectively, then X is homotopy
equivalent to Y if and only if XC is homeomorphic to Y C .
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