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We introduce the homology of posets, taking great pains to explain the geometric
content of the definitions. The reader is advised that many of the basic calculations
of homological algebra are best learned by doing. Trying to follow someone else’s
work can often be more confusing and difficult than simply working it out for
oneself. Consequently, we have left some standard verifications as opportunities for
the reader to get his/her feet wet.1

1. Introduction

In this course, we have been interested in the possibility of modeling (infinite)
spaces – like spheres – with (weakly homotopy equivalent) finite ones. Finite ob-
jects, in priniciple, should be easier to understand; if worse comes to worse, one
can always try to write down every possibility and check if something holds. Thus,
having finite models could help us resolve difficult problems.

For example, we’ve already talked about the homotopy groups πn, and how
computing even πq(Sn) = Map(Sq, Sn)/homotopy is an extremely difficult prob-
lem. Imagine if we could find finite models S̃n for the n-spheres, say with 2n + 2
points. . . then we could just write down all of the (finitely many) maps S̃q → S̃n

and check what happens! Wouldn’t that be nice. There’s just one problem: this
can’t possibly work.

There are, in fact, finite models of spheres. For instance, there’s one for S1 with
just 4 points – let’s call it S̃1. Then Map(S̃1, S̃1) 5 44, so π0Map(S̃1, S̃1) <∞. But
π1(S1) = π0Map(S1, S1) ∼= Z. This is the “conundrum”: even though we have a
space S̃1 that is in many respects like the ordinary sphere S1, the homotopy groups

Date: July 14, 2015.
1For those who get stuck, some of them should be in Hatcher or Concise.
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of our model are not seeing everything. They are seeing something, but something
strange is happening and it’s subtle.

We’re going to develop a new invariant called homology. Unlike homotopy
groups, homology groups are going to be something that we can compute (relatively)
easily, and that computers can be programmed to compute. Of course, there is a
tradeoff: rich invariants that “see” a lot about our spaces are hard to compute
(because they contain so much information), and therefore computable invariants
cannot be as rich. Homology is a coarser invariant than homotopy.

2. Simplices

The idea is that spaces are built up out of simplices (just a fancy word for
“triangle”) of varying dimension2. One hopes that by looking at the (combinatorial)
data of how simplices are attached to one another, we will be able to say something
about the structure of our space. The homology groups we are going to define will,
in some sense, measure how many holes (of varying dimension) are present.

2.1. Topological Simplices. To make things precise: a 0-simplex is a point, a
1-simplex is an edge, a 2-simplex is a triangle, a 3-simplex is a tetrahedron, etc.
Geometrically, there is the “standard topological n-simplex”

∆top
n :=

{
(x1, . . . , xn+1) ∈ Rn+1

∣∣∣ 0 5 x1, . . . , xn 5 1 and
n+1∑
i=1

xi = 1
}

which can be thought of as the convex hull of (= smallest convex set containing)
the vectors

ei := (0, . . . , 1︸︷︷︸
ith spot

, . . . , 0)

for i = 1, . . . , n+ 1.

Exercise: A subset X j Rn (or more generally, a real vector space) is called
convex if for each pair of points x, y ∈ X, the line segment

l := {x+ t(y − x) | t ∈ [0, 1]}

is also contained in X. Prove that the convex hull of the vectors v1, . . . , vk ∈ Rn is{
t1v1 + · · ·+ tkvk

∣∣∣ 0 5 t1, . . . , tk 5 1 and
k∑
i=1

ti = 1
}
.

Hint: induction.

Exercise: Draw pictures of the standard topological n-simplices for n = 0, 1, 2
to see that these really are just a point, edge, and triangle.

For a simple example of how a space might be built out of simplices, consider
the unit circle S1. We can obtain this space by gluing the endpoints of an edge
(∼= [0, 1]) to a single point. In terms of diagrams, we have a pushout square

2or at the very least, can be approximated by spaces constructed in this way
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{0, 1} - ∗

[0, 1]

∂

?
- S1

?

Exercise: Generalize the above to arbitrary n > 0, i.e. construct an n-sphere
from a point and a single n-simplex.

It is worth noting that for topological purposes, an n-simplex is just a piece of
Rn, and is interchangeable with a closed ball or a closed cube. The precise geometry
– i.e. the fact that simplices have sides – only becomes relevant when we introduce
algebra/combinatorics into the picture.

Now, suppose X is a topological space. A singular n-simplex in X is defined to
be a continuous map ∆top

n → X. You can think of it as a figure in X parametrized
by the standard topological n-simplex. It is called “singular” because we do not
require the map to be an embedding or smooth in any way – only continuous.

2.2. Simplices in a Poset. Now that we’ve discussed the geometric/topological
situation, we’re going to abstract to posets (' Alexandroff T0 spaces).

Start with a poset C, and regard it as a category C by letting the objects of C
be the elements of C, and placing a unique morphism x → y if x 5 y. One can
think of a morphism x→ y as “witnessing” the relation x 5 y. Accordingly, we will
use x→ y and x 5 y interchangeably. Just as we can define singular simplices in a
topological space, we can define simplices in the poset C . This is done as follows:

• The 0-simplices of C are points (objects):

x

Let [0] be the poset {0} in the usual order. Then a 0-simplex is equivalent
to an order preserving map [0]→ C .
• The 1-simplices of C are pairs x 5 y:

x y

Let [1] be the poset {0, 1} in the usual order. Then a 1-simplex is equivalent
to an order-preserving map [1]→ C .
• The 2-simplices in C are triples x 5 y 5 z:

x y

z

Let [2] be the poset {0, 1, 2} in the usual order. Then a 2-simplex is equiv-
alent to an order-preserving map [2]→ C .
• The 3-simplices in C are quadruples x 5 y 5 z 5 w:
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x y

z w

• . . .
• The n-simplices in C are sequences x0 5 · · · 5 xn. Let [n] be the poset
{0, . . . , n} in the usual order. Then an n-simplex is equivalent to an order-
preserving map [n]→ C .

Thus, we can think of the posets [n] as being the “standard categorical n-simplices”
(with vertices given by the integers 0, . . . , n), and we can think of n-simplices in a
poset C as figures parametrized by the standard n-simplex.

Exercise: A simplex x0 5 · · · 5 xn is said to be nondegenerate if xi < xi+1

(strictly) for i = 0, . . . , n− 1. How many 3-simplices does {0, 1, 2, 3, 4} have? How
many are nondegenerate?

3. The Definition of Homology

3.1. A Motivating Example. Before diving into the formal definitions and ac-
companying algebra, consider the following geometric example. Let X = R2\{0} be
the punctured plane. From before, we know X ' S1 via the deformation shrinking
each vector v to v/||v|| over time, so that π1(X) ∼= π1(S1) ∼= Z. This is a reflection
of the fact that there is a hole in X, and hence homotopically nontrivial loops exist,
like γ(t) = (cos(2πt), sin(2πt)).

Let’s describe another way of detecting the hole at 0. Note that γ above can
also be thought of as the inclusion map S1 → X. Let

D2 := {(x, y) ∈ R2 |x2 + y2 = 1}

be the two-dimensional closed unit disc. The fact that γ is homotopically nontrivial
implies that there is no continuous map D2 → X whose restriction to ∂D = S1 is
γ; indeed, if there were such a Γ : D2 → X, then the map h(x, t) = Γ((1 − t)x)
would be a homotopy of γ to a point, taking place in X. Geometrically, all we are
saying is that you cannot map a disc continuously into R2 \ {0} while requiring its
bounday to be included into R2 \ {0} as S1.

Thus, the existence of a hole in X = R2 \ {0} implies there is a closed figure
S1 → X (a cycle) that is not the boundary map of any figure D2 → X. It is this
geometric situation that is formalized in the definition of homology.

Exercise: Generalize the above to Sn ⊂ Rn+1\{0}. You may assume πn(Sn) ∼= Z.

3.2. The Formal Definition.
“Algebra is what we do when we can’t see what’s going on geometrically.”

Or at the very least, algebra is something we can fall back on when our vision
(of, say, 15-dimensional shapes in a 32-dimensional space) fails us. We’re going to
formalize the situation described above for posets and generalize it to all dimensions.
Accordingly, the definitions are somewhat abstract. The newcomer is urged to keep
the geometric picture in mind going forward.

Suppose C is a poset. We want to interpret the situation above in terms of the
poset structure of C . Since the disc D2 is topologically the same as a 2-simplex,
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the figure D2 → X will be analgous to [2]→ C , i.e. a 2-simplex in C . But how do
we make sense of S1 → X?

The boundary of ∆top
2 is a triangle without interior, which is definitely not a

simplex. It is, however, a union or “sum” of the simplices corresponding to the
sides of ∆top

2 . How do we introduce this into the context above? Easy: we allow
ourselves to formally add simplices together. It is critical that simplices have only
finitely many sides – that’s what allows us to stay in the realm of algebra, rather
than moving into analysis.

In general, suppose A is a set. The free abelian group on A, denoted F (A)
is the abelian group whose elements are formal sums

n∑
i=1

ciai

where n ranges over the natural numbers, ci over the integers, and ai over elements
of A. This is the group that one gets if he/she just starts formally adding the
elements of A together without introducing any relations other than those forced
by the axioms of an abelian group (e.g. associativity, commutativity, etc.) – hence
the name “free”.3

Now, so that we can talk about the boundary of a simplex [n+ 1]→ C , define:

Cn(C ) := free abelian group generated by all n-simplices [x0 5 · · · 5 xn] in C

For n < 0, define Cn(C ) := 0. The elements of Cn(C ) for n = 0 are formal sums
m∑
j=1

aj [x
j
0 5 · · · 5 xjn]

(where aj ∈ Z) and are called n-chains. Geometrically, an n-chain can be thought
of as a figure built out of finitely many n-simplices, together with an integer weight
on each simplex. Note, just keeping track of which simplices occur is not enough
to determine an n-chain; we need to keep track of the number of times a simplex
is “repeated”. For example, what is the geometric difference between the simplex
σ and the chain σ + σ?

Exercise: Draw some pictures of chains in a space or poset. How would you
write down something like the 2-sphere?

As observed above, the boundary of a simplex should be some kind of sum of
its sides. Since we now understand the sum of simplices in C , it remains to under-
stand ‘side’. By way of example, suppose x 5 y 5 z is 2-simplex. The three sides
of this simplex are obtained by omitting each of x, y, and z in succession:

2-simplex x-side y-side z-side

x y

z

y

z

x

z

x y

x 5 y 5 z y 5 z x 5 z x 5 y

3If one wants to be formal about it, this is the group whose elements are functions c : A→ Z
such that for all but finitely many a ∈ A, ca := c(a) = 0. The function c is thought of as specifying
the coefficient attached to each element a ∈ A. Addition is componentwise, the 0 function is the

identity, and (−c)(a) := −[c(a)]. Equivalently, F (A) is the A-fold direct sum of copies of Z,
L

A Z.
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Thus, for a general n-simplex σ = [x0 5 · · · 5 xn], we define the ith side of σ to be
the (n− 1) simplex obtained by omitting the ith vertex xi. This is denoted

[x0 5 · · · 5 x̂i 5 · · · 5 xn].

The final piece to consider is orientation. Typically, the boundary of a reasonable
subspace (e.g. a manifold) of Rn is oriented cyclically or with some condition on
the normal vector. In the above table for the 2-simplex σ = [x 5 y 5 z], the y-side
is oriented opposite to the standard counterclockwise orientation. Thus, to get a
cyclic orientation on the boundary of σ, we formally turn the y-side around by
taking its additive inverse (we’re in a group!). Define

∂[x 5 y 5 z] := [y 5 z]− [x 5 z] + [x 5 y].

In general, we define the boundary of an n-simplex by taking the alternating
sum of sides

∂[x0 5 · · · 5 xn] :=
n∑
i=0

(−1)i[x0 5 · · · 5 x̂i 5 · · · 5 xn].

The signs correspond to giving the boundary of the simplex a consistent orientation.

Exercise: Check that for the topological 3-simplex ∆ ⊂ R3 defined as the convex
hull of (0, 0, 0), (1, 0, 0), (0, 1, 0), and (0, 0, 1), these signs orient ∂∆ with the out-
ward normal vector.

Just as we may define a linear map between vector spaces by specifying values
on a basis, so too we may define an additive map out of F (A) by specifying a value
on each generator a ∈ A. Explicitly, if B is an abelian group and A is a set, then
a set map ϕ : A → B extends uniquely to a group homomorphism F (A) → B via
the formula

ϕ(
∑

cjaj) :=
∑

cjϕ(aj).

Exercise: Check this claim.

Thus, there are induced boundary maps ∂ : Cn(C ) → Cn−1(C ) for each pos-
itive integer n. For n 5 0, we define ∂ := 0, the zero homomorphism. For n > 0,
the additivity of ∂ allows it to capture the “cancellations” that can occur when two
simplices ∆1 and ∆2 in a chain share a boundary simplex σ. As a result, the ∂
map on chains often gives the “geometric boundary” of the figure determined by a
chain. See the following exercise.

Exercise: Suppose x0 5 · · · 5 xn. Show that the boundary of the 1-chain
[x0 5 x1] + · · ·+ [xn−1 5 xn] is the boundary of [x0 5 xn]:

x0 x1 · · · xn−1 xn
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Thus, the “interior” 0-simplices [x1], . . . , [xn−1] cancel each other out.

We are poised to reinterpret the geometry in this algebraic setting. For each n,
an n-chain is called a boundary if it is the boundary of an (n + 1)-chain. An
n-chain is called a cycle if it has no boundary, and therefore “closes up”. Said
differently, the n-boundaries are the elements of im(∂ : Cn+1(C ) → Cn(C )), and
the n-cycles are the elements of ker(∂ : Cn(C )→ Cn−1(C )).

Suppose c is an n-chain that is a cycle, but not a boundary. In analogy to
the geometric situation of S1 ⊂ R2 \ {0}, we think of c as detecting a “hole”: c
is tracing out a closed figure that cannot be filled in by a figure one dimension
higher. Since we’re dealing with abelian groups, we could try to form the quotient
(n-cycles)/(n-boundaries) to measure the extent to which there are cycles that are
not boundaries. There is the following important result, which tells us that this
quotient makes sense.

Proposition. For each n = 2, the composite Cn(C ) ∂→ Cn−1(C ) ∂→ Cn−2(C ) is
the zero homomorphism, i.e. C∗(C ) is a chain complex. It follows that there is an
inclusion im(∂ : Cn(C ) → Cn−1) j ker(∂ : Cn−1(C ) → Cn−2) and the quotient
ker∂/im∂ is well-defined.4

Proof. Exercise. It is enough to check on simplices, since they generate the entire
group of chains. �

We (finally) define the homology groups Hn(C ) of a poset C by the formula

Hn(C ) :=
ker
(
∂ : Cn(C )→ Cn−1(C )

)
im
(
∂ : Cn+1(C )→ Cn(C )

) =
n-cycles

n-boundaries
.

In particular, for n = 0 we have (∂ : C0(C )→ C−1(C )) = 0, so that every 0-chain
is a 0-cycle and

H0(C ) =
C0(C )

im
(
∂ : C1(C )→ C0(C )

) Def.= coker
(
∂ : C1(C )→ C0(C )

)
.

For n < 0, the groups of n-cycles and n-boundaries are both just 0, and Hn(C ) = 0.
Retracing our steps, we see that the definition of Hn(C ) is algebraic, so that

homology groups can be (and often are) manipulated without any geometric con-
siderations whatsoever. Despite this fact, the previous discussion should make it
clear that homology groups are – in some sense – detecting holes in our space of
various dimension. In broad strokes, we have defined combinatorial notions of cy-
cles (closed figures) and boundaries, and the existence of a cycle that is not the
(algebraic) boundary of a chain one dimension higher, i.e. a nontrivial element in
homology, is (algebraically) capturing a geometric condition for a hole in the space.
(see section 3.1!)

We conclude this section with a useful technical fact. As always, assume C is
a poset. Define the group C<n (C ) of nondegenerate n-chains on C to be the
free abelian group generated by strictly increasing n-chains [x0 < · · · < xn]. It

4If the reader was unsure of the sign conventions on boundaries, this should be taken as
justification. The alternating sum makes the algebra work out.



8 07-10-2015

is a subgroup of Cn(C ), and since each face of a nondegenerate simplex is nonde-
generate, it follows that the boundary map ∂ : Cn(C ) → Cn−1(C ) restricts to a
homomorphism ∂ : C<n (C ) → C<n−1(C ). We therefore obtain a sub-chain complex
C<∗ (C ) ⊂ C∗(C ), and can define the homology groups

H<
n (C ) :=

ker
(
∂ : C<n (C )→ C<n−1(C )

)
im
(
∂ : C<n+1(C )→ C<n (C )

) .
Fact. The homology groups Hn(C ) and H<

n (C ) are isomorphic.

We might prove this result at a later time. For the time being, we will not
concern ourselves with this precise details; the intuition is that degenerate simplices
are geometrically trivial, and that homology shouldn’t care about them.

Here is the importance of the isomorphism Hn
∼= H<

n : it turns out Hn is easier
to prove things about because we have a more inclusive notion of chain, while
H<
n is easier to compute because there are fewer chains to worry about. This is

typical in algebraic topology: often we have two descriptions of a single object or
construction, one well-suited for theory, but unwieldy for computation, the other
streamlined for computation, but hard to prove things about. As a result, there is
sometimes a sharp divide between the theory and the practice (calculations).

A final remark: if you repeat the construction of homology just outlined for the
singular simplices of a topological space X, you get something called the singular
homology of X. See Concise or Hatcher for more details.

4. Applications and First Properties of Homology

Now that we’ve defined homology and given some indication of what it is mea-
suring, it’s time to look at some examples and to analyze its properties.

4.1. Sample Calculations. First, some examples. We will always compute the
homology of a poset C in concrete cases using H<

n (C ) (i.e. using nondegenerate
simplices [x0 < · · · < xn]), since there is less data to worry about.

Example: Suppose C = ∗ is a poset with exactly one element. Then Cn(C ) = 0
whenever n > 0 because there are no relations x < y in C . Said differently, we
cannot fit in any chains of positive length. On the other hand, there is exactly one
0-simplex, namely [∗]. Therefore C0(∗) ∼= Z and

• H0(∗) = ker(C0(∗)→ 0)/im(0→ C0(∗)) = C0(∗)/0 ∼= Z.
• For n > 0, Cn(∗) = 0 implies that ker(Cn(∗) → Cn−1(∗)) = 0, and hence
Hn(∗) = 0/im(Cn+1(∗)→ Cn(∗)) ∼= 0.

Exercise: Prove that in general, H0(C ) ∼= Z# of conn. components. Hint: write down
∂ of a generic 1-chain

∑
i(±1)[xi1 < xi2] and set it equal to [y] − [x]. By consider-

ing what cancellations must occur, show that two 0-cycles [x] and [y] differ by a
0-boundary if and only if they are in the same (path) component of the poset.

Example: Suppose C is the poset below.
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x0 x1

x2 x3

This is a model for S1. We have drawn the poset in this configuration (in layers
with all arrows pointing down) to emphasize that there are no strictly increasing
sequences a0 < · · · < an for n > 1. Now:

• We only have nondegenerate n-simplices for n = 0, 1, hence for n = 2,
C<n (C ) ∼= 0 and Hn(C ) ∼= 0.
• H0(C ) is given using generators and relations by〈

[x0], [x1], [x2], [x3]
∣∣∣ [x2]− [x0], [x2]− [x1], [x3]− [x0], [x3]− [x1]

〉
i.e. we have four free generators [x0], . . . , [x3] that are identified in pairs.
Therefore H0(C ) ∼= Z. This can be seen as a special case of the preceding
exercise H0(C ) ∼= Z# of conn. components.
• H1(C ) = ker(∂)/im(∂) ∼= ker(∂ : C<1 (C ) → C<0 (C )) because there are no

nondegenerate 2-simplices and hence im ∂ = 0. The rest of the computation
boils down to “linear algebra over Z”: we need to find the kernel of the (Z)-
linear map

∂ :
〈

[x0 < x2], [x1 < x2], [x0 < x3], [x1 < x3]
〉
→
〈

[x0], [x1], [x2], [x3]
〉
.

It has a corresponding 4× 4 matrix with respect to these bases. We can do
elementary row and column operations using only integer coefficients
to show that the kernel is ∼= Z.

Exercise: Write down the matrix and do the calculation. Why can we use a ma-
trix to represent this homomorphism? (Hint: we have free generators ' a basis.)
Why is it valid to use row and column operations in this way? (Hint: they corre-
spond to composition/precomposition with certain invertible transformations, and
therefore define isomorphisms between the image/kernel of the map and something
more recognizable.) What is a generator for H1(C )?

It is worth emphasizing that homology is computable; we can even program com-
puters to do the calculations. This makes it a very useful invariant, even if it is not
as sensitive as homotopy.

Going forward, we will be interested in computing the homology of poset models
for the n-sphere, n > 0. It turns out that for a certain C modeling Sn, we have:

Hk(C ) ∼=
{
Z k = 0, n
0 else .

We’ll prove this using a piece of machinery called the Mayer-Vietoris sequence, but
it is also possible to show this by direct inspection of the chains.

Exercise: Suppose C is a poset. We define the poset suspension ΣC of
C to be the poset obtained by adjoining two new points {N1, N2} and declaring
that Ni > x for all x ∈ C and i = 1, 2. In other words, we add two new (incom-
parable) points that are bigger than everything in C . By a direct inspection of
chains in C and ΣC , prove directly from the definitions that Hn(ΣC ) ∼= Hn−1(C )
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for n > 1. Can this be true for n = 1? (Hint: what happens for C = ∗?)5

If we accept that

n times︷ ︸︸ ︷
Σ · · ·Σ(∗

∐
∗) is a model for Sn (for all n > 0), then the de-

sired calculation follows by induction.

4.2. Some Basic Theoretical Properties of Homology. We now develop some
of the machinery we’ll need to work effectively with homology.

Lemma. For each n = 0, Hn extends to a functor Poset → Ab, going from the
category of posets and order-preserving maps to the category of abelian groups and
group homomorphisms.

Proof. We’ve already defined Hn(C ), so what we need to do now is explain how
an order-preserving map C → D between posets induces a group homomorphism
Hn(C ) → Hn(D). If f : C → D is order-preserving, then it preserves chains
defined using 5 (but not those defined with <). For each n = 0, the assignment

Cn(f)[x0 5 · · · 5 xn] = [f(x0) 5 · · · 5 f(xn)]

between n-simplices extends by additivity to a homomorphism

Cn(f) : Cn(C )→ Cn(D)

between the groups of n-chains. For n < 0, we define Cn(f) := 0 : 0 → 0. The
sequence of homomorphisms (Cn(f))n∈Z has the property that, for every n ∈ Z,
∂ ◦ Cn(f) = Cn−1(f) ◦ ∂, i.e. the square

Cn(C )
Cn(f)- Cn(D)

Cn−1(D)

∂

? Cn−1(f)- Cn−1(D)

∂

?

commutes (covering up the ith factor and then applying f is the same as applying
f and then covering up the ith factor). It follows that for each n, Cn(f) maps
n-cycles to n-cycles, and n-boundaries to n-boundaries. Therefore Cn(f) descends
to a homomorphism

Hn(f) : Hn(C )→ Hn(D)
between homology groups. Explicitly, if α ∈ Hn(C ) is represented by the n-cycle∑
i ai[x

i
0 5 · · · 5 xin], then Hn(f)(α) ∈ Hn(D) is the homology class represented

by
∑
i ai[f(xi0) 5 · · · 5 f(xin)]. It follows that Hn(g ◦ f) = Hn(g) ◦ Hn(f) and

Hn(id) = id, so Hn is indeed a functor. �

Exercise: Check the details.

Observe that this construction really breaks down into two steps. First, we de-
fined the maps C∗(f), and then we passed to homology. Formalizing what we see
above, we say that a sequence (ϕn : An → Bn) of homomorphisms between the
component groups of two chain complexes (An) and (Bn) is a chain map if and
only if ∂ ◦ ϕn = ϕn−1 ◦ ∂ for all n. Chain complexes (of abelian groups) and chain

5This is something reflecting the difference between reduced and unreduced homology theories.
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maps form a category, which we shall denote Ch. Homology groups make sense
for any chain complex (by the condition ∂ ◦ ∂ = 0), and the arguments above show
that for each n, there is an nth homology functor Hn : Ch→ Ab sending a chain
complex A∗ to its nth homology, and a chain map (fn) to the map on homology
induced by the homomorphism fn. The homology functors for posets are really
a composite of two functors Poset → Ch → Ab, the first sending a poset to
its chains, and the second extracting homology. Next, we describe a criterion for
when two order-preserving maps f, g : C ⇒ D induce the same (equal) maps on
homology. Indeed, the assumption f 6= g does not imply Hn(f) 6= Hn(g).

Lemma. If f, g : C ⇒ D are order-preserving maps between posets C and D , and
f(x) 5 g(x) for every x ∈ C , then Hn(f) = Hn(g) : Hn(C )→ Hn(D) for every n.

Proof. This is actually quite geometric. Suppose we have parallel order preserving
maps f, g : C ⇒ D such that f(x) 5 g(x) for every x ∈ C . Recall this implies
that if we regard C and D as Alexandroff spaces, then there is a homotopy h(x, t) :
C × I → D from f to g defined by

h(x, t) :=
{
f(x) t < 1
g(x) t = 1 .

Regard this homotopy h as fixed data. Given any n-simplex σ : ∆ → C in C , we
now obtain a figure (depending only on σ)

P (σ) : ∆× I σ×I→ C × I h→ D

P (σ) parametrizes an “(n + 1)-prism” in D . The face corresponding to t = 0 is
Cn(f)σ = f ◦ σ, while the face at t = 1 is Cn(g)σ = g ◦ σ. Thus, P (σ) can
be thought of as “witnessing” the deformation of Cn(f)σ to Cn(g)σ. The idea
now is to see what this geometric situation implies about the algebraic relationship
between Cn(f)σ and Cn(g)σ. Observe that the boundary of a prism ∆× I can be
decomposed into its faces as below

∂(∆× I) =
(

∆× {0}
)
∪
(

∆× {1}
)
∪
(
∂∆× I

)
.

If we hit this with the prism map P (σ) = h◦(σ×I) : ∆×I → D , and remember that
P (τ) is the prism “witnessing the deformation of Cn(f)τ to Cn(g)τ”, we expect
the following geometric situation: (draw the picture)

∂P (σ) = Cn(f)σ ∪ Cn(g)σ ∪ P∂(σ).

Thus, up to signs related to orientation, we expect a formula of the form

±Cn(f)σ ± Cn(g)σ = ±∂P (σ)± P∂(σ)

for some suitably defined “prism operator” on chains.
The technical stumbling block for all this is that chains are built out of simplices.

Thus, we need to find a way of formally subdividing prisms so that we get a useful
formula as above. We define Pn : Cn(C )→ Cn+1(D) by taking

Pn[x0 5 · · · 5 xn] :=
n∑
i=0

(−1)i[f(x0) 5 · · · 5

repeat i︷ ︸︸ ︷
f(xi) 5 g(xi) 5 · · · 5 g(xn)]
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on n-simplices, and extending by additivity.6 As with the boundary maps ∂, the
correctness of this definition can be justified by the fact that it makes the alge-
bra work. Indeed, with this construction, we have the following equality of group
homomorphisms Cn(C )→ Cn(D):

Cn(f)− Cn(g) = ∂ ◦ Pn + Pn−1 ◦ ∂.

This is great news. Suppose that α ∈ Cn(C ) is a cycle. Then ∂(α) = 0, hence
Cn(f)(α)− Cn(g)(α) = ∂(Pn(α)) is a boundary. Thus, when we pass to homology
(setting all boundaries to 0), the cycles Cn(f)(α) and Cn(g)(α) will represent the
same homology class, i.e. are identified in Hn(D). Since every element of Hn(C )
is represented by a cycle, it follows that Hn(f) = Hn(g). �

Exercise: Check that Cn(f)−Cn(g) = ∂ ◦Pn +Pn−1 ◦ ∂ and the details in the
argument that Hn(f) = Hn(g).

Exercise: Draw pictures of P (σ), where σ is a 1-simplex or 2-simplex. The point
is that as we increase i in the alternating sum defining P (σ), we “sweep out” sim-
plices that fill up the prism.

Exercise: (If you are feeling brave.) Regard the topological n-simplex ∆top
n as

the convex hull conv(e1, . . . , en+1) of the standard basis vectors e1, . . . , en+1 ∈ Rn,
and the prism P (∆top

n ) as the subset ∆top
n × [0, 1] ∈ Rn+2. Show that

P (∆top
n ) =

n+1⋃
i=1

conv
(

(e1, 0), . . . , (ei, 0), (ei, 1), . . . , (en+1, 1)
)
.

Show, furthermore, that the points (e1, 0), . . . , (ei, 0), (ei, 1), . . . , (en+1, 1) are in
general position (and hence determine an (n + 1)-simplex) and that distinct sim-
plices in this union can only intersect on their boundaries.

In the above, we saw how a homotopy h between the maps f, g : C ⇒ D gave
rise to a “prism operator” P : C∗(C )→ C∗+1(D). P is reflecting h : f ⇒ g on the
level of chains, and accordingly can be thought of as a “homotopy” C∗(f)⇒ C∗(g)
between the maps on chains. This leads to the following abstraction: suppose A∗
and B∗ are chain complexes, and f∗, g∗ : A∗ ⇒ B∗ are a parallel pair of chain
maps. A chain homotopy P : f∗ ⇒ g∗ is a sequence of degree-increasing homo-
morphisms (Pn : An → Bn+1) such that fn − gn = ∂ ◦ Pn + Pn−1 ◦ ∂ for all n.

Example: Here is an application of the previous lemma. Suppose C is a poset and
assume C has a maximum (or analogously, a minimum) M . Let’s take f : C → C
to be the identity map f(x) = x, and g : C → C to be constant to M . Then
f(x) 5 g(x) for all x, so the lemma applies and we conclude H∗(f) = H∗(g).

Since f = id, it follows H∗(f) = id by functoriality. What about H∗(g)? This is
the map induced by the assignment [x0 5 · · · 5 xn] 7→ [M 5 · · · 5M ] on simplices.
Claim: for n > 0, Hn(g) is the 0 homomorphism. Granting this, the only way the
0 homomorphism is the identity map is if Hn(C ) = 0 for n > 0. As for n = 0, the
existence of a maximum M implies that C is connected, hence H0(C ) ∼= Z.

6see the following exercises.
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Exercise: Prove that Hn(g) = 0 for n > 0.

4.3. Preview. Here is a sneak preview of some (possible) things to come.
So far, we’ve introduced two invariants: homotopy and homology. The two are

related. Geometrically, both measure the holes or twisting in a space, albeit in
different ways. In terms of their relative strength, the preceding lemma involving
the prism operator P showed that homology is a homotopy invariant. It is also
true that homology is a weak homotopy invariant, but this is much harder to prove.
Thus, homology is a coarser invariant than homotopy, and is actually strictly so.

That said, homotopy and homology are not irreconcilable. Suppose X is a space
or poset. In general, we cannot expect that π1(X) ∼= H1(X), because homology
groups are always abelian, whereas fundamental groups need not be. However, the
next best thing happens: H1(X) is (canonically) isomorphic to the abelianization
of π1(X). Intuitively, the abelianization of a group G is the group obtained from G
by formally requiring all elements to commute. It is obtained from G by introducing
the relations gh = hg for all pairs g, h ∈ G, and can be regarded as the “most
efficient” way of turning a general group into an abelian group. Thus, while π1(X) �
H1(X), they are as close as one could reasonably expect.


