THE EULER CHARACTERISTIC

ENZE ZHENG

ABSTRACT. This paper introduces the fundamental concepts needed to under-
stand Euler’s characteristic and its properties. It covers essential ideas from
topology, including the triangulation of surfaces, and graph theory, leading to
the definition and key applications of Euler’s characteristic.
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1. INTRODUCTION

In mathematics, numerical invariants serve as powerful tools for classifying differ-
ent types of mathematical objects. An important numerical invariant is the Euler
characteristic, which helps compare and classify spaces based on their structure.
For example, orientable surfaces are completely identified by their Euler charac-
teristic. This paper will introduce fundamental concepts to understand the Euler
characteristic, its key properties, and its applications.

We begin with a brief introduction to topology, which includes the comparison of
topological spaces through homeomorphisms. Next, we introduce Euclidean space
and simplices, which provide the framework for triangulating topological spaces
and thus deriving the Euler characteristic. We then incorporate ideas from graph
theory, particularly concepts involving vertices, edges, faces, and connectedness, to
deepen our understanding of these structures. Finally, we formally define the Euler
characteristic, introduce its key properties, and demonstrate its wide-ranging ap-
plications, including the fundamental result that triangulable homeomorphic topo-
logical spaces share the same Euler characteristic.

2. BACKGROUND TO TOPOLOGY

To understand the Euler characteristic in its full generality, we first establish the
fundamental language of topology. In this section, we will be defining topological
1



2 ENZE ZHENG

spaces, the open sets that form their structure, and the notions of continuity and
homeomorphism, which allow us to compare different spaces.

Definition 2.1. A topological space (X, O), consists of a set X and a topology
O, a collection of subsets of X, with the following properties:
e The countable union of any sets in O is in O

e A finite intersection of sets in O is in O
e Both 0§, X € O.

Example 2.2. A topological space X, with an unspecified topology, or when said
to have the "normal/usual topology” (especially when X C R™), often refers to
the standard topology induced from R™. This topology is generated by arbitrary
countable unions and finite intersections of open balls in X. An open ball in X is
a subset of X defined for a point x € X and radius r > 0 by

Br(z) ={y € X | d(z,y) <r},
where d(z,y) is the standard Euclidean metric given by
d(x,y) = V(@1 —y1)? + - + (20— yn)?,
with z = (z1,...,2,) and y = (y1,. .-, Yn)-

Definition 2.3. If A C X is in O, A is open. Furthermore, it’s complement,
X — A, is closed.

Theorem 2.4. FEvery open set in R is a countable union of a collection of disjoint
open intervals.

Proof. Let A C R be an open set. If A is an open interval, we are done. Otherwise,
there exist ,y € A such that (z,y) ¢ A.

For any point p € A, define the maximal open interval I, = (ay,b,) containing

p that is still contained in A:

ap = inf{a’ | (a,p) C A}, b, = sup{V/ | (p, ) C A}.
If a € Aforalla € R and a <p,let a, = —oco. Similarly, if b € A for all b € R and
b < p, let b, = co.

Because A is open under the normal topology in R, there exist a,b € R such
that (a,p) C A and (p,b) C A. Suppose for the sake of contradiction that a, does
not exist. Therefore for any a € R such that (a,p) C A, there exists a/ < a such
that (a’,p) C A. Therefore, for any a < p, a € A. Thus, a, = —co by construction.
Therefore, a, exists for any p € A. A symmetrical proof follows for the existence of
by. Thus, for any p € A, there exists ay, b, with a, < p < b, and I, = (a,,b,) C A.

Consider z,y € A with (z,y) ¢ A, and let I, = (ag,b;) and I, = (ay,b,) be
the corresponding maximal open intervals. Since there exists b’ € (x,y) such that
bV ¢ A by <V <ay.

Suppose for contradiction that I, NI, # (. Pick k € I, N I,. By construction of
I, and I, we have:

(x,k) Cc A, (k,y)CA, and keA
This implies
(k) U{k} U (k,y) = (z,y) C 4,
which is a contradiction with our choice of z and y. Therefore, I, NI, = () whenever

(z,y) ¢ A.
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Let z,y € A with (z,y) C A, and let I, = (as,b;) and I, = (ay,b,) be their
maximal open intervals correspondingly. Consider the claim that I, = I,,. Suppose
for the sake of contradiction that a, # ay. Let a; < ay. We know that a, < x since
(x,y) C A. Since (ag,x) C A,z € A, and (z,y) C A, (ag,y) C A, which contradicts
the definition of a,. An analogous proof follows when a, < a,, as (a,,z) C A would
contradict the definition of a,. Therefore a, = a, and a symmetrical proof follows
for by = b,. Thus, if (z,y) C A, then I, = I,,.

By creating a maximal interval for every rational p € A, we observe that I,
is either equal to another open maximal interval, or disjoint from all other non-
equivalent open maximal intervals, i.e disjoint from all I, where ¢ € A and I, # I,.
If it is equal, we can take one copy of such maximal interval, and thus, A is the
countable union of its maximal disjoint open intervals:

A= ]I,

pEA

O

Definition 2.5. A function f: X — Z is continuous if for all open sets Y in Z,
fYY) is open in X.

Definition 2.6. A function f: X — Y is a homeomorphism if f is continuous
and bijective, and its inverse function, f~! : ¥ — X is also continuous. We say
that X,Y are homeomorphic to each other if such a function exists.

3. EUCLIDEAN SPACE AND SIMPLICIAL COMPLEXES

In this section, we specialize to Euclidean spaces and introduce the ideas of
simplices and simplicial complexes. Let vg, v1, ..., vx be points of Euclidian n-space,
E™. This framework creates a bridge between the topological surfaces and the
combinatorial structures needed to compute Euler’s characteristic.

Definition 3.1. The hyperplane spanned by these points consists of all linear
combinations, Agvg + A\v1 + ... + Apvr where \; € [0,1] for all 0 < i < k and

Zf:o Ai =1

Definition 3.2. {vg,v1,...,v;} are in general position if any proper subset spans
a strictly smaller hyperplane.

Definition 3.3. A convex set is a set such that the points on the line segment
connecting any two points in the set lie in the set.

Example 3.4. Figure 1 shows two sets of points in R3. On the left, the points lie
inside a solid torus, and on the right, inside a solid sphere. The sphere is convex
because any line segment between two points stays entirely within it. The torus,
however, is not convex as line segments connecting points on opposite sides, like
those shown in red, pass outside the torus.
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F1cUre 1. Example and Non-Example of Convex Sets

Definition 3.5. A k-dimensional simplex is the smallest convex set containing
Vg, ..., U in general position where the points make up the vertices of this simplex.

For the first few dimensions:

(1) O-simplex=points

(2) 1-simplex=closed line segment
(3) 2-simplex=triangle

(4) 3-simplex=tetrahedron

Definition 3.6. Suppose A, B are n-simplices with n > 2. If vertices of B form a
subset of the vertices of A, B is a face of A.

Definition 3.7. A finite collection of simplices in some euclidean space, E™, is
called a simplicial complex if whenever a simplex lies in the collection then so
does each face, and whenever two simplexes of the collection intersect they do so
in a common face.

Definition 3.8. A space is triangulable if it is homeomorphic to the union of a
finite collection of simplices in some Euclidean space where whenever two simplexes
of the collection intersect they do so in a common face.

Definition 3.9. A triangulation of a topological space X consists of a simplicial
complex K and a homeomorphism h : |K| — X

Example 3.10. Figure 2 below illustrates a triangulation of a cylinder. The union
of two triangles with sides identified as in the left most figure forms a shape home-
omorphic to a rectangle with 2 opposite sides identified, which in turn is homeo-
morphic to a cylinder.
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Ficure 2. Example of Cylinder Triangulation

Example 3.11. Figure 3 below illustrates a triangulation of a torus. A torus is
homeomorphic to a union of two traingles with sides identified as in the left most
figure. This is homeomorphic to a rectangle with opposite sides identified by gluing
the opposite ends together, which is homeomorphic to a torus.

e o
L4 7 b
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b b

F1GURE 3. Example of Torus Triangulation

4. SOME GRAPH THEORY

Since simplicial complexes often involve vertices and edges, many ideas from
graph theory naturally overlap with our study of Euler’s characteristic. In this
section, we review key concepts with finite graphs such as paths, cycles, trees,
and maximal trees, which will later help us connect combinatorial structure to
topological invariants.

Definition 4.1. A graph is a set consisting of points which are referred to as
vertices, and edges, which are lines specific to two vertices in the set.

Definition 4.2. A walk is between a sequence of vertices where each consecutive
pair of vertices in the sequence is connected by an edge in the graph. A walk with
no repeating vertices is called a path. A walk that starts and ends with the same
vertex is called a cycle.

Definition 4.3. A graph is said to be connected if there exists a path between
any two vertices.

Definition 4.4. A connected component of a graph G is a set of vertices such
that a walk exists in G between any two vertices in the set, and it would not be
possible to include another vertex of G in the set without breaking this property.
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Definition 4.5. A tree is a connected graph with a single, unique path between
each pair of vertices.

Remark 4.6. A tree is often referred to as a connected graph containing no cycles.
Indeed, in a graph with cycles, any vertex in the cycle will have two paths towards
it: a path in one direction, and a path in the opposite direction of the loop. See
Figure 4 below.

Example 4.7. Figure 4 shows an example of a graph that is a tree and an example
of a graph that is not a tree.

The graph on the left of figure 4 is an example of a tree as it contains no loops,
meaning that there is a unique path between any two vertices.

On the other hand, the right graph contains a cycle, highlighted in yellow. For
any vertex in the loop, there are two paths to it. For example from vy to vs there
are two paths:

® VU1 — U3 — Vs
® V] — VU3 — Vg4 — Us

Wi Vi

Vy Vs Vy Vg
Tree Tree X

FIGURE 4. Tree vs. Not Tree

Definition 4.8. A maximal tree, T, of a connected graph G is a tree containing
all vertices of G such that an edge between two vertices in T also exists as an edge
between the two vertices in G.

Example 4.9. Figure 5 shows an example of 3 graphs and their maximal trees.
As previously shown, the graph in the middle of figure 5 is already a tree. Hence
its maximal tree is trivially itself.
On the other hand, the graphs on the left and right both contain loops, implying
that they are not trees. Notice that the maximal tree is not unique to a graph. For
the left graph, another maximal tree could contain the edges: (v1,v2), (va, v3), (v3,v4), (V4, V).
Similarly, another maximal tree for the right graph could contain the edges: (v1, v2), (v1, v3),
(037 ’U4)7 (U47 U5)'
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FIGURE 5. Examples of Maximal Tree

Theorem 4.10. For any connected graph G, there exists a mazimal tree.

Proof. We will prove this statement by mathematical induction on the number
of vertices n in a connected graph G.

Base Case: Let n = 1. A graph with a single vertex and no edges, is trivially
connected and itself forms a tree. Since it includes all the vertices of the graph and
contains no cycles, it is a maximal tree. Thus, the base case holds.

Inductive Hypothesis: Assume that every connected graph with at most m
vertices has a maximal tree.

Inductive Step: Let G be a connected graph with m + 1 vertices. We want to
show that G contains a maximal tree.

Since G is connected, there exists a path between any pair of vertices. Suppose
we remove a vertex v € G, and consider the subgraph G’ induced by the remaining
m vertices.

Though G’ might be a disconnected graph, it must be made of connected com-
ponents or connected subgraphs. Since every connected component has at most m
vertices, using the inductive hypothesis we can create a maximal tree for each of
these components. Furthermore, since G was originally connected, there must be
a vertex u; in each connected component ¢ that is connected to v. By adding an
edge that connects v to u; for all connected components i, the resulting graph, T
includes all vertices of G, and is connected since all points, if they are from different
connected components, can be accessed through a path containing v. We prove by
contradiction that there are no loops in T. Suppose the vertex v was part of the
loop. Since v is connected to each connected component by precisely one edge, that
means that the connected components were not disconnected, which is a contradic-
tion. Now suppose v is not part of loop, and instead another vertex u is part of
a loop. Since v is not in the loop, the loop must be between vertices of the same
connected component. Since a maximal tree was constructed for each connected
component, there cannot exist a loop between vertices of the same connected com-
ponent, which is a contradiction. Therefore T" does not contain any loops. Since
T is connected, does not contain any loops, and contains all vertices of G, T is a
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maximal tree. Therefore any connected graph G with m+1 vertices has a maximal
tree.
Thus, by the principle of mathematical induction, any connected graph G with
n € N vertices has a maximal tree.
|

Lemma 4.11. For any tree 7, if T has X wvertices, then 7 has X — 1 edges where
X eN.

Proof. We will do this by mathematical inducton on the number of vertices.
Let P(X) be the statement that for a tree 7 with X vertices, 7 has X — 1 edges,
where X € N.

Base Case: Let X = 1. Since an edge only exists between 2 vertices, there are
0 edges. Therefore, the base case, P(1) is true.

Inductive Hypothesis: Suppose that P(k) is true. Therefore, for any tree, 7
with k vertices, 7 has k — 1 edges where k£ € N.

Inductive Step: Let 7 be a tree with k 4 1 vertices. We want to show that 7
has k edges.

Since T is a tree, it is a finite, connected graph with no cycles. If we draw a
maximal path in 7, the longest possible path starting from some vertex, it must
end at a vertex with no other adjacent vertices. This endpoint cannot be the
starting vertex, as that would form a cycle, which contradicts the definition of a
tree.

Therefore, there must exist at least one vertex in 7 that is connected to only one
edge. Removing this vertex and its corresponding edge, we get a subgraph that
remains connected and contains no cycles. Therefore the subgraph is still a tree.
This is because removing a vertex cannot introduce a cycle since all other edges
and paths remain unchanged.

By the inductive hypothesis, there exist precisely & — 1 edges in this subgraph.
Since we removed one edge and one vertex from the original structure, this implies
that the original tree has k + 1 vertices and k edges. Therefore, P(k + 1) is true.

Since P(k) implies P(k + 1), and the base case is true, by the Principle of
Mathematical Induction, P(X) is true for any X € N. Therefore, for any tree 7, if
7 has X vertices, 7 has X — 1 edges. [

5. THE EULER CHARACTERISTIC

In this section, we will use ideas from earlier sections to define the Euler charac-
teristic and explore its fundamental properties. This section develops key lemmas
and theorems, demonstrating how Euler’s characteristic behaves for graphs and
surfaces, and establishing its invariance under homeomorphism.

Definition 5.1. Let L be a finite, simplical complex of dimension n. Then its
Euler characteristic, x(L), is defined by

X(L) =) (-1 e

i=0
where «; is the number of ¢ simplexes in L.
Remark 5.2. Notice that graphs are a type of simplical complex as it is a finite

collection of points and line segments (edges). Therefore the Euler characteristic of
a graph makes sense.
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Lemma 5.3. For any connected graph 7, x(7) < 1. Moreover, x(1) = 1 if and
only if T is a tree.

Proof. Let 7 be a graph with X vertices and Y edges. By definition, vertices have
dimension 0 while edges have dimension 1. Therefore, x(7) = (—=1)°X + (=1)'Y =
X-Y

Suppose 7 is a tree. By Lemma 4.11, Y = X — 1 Therefore, the Euler charac-
teristic is: x(7) = X — (X — 1) = 1. Therefore, if 7 is a tree, x(7) = 1.

Suppose T is not a tree. Therefore, there exists at least one loop in 7. From
Theorem 4.10, a maximal tree can be constructed for 7. Suppose we remove Z € N
edges to form a maximal tree, 7. Thus, 7" has Y — Z edges. Furthermore, a
maximal tree has the same number of vertices as 7. Thus, its Euler characteristic
can be obtained:

XM =X-(Y-2)=X-Y+Z
Since Z € N,
X(1) =X -Y <x(7)

Since 7’ is a tree, we have shown in the previous case that x(7/) = 1, therefore

x(t) <1

Therefore for any connected graph 7, x(7) < 1 and x(7) = 1 if and only if 7 is a
tree. (]

Definition 5.4. A combinatorial surface K is a simplicial complex such that
K is

connected

each of its edges is part of exactly two faces
it is 2-dimensional

each vertex is part of at least three triangles.

Example 5.5. Figure 6 shows examples of two structure that are combinatorial
surfaces and a structure that is not a combinatorial surface. The left structure is a
tetrahedron, and the middle shows two tetrahedrons glued together on a common
surface. Since both of these figures are simplicial complexes that fulfill the four
conditions, they are combinatorial surfaces.

The right structure shows two tetrahedrons that share only a common edge. This
common edge between the two tetrahedrons is shared by three surfaces, violating
the second condition and is thus not a combinatorial surface.
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N

X

FIGURE 6. Examples and Non-Example of Combinatorial Surfaces

Definition 5.6. For any combinatorial surface K we can fix a maximal tree for
the graph consisting of its vertices and edges. The dual graph is constructed by
placing a vertex at the center of each face of K. Then, an edge is added between
two vertices of adjacent faces if and only if the shared edge is not in the maximal
tree.

Example 5.7. Figure 7 shows the construction of the dual graph (black), for
a tetrahedron (blue) with the vertices v1,va,vs,vs. The maximal tree (yellow)
contains the edges (v1, v4), (v2,v4), (v3,v4). The vertices, vs, vg, v7, vg are the center
vertex for each face of the tetrahedron. More specifically:

vs is the center vertex for the face with edges (v, v2), (ve,v4), ( ).
vg is the center vertex for the face with edges (v, v2), (v1,v3), (v, v3).
vy is the center vertex for the face with edges (v4, v2), ( ), ( )
vg is the center vertex for the face with edges (v1,v3), (v4, v3), (v1,v4).

b

Since the edges (v1,v2), (v2,v3), (v1,v4) are not in the maximal tree, we can
connect vertices vg and vs, vg and vy, and vg and vg respectively to create the dual
graph.

FiGUrE 7. Dual Graph of a Tetrahedron
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Lemma 5.8. x(K) <2 for any combinatorial surface K.

Proof. Let K be combinatorial surface with X vertices, Y edges, and Z faces.

Consider a maximal tree 7 of K. Therefore, 7 has X vertices and Y’ edges where
Y’ <Y. By Lemma 5.3, x(1) =X =Y’ =1.

Consider the dual graph 7/ of 7.Suppose for contradiction that 7 is disconnected.
Then, there exist at least two adjacent faces in K such that no sequence of edges
in 7/ connects their corresponding dual vertices. Since 7 includes only those edges
of K that are not in 7, this implies that any path between these faces in K must
pass through an edge of the maximal tree 7.

Consequently, the absence of a connecting path in 7/ implies the existence of a
cycle in 7.

However, 7 was defined to be a tree, and trees by definition contain no cycles.
This is a contradiction, hence 7’ is connected.

Since there exists a vertex of 7/ for every face of K, 7" has Z vertices. Further-
more, there exists an edge of 7/ for all edges in K that are not in 7. Therefore, 7/
has Y — Y’ edges. Therefore, x(7') = Z — (Y — Y’) Observe that

X(K)=X-Y+Z=(X-Y)+(Z- Y -Y")=x(1)+x(7)
Since x(7) =1 and x(7') < 1,
X(K) <2
Therefore, for any combinatorial surface K, x(K) < 2. O

The following lemma gives a way of computing the Euler characteristic of a
union.

Lemma 5.9. Let K, L be simplical complexes interesecting in a common subcom-
plex. Then x(KUL) = x(K)+ x(L) — x(KUL).

Proof. Let K have Xg,Yk,Zr € N vertices, edges, and faces. Similarly, let L
have Xp,Yr,Z; € N vertices, edges and faces. Consider A = X N L and let
X4,Ya,Z 4 € N denote the number of vertices, edges, and faces in the intersecting
subcomplex.

Consider K U L. Since K and L share X4 vertices, there are Xx + Xy — X4
vertices in K U L. With similar reasoning, there are Yx + Y7 — Y4 edges and
Zx + Z1, — Z 4 faces in K U L. Therefore,

X(KUL) = (XK+XL —XA) — (YK+YL —YA)+(ZK+ZL —ZA)
By reorganizing the right hand side,

X(KUL):(XK—YK+ZK)+(XL—YL—ZL)—(XA—YA—I—ZA)
By definition of Euler characteristic,

X(KU L) =x(K) +x(L) — x(4)
Since A=KnNL,
X(KUL) =x(K)+x(L) =x(KNL)
O

Definition 5.10. A barycentric subdivision of a combinatorial surface is a
refinement of its triangulation obtained by the following process:

e Place a new vertex at the center of each face ,
e Place a new vertex at the midpoint of each edge,
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e Then, for each triangle, connect:
— the vertex at the face center to the vertex at the midpoints of the
original three edges
— the vertex at the face center to the vertices of the original three edges
— each vertex at an edge midpoint to vertices that were part of the
original face.
This process ultimately divides each original triangle into six smaller triangles,
resulting in a finer triangulation of the original surface.

Ficure 8. Example of Barycentric Subdivision

Lemma 5.11. The Euler characteristic of a combinatorial surface is left unchanged
by barycentric subdivision.

Proof. Consider a combinatorial surface with at most n faces. Suppose it has X
vertices, Y edges, and Z faces. Let K’ be the barycentric subdivision of this surface.
By definition of barycentric subdivision, in addition to the vertices in K, there also
exists a vertex in K’ for each edge and face in K. Therefore, there are X +Y + Z
vertices in K’. Since each edge is split into 2 edges and the center vertex in each
face is connected to 6 different edges, there are 2Y +67 edges in K'. Lastly, since 6
new faces are created for every face, there are 67 faces in K’. Therefore, the Euler
characteristic of K’ is

XE)=(X+Y +2)—(2Y +62)+6Z=X Y + Z
Since x(K) =X - Y + Z,
X(K') = x(K)
Therefore the Euler characteristic does not change with barycentric subdivision. [

Theorem 5.12. If two triangulable topological spaces, X,Y are homeomorphic to
each other, then they share the same Euler characteristic.

Proof. Let X and Y be triangulable topological spaces that are homeomorphic to
each other. Then there exist homeomorphisms

fi|Kg] X and g:|Ky| =Y,
where K, and K, are combinatorial surfaces. Since X and Y are homeomorphic,

their triangulations K, and K, are also homeomorphic as topological spaces. Using
the following definition and results from piecewise-linear (PL) topology,
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e Definition: Two simplicial complexes, K and L, are PL. homeomorphic
if there exists a subdivion K’ of K and a subdivion L’ of L such that K’
and L’ are homeomorphic to each other.

e Theorem: Any homeomorphism between finite simplicial complexes can
be approximated by a PL homeomorphism. (See [6], and [7] Section 1,
Theorem B)

e Theorem: Two finite simplicial complexes related by a PL homeomor-
phism have a common subdivision (See [4], Theorem 1.3).

we can derive that there exist integers m,n > 0 such that the structure after m
barycentric subdivisions of K, denoted sd™ K, and n barycentric subdivisions of
K, denoted sd"™ K, are simplicially isomorphic:

¢ sd™ K, = sd” K,.

Since simplicially isomorphic structure share the same number of vertices, edges,
and faces, they share the same Euler characteristic. Additionally, by Lemma 5.11,
the Euler characteristic is invariant under barycentric subdivision. Therefore, we
get the following result:

X(Kz) = x (sd™ K,;) = x (sd" K,)) = x (k).

Thus, the Euler characteristics of K, and K, and therefore of X and Y, are
equal. O

Remark 5.13. Additionally, further applications of the Euler characteristic in-
cludes the Classification Theorem, which includes the idea that any orientable sur-
face is homeomorphic to a genus-g surface (See [3], Section 7.1).
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