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Abstract. This paper serves as an introduction to the theory of modular

forms and Galois representations. We begin by defining the Galois represen-
tation associated with an elliptic curve. Next, we describe modular curves

as moduli spaces of elliptic curves equipped with enhanced torsion data. We

then outline the theory of Hecke operators and their actions on various objects,
including the modular curves and the space of cusp forms. Using these pre-

liminaries, we construct the Galois representation associated with a newform

in the weight-2 case and state the Modularity Theorem. Finally, we apply
the Eichler—Shimura relation to connect this formulation of the Modularity

Theorem with another version, which predicts the relationship between the
number of points on elliptic curves modulo p and the Fourier coefficients of

their associated newforms.
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1. Introduction

The Modularity Theorem is a theorem roughly of the following form: every el-
liptic curve is associated with a modular form. In this paper, we will introduce
two formulations of the Modularity Theorem. The first is through Galois repre-
sentations, i.e., representations of the absolute Galois group GQ = Gal(Q/Q). For
every prime l and every elliptic curve E over Q, there is an associated Galois rep-
resentation ρE,l. For a newform f (defined in subsection 4.3), we may associate an
abelian variety Af over Q, and through this geometric object we may also define
a representation, denoted ρf,λ. The Modularity Theorem states that every ρE,l is
equivalent to some ρf,λ for some newform f . The central achievement of Andrew
Wiles’ famous 1995 paper [1] proving Fermat’s Last Theorem was to establish this
formulation of the Modularity Theorem in the case of semistable elliptic curves.1

The second formulation of the Modularity Theorem is as follows. In many cases
(see Definition 6.1), one can reduce an elliptic curve E over Q at a prime p ∈ Z.
Let ap(E) = p+1−|Ẽ(Fp)|, where Ẽ is the reduction of E at p and Ẽ(Fp) denotes
its Fp-points. For a modular form f , let f(τ) =

∑∞
n=0 an(f)q

n be its Fourier
expansion. The second version of the Modularity Theorem states that, for each
elliptic curve E over Q, there is a newform f such that ap(E) = ap(f). Thus, the
Fourier coefficients of f encode the number of points of the various reductions of
E.

The main objective of this paper is to introduce these two formulations of the
Modularity Theorem and show that they are equivalent. In doing so, we will touch
on Galois representations in general, modular forms, modular curves, Hecke opera-
tors, Jacobians, and related topics. In section 2, we review some basic facts about
elliptic curves, define the Galois representation associated with elliptic curves, and
compute the characteristic polynomial of the image of crucial elements Frobp ∈ GQ.
This characteristic polynomial will serve as the link between the two versions of the
Modularity Theorem. In section 3 and section 4, we outline parts of the classical
theory of modular curves, modular forms, and Hecke operators. We will repeatedly
emphasize the perspective of the modular curve as a moduli space (i.e., a space of
solutions to classification problems) of elliptic curves. In section 5, we define the
Galois representation associated with a newform and state the first version of the
Modularity Theorem. Finally, section 6 introduces reductions of algebraic curves
(in particular, modular curves), sketches the proof of the Eichler—Shimura relation,
and shows the equivalence of the two formulations of the Modularity Theorem.

Readers for this paper should be familiar with basic algebra, complex anal-
ysis, and topology. Familiarity with Riemann surface, basic algebraic geometry
(Hartshorne 1.1-1.6 and 2.2), and elliptic curves will be very helpful.

This paper is intended as a short introduction, so we will sketch many results
without going into too much detail. We want to give readers a glimpse into these
beautiful theories without requiring them to work through excessive technicalities.
References are included for those who wish to study this material in greater depth.

1Roughly speaking, the proof of Fermat’s Last Theorem reduces to showing the nonexistence
of certain elliptic curves. This nonexistence follows from properties of modular forms, together

with the connections established by the Modularity Theorem. See [2] for a nice exposition.
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2. Elliptic Curves and Galois Representations

2.1. Basic facts of elliptic curves. We begin by recording the basic facts about
elliptic curves over a field. These facts will be used freely in the rest of the paper.
For details, see [3].

(1) An elliptic curve over a field k is a pair (E, 0E), where E is a nonsingular
curve of genus one over k and 0E ∈ E. For the rest of this subsection,
assume that Char(k) ̸= 2, 3. Every elliptic curve is isomorphic to the plane
curve in P2

k given by a Weierstrass equation

E : y2 = 4x3 − g2x− g3,
where the isomorphism sends 0E to the point of infinity [0 : 1 : 0]. Now let

∆ = g32 − 27g23 ∈ k, j = 1728g32/∆ ∈ k.
The quantity ∆ (resp. j) is called the discriminant (resp. invariant) of
the Weierstrass equation, respectively.

(2) Any two Weierstrass equations for isomorphic elliptic curves E are related
by an admissible change of variables, meaning one of the form

x = u2x′, y = u3y′ (u ∈ k∗).
We say that two Weierstrass equations are equivalent if they are related
by an admissible change of variables. Under this change of variables, we
have

∆ = u12∆′, j = j′.

In particular, the invariant depends only on the elliptic curve E and not on
the choice of Weierstrass equation.

(3) For any extension K/k, let E(K) denote the set of K-points of E. If E is
given by a Weierstrass equation E(x, y) ∈ k(x, y), then E(K) = {(x, y) ∈
K : E(x, y) = 0} ∪ {0E}.

(4) The k-points of an elliptic curve have a group law defined by the property
that if P,Q, and R are collinear, then P + Q + R = 0. If we denote the
coordinate P = (xP , yP ) ∈ A2

k
, then

(xP+Q, yP+Q) = (r(xP , xQ, yP , yQ), s(xP , xQ, yP , yQ))

for some r, s ∈ k(xP , xQ, yP , yQ, g2, g3). For K ⊂ k, E(K) is a subgroup of

E = E(k).
(5) Let [N ] : E → E be the multiplication by N map, and let E[N ] = ker([N ])

be the N-torsion points. Then

E[N ] ∼=
∏

E[pep ] where N =
∏

pep .

If p ̸= Char(k), then E[pe] ∼= (Z/peZ)2. If p = Char(k), then E[pe] ∼= Z/peZ
for all e ≥ 1, or E[pe] = 0 for all e ≥ 1. If p = Char(k), and E[p] ∼= Z/pZ,
then E is called ordinary; if E[p] = 0, then E is supersingular.

(6) Let X be an algebraic curve. The divisor group is the group of finite integer
combinations of points of X:

Div(X) =
⊕

x a closed point of X

Z.

For a regular function f on X, let div(f) be the divisor whose value at x
is the order of vanishing of f at x. A divisor of the form div(f) is called a
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principal divisor. The subgroup of principal divisors of X is denoted as
Divl(X).

(7) The degree of a divisor D = (nx) ∈ Div(X) is

degD =
∑
x∈X

nx deg x,

where deg x is the degree of its residue field2. Principal divisors on algebraic
curves have degree 0. Let Div0(X) ⊂ Div(X) be the subgroup of degree-
zero divisors. Define the Picard group of C as

Pic0(X) = Div0(X)/Divl(X).

(8) We denote the point x in the Picard group as [x]. If h : X → Y is a
morphism of algebraic curves, then it induces forward backward maps on
Picard groups:

h∗ : Pic0(X)→ Pic0(Y ) h∗

(∑
x∈X

nx[x]

)
=
∑
x∈X

nx[h(x)],

h∗ : Pic0(Y )→ Pic0(X) h∗

∑
y∈Y

ny[y]

 =
∑
y∈Y

ny
∑

x∈h−1(y)

eh(x)[x],

where eh(x) is the degree of ramification at x. These induced maps are
functorial, namely, if h : X → Y and g : Y → Z are morphisms, then
(g ◦ h)∗ = g∗ ◦ h∗, and (g ◦ h)∗ = g∗ ◦ h∗. Moreover, they satisfy

h∗ ◦ h∗ = deg h,

where deg h denotes multiplication by deg h.
(9) Let E be an elliptic curve. Then the map

Div(E)→ E :
∑

nP (P )→
∑

nPP

(where (P ) is the point in Div(E) corresponding to P ∈ E) induces a group
isomorphism

Pic0(E)
∼−→ E.

In particular, this gives a characterization of principal divisors:∑
nP (P ) ∈ Divl(E) ⇐⇒

∑
nP = 0 and

∑
nPP = 0E .

(10) Let µN denote the group of N th roots of unity in k. If Char(k) = 0, then
there is a bilinear, alternating, and non-degenerate pairing eN : E[N ] ×
E[N ]→ µN that also satisfies the following properties:
• For any σ ∈ Gal(k/k), eN (P,Q)σ = eN (Pσ, Qσ).
• eN is compatible with isomorphism, i.e., if φ : E → E′ is an isomor-

phism of elliptic curves taking P (resp. Q) to P ′ (resp. Q′), then
eN (P,Q) = eN (P ′, Q′).

• If P,Q forms an ordered basis for E[N ], then eN (P,Q) is a primitive
Nth root of unity.

This is called the Weil pairing.

2If X is an algebraic variety, then the residue field of x ∈ X is defined to be k(x) = OX,x/mX,x,

where OX,x is the local ring at x and mX,x is its maximal ideal.
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2.2. Galois representation. One of the fundamental objects of study for number
theorists is finite extensions of Q, and in particular, the Galois extensions. This
naturally leads to investigating the structure of their Galois groups, and hence, the
absolute Galois group

GQ := Aut(Q/Q).

Understanding GQ amounts to understanding its representations. This subsection
defines l-adic Galois representations and discusses the one-dimensional case.

Because the group structure of the infinite group GQ is extremely complicated,
it is desirable to impose a continuity condition on the representations of GQ, and
to this end we first need to define a topology on GQ. We would like this topology
to “restrict to the discrete topology” when we project to the quotient Gal(K/Q) =
GQ/GK for any finite extension K/Q. This motivates:

Definition 2.1. The Krull topology on GQ is the topology on GQ generated by

Uσ(K) := σ · ker(GQ → Gal(K/Q))

for K a number field Galois over Q and σ ∈ GQ, where GQ → Gal(K/Q) is restric-

tion from Q to K. Let U(K) = U1(K).

Definition 2.2. Let l be a prime of Z. An l-adic Galois representation is a
continuous group homomorphism

ρ : GQ → GLn(L),

where L is a finite extension of Ql.

Before proceeding, we shall explain why we consider l-adic representations in-
stead of complex representations. Consider a continuous representation ρ : GQ →
GLn(C). Choose an open neighborhood W of the identity in GLn(C) that contains
no non-trivial subgroups. Since ρ−1(W ) is a neighborhood of 1 in GQ, it must
contain some U(K) for some number field K. Since U(K) is a subgroup, so is
ρ(U(K)) ⊂ W , and by the choice of W , ρ(U(K)) = 1. Thus, ρ factors as a rep-
resentation Gal(K/Q)→ GLn(C), which means that ρ fails to capture the infinite
structure of GQ.

On the other hand, we now construct a 1-dimensional l-adic Galois representation
that does keep track of some infinite structure of GQ. For σ ∈ GQ, let χl(σ, n) be
defined by

µσln = µ
χl(σ,n)
ln χl(σ, n) ∈ Z.

The identification Gal(Q(µln)/Q) ∼= (Z/lnZ)∗ takes σ|Q(µln ) to χl(σ, n). Further-
more, under this identification, the restriction Gal(Q(µln)/Q)→ Gal(Q(µln−1)/Q)
is compatible with the natural restriction (Z/lnZ)∗ → (Z/ln−1Z)∗. Hence, there is
a map

χl : GQ → lim←−
n

{(Z/lnZ)∗} = Z∗
l ⊂ Q∗

l
∼= GL1(Ql) : σ 7→ (χl(σ, 1), χl(σ, 2), . . .).

This is clearly a group homomorphism. To check continuity, it suffices to how that
χ−1
l (1 + lnZl) is open in GQ. To see this, observe that

σ ∈ χ−1
l (1 + lnZl) ⇐⇒ χl(σ,m) = 1for each m ≤ n

⇐⇒ σ|Q(µln ) = 1

⇐⇒ σ ∈ U(Q(µln)).
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Definition 2.3. The l-adic Galois representation χl : GQ → GL1(Ql) constructed
above is called the l-adic cyclotomic character.

Example 2.4. Recall the following notions from algebraic number theory. Let
p ⊂ Z be a prime that lies over a prime p ∈ Z. Then the decomposition group is
defined to be

Dp := {σ ∈ GQ : pσ = p}.
Now, reduction mod p defines a surjective homomorphism

Dp → Gal(Fp/Fp),

whose kernel is

Ip := {σ ∈ GQ : xσ ≡ x mod p for all x ∈ GQ}.

The Frobenius automorphism in Fp/Fp which takes x ∈ Fp to xp pulls back to an
element Frobp ∈ Dp/Ip, which satisfies

xFrobp ≡ xp mod p x ∈ Q.

The notation Frobp may be used to denote any element in the coset Dp/Ip. We now
claim that χl(Frobp) = p for p ̸= l. Indeed, Q(µln)/Q is unramified over p and the
Galois group is abelian, hence Frobp|Q(µln ) is uniquely determined. It is precisely
the map µln 7→ µpln . Thus, χl(Frobp, n) = p for all n, so χl(Frobp) = p ∈ GL1(Ql).

Definition 2.5. Let ρ be a Galois representation and let p be a prime. Then ρ is
unramified at p if Ip ⊂ ker ρ for any nonzero prime p ⊂ Z lying over p.

For example, χl is unramified at p for p ̸= l.
For ρ unramified, ρ(Frobp) is well-defined for each p and changing p conjugates

it, and so the conjugacy class of ρ(Frobp) only depends on p.

2.3. Tate module. In this subsection we define the Tate module and construct
the Galois representation associated to an elliptic curve. Each Galois action is sent
to an automorphism of the Tate module.

Definition 2.6. Let E be an elliptic curve over Q. Consider the inverse system

E[l]
·l←− E[l2]

·l←− E[l3]← · · ·

The Tate module of E is defined to be the inverse limit

Tal(E) := lim←−
n

{E[ln]}.

By choosing a basis for all n, compatibly with multiplication by l, we have

Tal(E) ∼= Z2
l .

The Galois group GQ acts on the points of an elliptic curve E over Q coordinate-

wise: if P = (xP , yP ) ∈ Q(E), then Pσ = (xσP , y
σ
P ). Since (xP+Q, yP+Q) =

(r1(xP , yP , xQ, yQ), r2(xP , yP , xQ, yQ)), where ri are rational functions over Q, the
Galois action commutes with ri, hence (P +Q)σ = Pσ +Qσ. In other words, any
σ ∈ GQ gives a group homomorphism on the points of E. If we take the inverse
limit of the following diagram
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E[ln+1] E[ln]

E[ln+1] E[ln]

·l

σ σ

·l

we obtain an automorphism σ of Tal(E). We thus get a group homomorphism

ρE,l : GQ → Aut(Tal(E)) ∼= GL2(Zl) ⊂ GL2(Ql).

This is the desired representation. This is continuous. Indeed, a distinguished base
near id ∈ GL2(Ql) is the set of (id +M2×2(l

nZl)) ∩GL2(Ql), and

ρ−1
E,l ((id +M2×2(l

nZl)) ∩GL2(Ql)) = {σ ∈ GQ : σ|E[ln] = 1}
= {σ ∈ GQ : σ|Q(E[ln]) = 1},

where Q(E[ln]) is the finite extension over Q obtained by adjoining the coordinates
of all E[ln]-torsion points. This is open in the Krull topology, hence proving the
continuity.

2.4. Reduction of elliptic curves. In this subsection, we first state some pre-
liminaries on reductions of elliptic curves (for details, see [4] or [3]), then record
some important facts about the Frobenius morphism.

For elliptic curves in general characteristic (particularly 2 or 3), one has to
consider a more general form of Weierstrass equation, and express the discriminant
and the invariant using the general form. We will skip this detail and refer the
interested readers to Section 8.1 of [4].

Definition 2.7. For an elliptic curve E over Q, let

vp(E) = min{vp(∆(E′)) : E′ integer coefficient and equivalent to E}.
Considering possible admissible changes of variables, if vp(∆) < 12, vp(E) = vp(∆).

Define the global minimal discriminant of E to be

∆min(E) =
∏
p

pvp(E).

In fact, the p-adic valuation of the discriminant can be minimized to vp(E) simul-
taneously for all p by an admissible change of variables. Thus, there is a global
minimal Weierstrass equation. Assume E is global minimal. Define a Weier-

strass equation Ẽ over Fp by reducing the coefficients of E mod p.

Definition 2.8. An elliptic curve E has reduction at p which is

(1) good (nonsingular, stable) if Ẽ is again an elliptic curve. Equivalently,
p ∤ ∆min(E). Moreover, the reduction is

(a) ordinary if Ẽ[p] ∼= Z/pZ.
(b) supersingular if Ẽ[p] = 0.

(2) bad (singular) if Ẽ is not an elliptic curve. Moreover, putting Ẽ in the
form (y −m1x)(y −m2x) = x3, the reduction is
(a) multiplicative (semistable) if the singular point is a node (m1 ̸= m2);

(i) split if m1,m2 ∈ Fp.
(ii) non-split if m1,m2 ̸∈ Fp.

(b) additive (unstable) if the singular point is a cusp (m1 = m2).
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These reduction types are all independent of the choice of global minimal Weier-
strass equation.

The following notion tracks the primes where an elliptic curve has bad reduction.
This will be used in section 5 and section 6.

Definition 2.9. Let E be an elliptic curve over Q. Then define the algebraic
conductor of E to be NE =

∏
p p

fp , where

fp =


0 if E has good reduction at p,

1 if E has multiplicative reduction at p,

2 if E has additive reduction at p and p ̸∈ {2, 3},
2 + δp if E has additive reduction at p and p ∈ {2, 3},

for certain δ2 ≤ 6 and δ3 ≤ 3, which measures “wild ramification” in the action of
the inertia group on Tal(E) (see Appendix C in [3]). In particular, p | ∆min(E) ⇐⇒
p | NE .

In the positive characteristic setting, there is an important map, called the Frobe-
nius endomorphism. We state preliminary results on the Frobenius map, which will
be used freely later in the paper.

(1) Recall the Frobenius endomorphism

σp : k → k : x 7→ xp

for any field k of characteristic p, which is an automorphism for k = Fp. It
induces for any projective curve C ⊂ Pn over Fp a morphism

σp : C → Cσp : [x0 : · · · : xn] 7→ [xp0 : · · · : xpn],

where Cσp is defined by applying σp to the coefficients of the equations
defining C.

(2) We say that a morphism of curves is separable (resp. inseparable, purely in-
separable) if the induced map of function fields is separable (resp. insepara-
ble, purely inseparable). The Frobenius morphism σp is purely inseparable
with degree p [3, p. 25].

(3) Since any field extension can be factored as a separable extension and a
purely inseparable extension, any morphism h : C → C ′ of curves can be
factored as

h : C
hins−−→ Csep

hsep−−→ C ′.

Any purely inseparable extension is obtained by successively adjoining p-th
roots of multiplicity p. Geometrically, this means (for curves) that hins = σep
for some e ≥ 0 up to isomorphism. Thus, h = hsep ◦ σep. For all but

finitely many points y ∈ C ′, |h−1(y)| = degsep(h). In the special case where
φ : C → C ′ is an isogeny, all fibers have the same cardinality (since φ is
a group homomorphism), so |h−1(y)| = degsep(h) for all y. In particular,
| kerφ| = degsep(h).

(4) The separable (resp. inseparable) degree of a morphism h : C → C ′ is
defined to be the degree of hsep (resp. hins). These degrees are multi-
plicative: if h′ : C ′ → C ′′ is another morphism, then degsep(h

′ ◦ h) =
degsep(h

′) · degsep(h) and similarly for inseparable degrees.
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(5) The induced forward and backward maps of σp on the Picard group are
easily computed to be

σp,∗ : (P ) 7→ (σp(P )), σ∗
p : (P ) 7→ p(σ−1

p (P )).

For h : C → C ′, the following equalities hold:
• h ◦ σp,C = σp,C′ ◦ h.
• h∗ ◦ σ∗

p,C = σ∗
p,C′ ◦ h∗.

2.5. The characteristic polynomial. In this subsection, we will show that the
characteristic polynomial of ρE,l(Frobp) is related to the solution counts of E mod-
ulo p. The characteristic polynomial is especially important, since by the Cheb-
otarev density theorem, the Frobenius elements (possibly excluding those over
finitely many integer primes for which ρE,l is ramified) are dense in GQ. Since
ρE,l is continuous, these ρE,l(Frobp) determine the representation ρE,l completely.

Definition 2.10. Let E be an elliptic curve over Q with good reduction at p and

Ẽ be its reduction mod p. Then define

ap(E) := p+ 1− |Ẽ(Fp)|.

This definition captures how much the number of Fp-points of Ẽ differs from
the estimated number, which is p+ 1. (Intuitively, for p not equal to 2 and 3, the
Weierstrass equation can be written as y2 = f(x) for some cubic polynomial f . For
roughly half the x’s in Fp, f(x) is a quadratic residue, yielding two solutions for y,
while for roughly half the x’s, it is a non-quadratic residue, yielding no solutions
for y. Adding in the point at infinity, there should be about p+ 1 solutions in Fp.)

Lemma 2.11. With the same setup as in the above definition,

ap(E) = σp,∗ + σ∗
p on Pic0(Ẽ).

Proof. Note that

Ẽ(Fp) = {P ∈ Ẽ : Pσp = P} = ker(σp − 1).

And observe that σp − 1 is separable: indeed, if not, then σp − 1 = f ◦ σp for some
morphism f , so that (1 − f) ◦ σp = 1, showing that σp is an isomorphism; this is
not the case, contradiction. Thus,

|Ẽ(Fp)| = | ker(σp − 1)| = deg(σp − 1) = (σp − 1)∗ ◦ (σp − 1)∗ = p+ 1− σp,∗ − σ∗
p ,

from which the result follows. □

Theorem 2.12. Let l be a prime and E an elliptic curve over Q with conductor
N . The Galois representation ρE,l is unramified at every prime p ∤ lN . For any

such p, let p ⊂ Z be any maximal ideal over p. Then the characteristic polynomial
of ρE,l(Frobp) is

x2 − ap(E)x+ p = 0.

Moreover, ρE,l is irreducible.

Proof. Observe that the following diagram commutes:

Dp Aut(E[ln])

GFp Aut(Ẽ[ln])

ρn

πp πn
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From Chapter VII Proposition 3.1 of [3], one knows that, if E has good reduction

at p and p ̸= l (i.e., if p ∤ lN), E[ln] → Ẽ[ln] is injective.3 Using the known
structure of the torsion subgroups of elliptic curves and comparing cardinalities, it

follows that E[ln] → Ẽ[ln] is an isomorphism. Hence, πn is an isomorphism. By
definition, kerπp = Ip, so Ip = kerπp ⊂ kerπn ◦ ρn = ker ρn. This proves that the
representation is unramified at such primes.

Consider the two diagrams below:

E[ln] E[ln] E[ln] E[ln]

Ẽ[ln] Ẽ[ln] Ẽ[ln] Ẽ[ln]

ap(E) Frobp+pFrob
−1
p

σp+pσ
−1
p σp+pσ

−1
p

The second diagram commutes by facts from the last subsection; the first diagram
commutes by the lemma and the identification of E with Pic0(E). Since the vertical
maps are isomorphism, this means ap(E) = Frobp + pFrob−1

p . Thus, Frob2p −
ap(E)Frobp + p = 0.

To show that this is indeed the characteristic polynomial, it suffices to show that
det ρE,l(Frobp) = p. To see this, pick an ordered basis P,Q of E[ln], and pick a
primitive root of unity µln = eN (P,Q). Then

µσln = eN (P,Q)σ = eN (Pσ, Qσ) = µ
det ρn(σ)
ln

where eN is the Weil pairing. But by definition of χl, µ
σ
ln = µ

χl(σ,n)
ln . Thus,

det ρn(σ) = χl(σ, n) in Z/lnZ. Taking inverse limits, this shows that det ρE,l = χl.
But χl(Frobp) = p, so det ρE,l(Frobp) = p, as desired.

For the last statement, Theorem IV.2.1(a) of [5] proves that ρE,l is irreducible if E
has no complex multiplication overQ. But E/Q cannot have complex multiplication
over Q (cf. discussions in [6]). □

We will come back to use this characteristic polynomial when we show that the
two formulations of the Modularity Theorem discussed in this paper are equivalent.

3. Modular Curves as Moduli Spaces of Elliptic Curves

Whenever we are given a mathematical object, it is natural to ask: can we
classify these objects up to isomorphism? In algebraic geometry, such classification
problems often have a set of solutions that itself carries a geometric structure, such
as a Riemann surface, a variety, or a scheme. Roughly speaking, these “parameter
spaces” are called moduli spaces. In this section, we introduce modular curves as
moduli spaces of elliptic curves equipped with additional data, and modular forms
as differentials on modular curves. We begin by examining the relationship between
complex tori and complex elliptic curves. Next, we define three important families
of modular curves: X0(N), X1(N), and X(N). We then briefly discuss modular
forms, and finally, we present a model of these modular curves over Q.

3In [3], E is assumed to be an elliptic curve over a local field. The Proposition applies to our
case because there is an injection E[m] → E(Qp)[m], which allows us to pass to the local field

case.
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3.1. Complex tori and complex elliptic curves. In this subsection, we prove
some elementary properties of complex tori, and we will show that complex tori are
the same as complex elliptic curves.

Definition 3.1. A complex torus is the space C/Λ, for a lattice Λ in C.

A complex torus has a natural Riemann surface structure induced from that of
C. It is also an abelian group under addition.

Definition 3.2. An isogeny between complex tori is a non-constant holomorphic
group homomorphism between complex tori φ : C/Λ1 → C/Λ2. An isomorphism
of complex tori is a biholomorphic isogeny.

We now characterize different maps of complex tori.

Proposition 3.3. Let φ : C/Λ→ C/Λ′ be a non-constant map of complex tori.

(1) φ is holomorphic if and only if φ is of the form φ(z + Λ) = mz + b + Λ′,
where m, b ∈ C and mΛ ⊂ Λ′.

(2) φ is an isogeny if and only if φ is of the form φ(z + Λ) = mz + Λ′, where
m ∈ C and mΛ ⊂ Λ′.

(3) φ is an isomorphism of complex tori if and only if φ is of the form φ(z +
Λ) = mz + Λ′, where m ∈ C and mΛ = Λ′.

Proof. All the “if” directions are clear. We will only prove (1) since the rest easily
follows. Suppose φ is holomorphic. Since C is the universal cover for both complex
tori, φ can be lifted to a map φ̃ : C→ C such that the following diagram commutes:

C C

C/Λ C/Λ′

φ̃

π π′

φ

Now for each λ ∈ Λ, let fλ(z) := φ̃(z + λ) − φ̃(z). Then π′ ◦ fλ = φ(z + λ +
Λ) − φ(z + Λ) = 0 + Λ′, so im(fλ) ⊆ Λ′. But fλ is continuous and Λ′ is discrete,
forcing fλ to be a constant. Differentiating fλ, we obtain φ̃′(z + λ) = φ̃′(z), so φ̃′

is Λ-periodic. But this implies that φ̃′ is bounded, hence constant by Liouville’s
Theorem. Thus, φ̃ is linear, and φ is of the desired form. This proves (1). □

Let H denote the complex upper half-plane {z ∈ C : Im(z) > 0}. The group
SL2(Z) acts on H by fractional linear transformations:

γ(z) =
az + b

cz + d
, γ =

(
a b
c d

)
∈ SL2(Z), z ∈ H.

Proposition 3.4.

(1) Let Λ = Zω1⊕Zω2 and Λ′ = Zω′
1⊕Zω′

2 such that ω1/ω2, ω
′
1/ω

′
2 ∈ H. Then

Λ = Λ′ ⇐⇒
(
ω′
1

ω′
2

)
= γ

(
ω1

ω2

)
for some γ ∈ SL2(Z).

(2) Let Λτ = Zτ ⊕ Z for τ ∈ H. Then every complex torus is isomorphic to
some C/Λτ .

(3) C/Λτ1 is isomorphic to C/Λτ2 if and only if τ1 = γτ2 for some γ ∈ SL2(Z).

Proof. Simple exercise. □
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Now we state the relationship between complex tori and elliptic curves.

Definition 3.5. The Weierstrass ℘-function is

℘(z) =
1

z2
+
∑

ω∈Λ−{0}

( 1

(z − ω)2
− 1

ω2

)
, z ∈ C− Λ.

Definition 3.6. Let Λ ⊂ C be a lattice. The weight-k Eisenstein series is

Gk(Λ) =
∑

ω∈Λ−{0}

1

ωk
, k > 2 even.

Also define

g2(Λ) = 60G4(Λ), g3(Λ) = 140G6(Λ).

Theorem 3.7. Let Λ ⊂ C be a lattice, and g2 = g2(Λ), g3 = g3(Λ).

(1) The functions ℘ and its derivative ℘′ satisfy

(℘′(z))2 = 4℘(z)3 − g2(Λ)℘(z)− g3(Λ).

(2) The polynomial 4x3 − g2(Λ)− g3(Λ) has distinct roots, hence the discrimi-
nant ∆(Λ) = g2(Λ)

3 − 27g3(Λ)
2 is non-zero.

(3) The curve E : y2 = 4x3 − g2(Λ)x− g3(Λ) is an elliptic curve, and the map

ϕ : C/Λ→ E(C) ⊂ P2(C) : z 7→ [℘(z) : ℘′(z) : 1]

is an isomorphism of complex Lie groups (i.e., a biholomorphic group iso-
morphism).

(4) Every pair of g2, g3 ∈ C satisfying g32 − 27g23 ̸= 0 can be expressed as
g2 = g2(Λ), g3 = g3(Λ) for some lattice Λ ⊂ C.

(5) Let E1, E2 be the complex elliptic curves associated to lattices Λ1,Λ2 re-
spectively. Then there is a functorial bijection

{isogenies ϕ : C/Λ1 → C/Λ2} → {isogenies ϕ : E1 → E2}.

defining an equivalence between the categories of tori and elliptic curves.

Proof. See Chapter VI of [3] or Chapter 2 of [4]. □

3.2. X0(N), X1(N), and X(N). By Proposition 3.4, we see that each complex
torus can be represented by C/Λτ where τ ∈ H, and such a representation is unique
up to action by SL2(Z). Thus, the quotient space SL2(Z)\H is a moduli space of
complex tori, i.e., in bijection with the set of complex tori up to isomorphism. By
Theorem 3.7, there is a bijective correspondence between complex tori and elliptic
curves. Thus, the space SL2(Z)\H also classifies complex elliptic curves. The space
SL2(Z)\H is an example of a modular curve over C. The group SL2(Z) is generated
by

S =

(
0 −1
1 0

)
, T =

(
1 1
0 1

)
,

and the space SL2(Z)\H can be visually represented by:
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Figure 1. Fundamental Domain of SL2(Z)\H [7].

The (open) shaded region is called a fundamental domain for SL2(Z)\H. The
arrows on the boundary lines indicate that these lines are identified by the given
transformations.

By modifying the classification problem, we can obtain other spaces of solutions.
For example, we could keep track of not just the isomorphism class of an elliptic
curve but also additional torsion data.

Definition 3.8. Let

S0(N) = {isomorphism classes of pairs (E,C), where E is a complex

elliptic curve and C is a cyclic subgroup of order N},

S1(N) = {isomorphism classes of pairs (E,Q), where E is a complex

elliptic curve and Q is a point of order N},

S(N) = {isomorphism classes of pairs (E, (P,Q)), where E is a complex

elliptic curve and (P,Q) is a pair of points that generate E[N ]}.

As a special case, the space of elliptic curves over C can be viewed as S1(1)(C).
As in this special case, there are subgroups Γ0(N), Γ1(N), and Γ(N) that describe
algebraically the parameter space for these elliptic curves with additional data.
These groups are defined by

Γ(N) =

{
γ ∈ SL2(Z) : γ ≡

(
1 0
0 1

)
mod N

}
,

Γ1(N) =

{
γ ∈ SL2(Z) : γ ≡

(
1 ∗
0 1

)
mod N

}
,

Γ0(N) =

{
γ ∈ SL2(Z) : γ ≡

(
∗ ∗
0 ∗

)
mod N

}
.

Note that Γ(N) ⊂ Γ1(N) ⊂ Γ0(N) ⊂ SL2(Z), and Γ(1) = Γ1(1) = Γ0(1) = SL2(Z).
Now also define

Y (N) = Γ(N)\H, Y1(N) = Γ1(N)\H, Y0(N) = Γ0(N)\H.
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Theorem 3.9. Let N be a positive integer. For τ ∈ H, denote by Eτ the complex
elliptic curve corresponding to the complex torus C/Λτ . Then

(1) S0(N) = {[Eτ , ⟨1/N + Λτ ⟩] : τ ∈ H}, and there is a bijection

ψ0 : S0(N)
∼−→ Y0(N) : [C/Λτ , ⟨1/N + Λτ ⟩] 7→ Γ0(N)τ.

(2) S1(N) = {[Eτ , 1/N + Λτ ] : τ ∈ H}, and there is a bijection

ψ1 : S1(N)
∼−→ Y1(N) : [C/Λτ , 1/N + Λτ ] 7→ Γ1(N)τ.

(3) S(N) = {[C/Λτ , (τ/N + Λτ , 1/N + Λτ )] : τ ∈ H}, and there is a bijection

ψ : S(N)
∼−→ Y (N) : [C/Λτ , (τ/N + Λτ , 1/N + Λτ )] 7→ Γ(N)τ.

Proof sketch. (For details, see section 1.5 in [4].) We will prove (2), the other
parts being similar. We may take E = C/Λτ ′ for some τ ′ ∈ H, so that Q =
(cτ ′ + d)/N + Λτ ′ for some c, d ∈ Z. For the first statement, it suffices to find
m, τ ∈ C such that mΛτ = Λτ ′ and m(1/N + Λτ ) = Q. Towards this, since Q has
order N , gcd(c, d,N) = 1, so we can find a, b, k ∈ Z such that ad − bc − kN = 1.

The matrix γ =

(
a b
c d

)
reduces mod N to SL2(Z/NZ). Observe that changing its

entries mod N does not change Q. So, since SL2(Z) surjects onto SL2(Z/NZ), we
can take γ ∈ SL2(Z/NZ). Take m = cτ ′+d and τ = γ(τ ′), and this yields what we
wanted following a direct computation. We can also show that [Eτ , 1/N + Λτ ] =
[Eτ ′ , 1/N + Λτ ′ ] if and only if Γ1(N)τ = Γ1(N)τ ′. Hence, ψ1 is a bijection. □

Definition 3.10. A subgroup Γ of SL2(Z) that contains Γ(N) is called a congru-
ence subgroup of level N . A space of the form Y (Γ) := Γ\SL2(Z) is called a
modular curve. By adding finitely many points, called cusps, one can compact-
ify Y (Γ), and the resulting compact Riemann surface is denoted X(Γ). The spaces
X(Γ) are also called modular curves. In particular, denote by X0(N), X1(N), and
X(N) the compactifications of Y0(N), Y1(N), and Y (N), respectively.

3.3. Modular forms. Modular forms naturally arise as differentials on the mod-
ular curve. In this subsection, we will first define modular forms as functions on H,
then interpret them as differentials on X(Γ).

Definition 3.11. Let Γ be a congruence subgroup of SL2(Z), and k an integer. A
function f : H → C is a modular form of weight k with respect to Γ if

(1) f is holomorphic.
(2) f is weight-k invariant under Γ, i.e.,

f [α]k(τ) :=
f(α(τ))

(cτ + d)k
= f(τ) for all α =

(
a b
c d

)
∈ Γ.

(3) f [α]k is holomorphic at ∞ for all α ∈ SL2(Z).

We explain condition (3) here. Any congruence subgroup Γ(N) ⊂ Γ ⊂ SL2(Z)
contains a translation matrix of the form(

1 h
0 1

)
: τ 7→ τ + h,

for example for h = N . Thus, if f satisfies (1) and (2) for Γ, then g = f [α]k satisfies
them for α−1Γα ⊃ Γ(N) and can be written as g′◦qh, where qh(τ) = e2πiτ/h. Define
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f [α]k to be holomorphic at∞ if g′ extends holomorphically to q = 0. In particular,
this means that f has a Fourier expansion

f(τ) =

∞∑
n=0

anq
n
h , qh = e2πiτ/h.

Definition 3.12. The space of modular forms of weight k with respect to Γ is
denoted Mk(Γ). If a0 = 0 in the Fourier expansion for f [α]k for all α ∈ SL2(Z),
then f is said to be a cusp form. The space of cusp forms of weight k with respect
to Γ is denoted Sk(Γ).

The spacesMk(Γ) are all finite-dimensional vector spaces [4, Sections 3.5, 3.6].

Example 3.13.

(a) The weight-k Eisenstein series defined before is a weight-k modular form
in Mk(SL2(Z)) for even k ≥ 4. In particular, g2(τ) = 60G4(τ) and g3 =
140G6(τ) are modular forms of weight 4 and 6, respectively.

(b) The discriminant function ∆ is defined by

∆: H → C : τ 7→ (g2(τ))
3 − 27(g3(τ))

2.

This is a cusp form of weight 12.
(c) Any weight-0 modular form is constant by compactness of X(Γ).
(d) Consider

j : H → C : τ 7→ 1728
g2(τ)

3

∆(τ)
.

It is almost a modular form, except that it is not holomorphic at ∞. In
fact, it defines an isomorphism of Riemann surfaces from X(1) to P1.

Introduce the notation

j(γ, τ) = cτ + d for γ =

(
a b
c d

)
∈ SL2(Z).

Observe that
dγ(τ) = j(γ, τ)−2dτ.

It follows that the differential f(τ)(dτ)k/2 is Γ-invariant. The most important case
for us occurs when k = 2. In this case, a weight-2 cusp form f ∈ S2(Γ) corresponds
to a holomorphic 1-form ω on Y (Γ) = X(Γ)− {cusps}, and with a bit of work one
can show that this extends to a holomorphic 1-form on all of X(Γ). For instance,

at infinity, f(τ) =
∑∞
n=1 anq

n
h , where qh = e2πiτ/h. It follows that dτ = h

2πi
dqh
qh

,

hence

f(τ)dτ =

( ∞∑
i=1

anq
n
h

)
· h
2πi

dqh
qh

=

(
h

2πi

∞∑
i=0

an+1q
n
h

)
dqh

is holomorphic in qh at 0, which is a Riemann surface coordinate at ∞. Applying
this to f [α]k for all α ∈ SL2(Z), we see that ω extends to all the cusps.

Conversely, if we are given a holomorphic 1-form ω on X(Γ), then using the
projection H → Y (Γ), ω pulls back to a form f(τ)dτ on H (every holomorphic
1-form on H can be expressed in this way since H is simply connected). Since ω is
defined at Y (Γ), one easily shows that f [α]2 = f for all α ∈ Γ, so one may write
f(τ) =

∑∞
n=0 anq

n
h , where qh = e2πiτ/h for suitable h. By a similar calculation as

above, one shows that f ∈ S2(Γ). This (cf. section 3.3 of [4] for the full details)
shows that:
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Proposition 3.14. The complex vector space of weight-2 cusp forms S2(Γ) is iso-
morphic to the space of holomorphic differentials Ω1

hol(X(Γ)).

3.4. Modular curves over Q. In order to extract the arithmetic information from
the modular curves, we will need an algebro-geometric description of the modular
curve. In this subsection, we will sketch such a description. The main tool is the
following:

Definition 3.15. A field K/k is called a function field over k if K ∩ k = k and K
is a finite extension of k(t) for some transcendental element t over k.

Theorem 3.16. There is an equivalence of categories between the category of non-
singular projective curves over k (with non-constant morphisms) and the category
of fields of transcendence degree 1 over k (with injective field homomorphism). In
this correspondence:

(1) C corresponds to k(C), the function field of C
(2) To pass from a function field K to a curve C, first write K = k(x, f),

where x is transcendental over k and f is algebraic over k(x) . Then K ∼=
k[x, y]/(p(x, y)) for some irreducible polynomial p. Normalizing the affine
curve defined by p(x, y) gives the desired curve C.

(3) Non-constant morphisms C → C ′ bijectively correspond to injective homo-
morphisms k(C ′)→ k(C) by pullback.

Proof. See Chapter 7 of [8] or [9, Tag 0BY1]. □

Remark 3.1. An analogous correspondence holds for Riemann surfaces and their
fields of meromorphic functions. There is an equivalence of categories between
the category of Riemann surfaces (with non-constant holomorphic maps) and the
category of function fields over C [10]. Thus, algebraic curves over C may be viewed
analytically as complex Riemann surfaces, and vice versa.

The first step in defining a model of the modular curve over Q is to compute the
function fields over C. Let

fv0 =
g2(τ)

g3(τ)
℘τ

(
cvτ + dv

N

)
v = (cv, dv) ∈ Z2.

where the overline v denote reduction mod N . This function lies in C(X(N)). Let

fd0 (τ) = f
(0,d)
0 (τ) for d ̸≡ 0 mod N, f0(τ) =

N−1∑
d=1

fd0 (τ),

f1,0 = f
±(1,0)
0 , f0,1 = f1 = f

±(0,1)
0 ,

and finally let jN (τ) = j(Nτ).

Proposition 3.17. The fields of meromorphic functions on X1(N) and X0(N) are

C(X1(N)) = C(j, f1),

C(X0(N)) = C(j, f0) = C(j, jN ).

Proof. See Section 7.5 of [4]. □
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Now we define the “same” function fields for X1(N) and X0(N) but over Q. Let

K0 = Q(j, f0), K1 = Q(j, f1).

It turns out that K0 and K1 are actually function fields over Q, i.e., for i = 0, 1, fi
is algebraic over Q(j), and Ki ∩Q = Q.

Definition 3.18. The curves that correspond (by Theorem 3.16) to K0 and K1

are denoted X0(N)Q and X1(N)Q, respectively.

Example 3.19. The curve X0(11)Q is the elliptic curve with Weierstrass equation
y2+y = x3−x2−10x−20. The curve X1(11)Q is the elliptic curve with Weierstrass
equation y2 + y = x3 − x2. Obtaining these equations is a non-trivial task, and we
refer the interested readers to [7].

The most difficult part of this argument is in proving that Ki ∩ Q = Q. For
details, see Section 7.5-7.6 of [4]. The condition that Ki ∩ Q = Q for i = 0, 1 is
important for the following reasons.

Lemma 3.20. Let X be a variety over a field k. Then X is geometrically irreducible
over k (i.e., for any field extension k′ over k, the base change X(k′) is irreducible)
if and only if the separable algebraic closure of k in K(X) is k.

Proof. [9, Tag o54Q]. □

Thus, the fact thatKi is a function field ensures that the base changeXi(N)Q ×Q C
is a variety, and in fact, a non-singular projective curve over C by [9, Tag 0BY4].
Now take an open affine subvariety X ′ = Spec(Q[j, y]/(p(j, y))) of Xi(N)Q. Then
k(X) = k(X ′) = Frac(Q[j, y]/(p)). The base change X ′×Q C is an open subvariety
of Xi(N)Q ×Q C. Thus, k(Xi(N)Q ×Q C) = k(X ′ ×Q C) = Frac(C[j, y]/(p)), which
is also the function field of Xi(N)C. Thus, it follows that

Xi(N)Q ×Q C = Xi(N)C.

Remark 3.2. There are also more intrinsic ways of defining the modular curve
over Q, using the general theory of representable functors. See [2].

4. Hecke operators

In this section, we sketch the theory of Hecke operators. We begin by defining
them in several equivalent forms and then specialize the definitions to the case over
Q. Next, we focus on the interpretation of Hecke operators as endomorphisms on
the space of cusp forms and state some classical results. The proofs of these results
will not be given here, as they would take us too far afield. Finally, we introduce
the Jacobian of a curve and describe the action of Hecke operators on the Jacobians
of modular curves.

4.1. Hecke operators over C. We will define Hecke operators in this subsection.
There are two kinds of Hecke operators, and each can be interpreted as operators
on spaces of modular forms, homomorphisms of divisor groups, or maps between
moduli spaces. See [4] for a detailed treatment. For an interpretation of Hecke
operators as functions on the space of lattice in the level 1 case, see Chapter VII of
[11].

Recall that there is a map ψ1 : S1(N)
∼−→ Y1(N) ⊂ X1(N), where S1(N) is the

moduli space of elliptic curves over C together with a torsion point of order N .
Now define the two types of Hecke operators on S1(N) as follows:
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(1) (Diamond operator) For d ∈ Z+ such that (d,N) = 1, let

⟨d⟩ : Div(S1(N))→ Div(S1(N)) : [E,Q] 7→ [E, d ·Q].

(2) For a prime p ∈ Z+, define

Tp : Div(S1(N))→ Div(S1(N)) : [E,Q] 7→
∑
C

[E/C,Q+ C]

where the sum is taken over all order p subgroups C ⊂ E such that C intersects ⟨Q⟩
(the cyclic subgroup generated by Q) trivially. Using the isomorphism Y1(N)

∼−→
S1(N) to obtain an endomorphism of Div(Y1(N)), and extending over the finite
number of cusps in a canonical way, one can obtain a corresponding endomorphism
of Div(X1(N)):

⟨d⟩ : Div(X1(N))→ Div(X1(N)) : x 7→ α(x),

Tp : Div(X1(N))→ Div(X1(N)) : Γ1(N)τ 7→
∑
j

Γ1(N)βj(τ),

where α is any matrix

(
a b
c δ

)
∈ Γ0 with δ ≡ d mod N , and βj are representatives

for cosets of Γ1(N) in the double-coset Γ1(N)

(
1 0
0 p

)
Γ1(N).

Since modular forms behave as “differentials” on X1(N), one can pull back these
maps Div(X1(N)) → Div(X1(N)) and obtain operators on the space of modular
forms (cusp forms, in particular). One obtains

⟨d⟩ :Mk(Γ1(N))→Mk(Γ1(N)) : f 7→ f [α]k

for any α =

(
a b
c δ

)
∈ Γ0(N) with δ ≡ d mod N . It can be shown that the space

Mk(Γ1(N)) decomposes into eigenspaces

Mk(Γ1(N)) =
⊕

Dirichlet characters χ mod N

Mk(N,χ),

Mk(N,χ) = {f ∈Mk(Γ1(N)) : ⟨d⟩f = χ(d)f for all d ∈ (Z/NZ)∗}.
The second type of Hecke operators becomes the following map. Write the

following double coset as a union of cosets:

Γ1(N)

(
1 0
0 p

)
Γ1(N) =

⋃
j

Γ1(N)βj .

Then

Tp :Mk(Γ1(N))→Mk(Γ1(N)) : f 7→
∑
j

f [βj ]k.

Explicitly, if f has Fourier expansion

f(τ) =

∞∑
n=0

an(f)q
n, q = e2πiτ ,

then

an(Tpf) = anp(f) + 1N (p)pk−1an/p(⟨p⟩f), f ∈Mk(Γ1(N)).
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This Hecke operator is also compatible with the decomposition ofMk(Γ1(N)) into
Mk(N,χ) above. So

an(Tpf) = anp(f) + χ(p)pk−1an/p(f), if f ∈Mk(N,χ).

For general n, first define

Tpr = TpTpr−1 − pk−1⟨p⟩Tpr−2 (r ≥ 2).

Then take

Tn =
∏

T ripi for n =
∏

prii .

Finally, set T1 = 1. All the above Hecke operators restrict to endomorphisms of
Sk(Γ1(N)).

Remark 4.1. We can define Tn in the moduli space definition directly by having

Tn([E,Q]) =
∑
C

[E/C,Q+ C]

where the sum runs over all cyclic subgroups of order n that intersect ⟨Q⟩ trivially,
and show the recurrence above for Tpr and Tn.

Proposition 4.1. All Hecke operators commute with each other.

Proof. See section 5.2-5.3 of [4]. □

4.2. Hecke operators over Q. In this subsection we will sketch a definition of
Hecke operators as correspondences of varieties over Q. We will provide intuitions
to the fact that the “same” definition of the Hecke operators as maps between
moduli spaces carries over to a moduli space over Q. First define

S1(N)Q = {isomorphism classes of pairs (E,C), where E is an

elliptic curve over Q and Q is a point of order N}.

Our previously defined S1(N) will be written as S1(N)C. If E,E′ are elliptic
curves over Q, and if [E,Q] and [E′, Q′] are isomorphic over C, then they are
isomorphic over Q (this can be seen using Weierstrass equations). Thus, S1(N)Q ⊂
S1(N)C.

To connect the moduli space with modular curves, we will need a version of ψ1 :
S1(N)C → X1(N)C (cf. Theorem 3.9), but over Q. First, consider the commutative
diagram

S1(N)C S1(1)C [E,Q] [E]

X1(N)Q(C) X1(1)C P j(E)

ψ1

α

(The point P simply denotes the image of [E,Q] under ψ1.) Now [E,Q] ∈
S1(N)C is an element of S1(N)Q if and only if j(E) ∈ Q (the forward direction is

clear; for converse, if j ̸= 0, 1728, E has a Weierstrass model y2 = 4x3 − 27j
j−1728 ·

x − 27j
j−1728 ; if j = 0, take y2 = x3 + B for B ∈ Q∗; and if j = 1728, take

y2 = x3 + Ax for A ∈ Q∗). The morphism α is defined over Q, so the preimage
of the Q-points of X1(1)Q(C) under α also consists of Q-points; in other words,
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ψ1(S1(N)Q) ⊂ α−1(X1(1)Q(Q)) ⊂ X1(N)Q(Q). Thus, the restriction of ψ1 to
S1(N)Q defines

ψ1,Q : S1(N)Q → X1(N)Q.

Now, on S1(N)Q, the Hecke operators can be defined in the same way:

⟨d⟩ : Div(S1(N)Q)→ Div(S1(N)Q) : [E,Q] 7→ [E, d ·Q] (for (d,N) = 1),

Tp : Div(S1(N)Q)→ Div(S1(N)Q) : [E,Q] 7→
∑
C

[E/C,Q+ C].

Then the diagrams

Div(S1(N)C) Div(S1(N)C) Div(S1(N)C) Div(S1(N)C)

Div(X1(N)C) Div(X1(N)C) Div(X1(N)C) Div(X1(N)C)

Tp

ψ1 ψ1

⟨d⟩

ψ1 ψ1

Tp ⟨d⟩

restrict to the diagrams

Div(S1(N)Q) Div(S1(N)Q) Div(S1(N)Q) Div(S1(N)Q)

Div(X1(N)Q) Div(X1(N)Q) Div(X1(N)Q) Div(X1(N)Q)

Tp

ψ1,Q ψ1,Q

⟨d⟩

ψ1,Q ψ1,Q

Tp ⟨d⟩

which means that the moduli space interpretation of Hecke operators carries over
when one defines them over Q.

Another way to define Hecke operators over Q is by passing to function fields.
Let (d,N) = 1. The corresponding map of function fields is the pullback

⟨d⟩∗ : C(X1(N))→ C(X1(N)). Recall that C(X1(N)) = C(j, f1) and Q(X1(N)) =
Q(j, f1). Thus, we shall show that ⟨d⟩∗(Q(j, f1)) ⊂ Q(j, f1), which would corre-
spond to a morphism ⟨d⟩ : X1(N)Q → X1(N)Q by curve-field correspondence. Now

⟨d⟩Γ1(N)τ = Γ1(N)γ(τ) γ =

(
a b
c δ

)
δ ≡ d mod N.

Thus, (⟨d⟩∗j)(τ) = j ◦ γ(τ). Since j is of weight 0, j ◦ γ(τ) = τ , hence ⟨d⟩∗j = j.
For f1, compute that

f1 ◦ γ = f
±(0,1)
0 ◦ γ = f

±(0,1)γ
0 = f

±(0,d)
0 .

Recall that f
±(0,d)
0 (τ) = ℘(d/N)g2(τ)/g3(τ), and f1 = ℘(1/N)g2(τ)/g3(τ). Fix

τ ∈ H such that j(τ) ̸∈ {0, 1728}. This means that g2(τ) and g3(τ) are nonzero
since j = 1728g32/(g

3
2 − 27g23). Consider the map

(℘τg2(τ)/g3(τ), ℘
′
τ (g2(τ)/g3(τ))

3/2℘′
τ ) : C/Λτ → C2 ∪ {∞}

This differs from (℘τ , ℘
′
τ ) by an admissible change of variables (x, y) = (u2x′, u3y′)

where u = (g3(τ)/g2(τ))
1/2, and defines a bijective correspondence between the

complex torus C/Λτ and the elliptic curve

E : y2 = 4x3 −
(

27j(τ)

j(τ)− 1728

)
x−

(
27j(τ)

j(τ)− 1728

)
Then f1 (resp. f

±(0,d)
0 is the function that takes τ to the x-coordinate of torsion

point Q (resp. d · Q) in Ej(τ) that corresponds to the point 1/N in the complex
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torus C/Λτ . By Exercise 3.7(a) and (d) in [3], the point x(d ·Q) can be expressed
as g(27j/(j − 1728), x(Q)), where g is a rational function in two variables over Q.

Thus, for some g ∈ Q(j, f1), ⟨d⟩∗f1 = f
±(0,d)
0 and g(j, f1) agree at all but finitely

many τ ∈ C(X1(N)) (excluding the cusps and the points with j-invariant 0 or
1728), which means they must agree completely. Thus, ⟨d⟩∗f1 ∈ Q(j, f1).

The proof that Tp is defined over Q follows roughly the same structure, but it is
a bit more technical, and we omit it here. See Section 7.9 in [4].

4.3. Hecke eigenforms. We have defined the Hecke operators as correspondences
over C and over Q. In this subsection we will consider them as endomorphisms of
Sk(Γ1(N)), which leads to many beautiful results and reveals a lot about modular
forms and the Hecke operators. We only state the main results. The details can be
found in Chapter 5 of [4].

We begin by giving Sk(Γ) the structure of an inner product space. The Peters-
son inner product on Sk(Γ) is defined as:

⟨, ⟩Γ : Sk(Γ)× Sk(Γ)→ C ⟨f, g⟩Γ =
1

VΓ

∫
X(Γ)

f(τ)g(τ)(Im(τ))kdµ(τ).

where dµ(τ) = dxdy
y2 for τ = x+ iy ∈ H is the hyperbolic measure. (Intuitively, this

is the familiar inner product on function spaces, but adding the factor of (Im(τ))k

to account for the factors of automorphy in the definition of modular forms.) Then

Theorem 4.2. The Hecke operators ⟨n⟩ and Tn for (n,N) = 1 are normal (i.e.
commutes with their Hermitian adjoints). This is a commuting family of normal
operators on a finite-dimensional inner product space. Thus, by linear algebra,
Sk(Γ1(N)) has an orthogonal basis of simultaneous eigenforms for the Hecke oper-
ators {⟨n⟩, Tn : (n,N) = 1}.

Definition 4.3. Let

T = Z[{Tn, ⟨n⟩ : n ∈ N}] T0 = Z[{Tn, ⟨n⟩ : (n,N) = 1}] ⊂ T
i.e., the algebra generated by the Hecke operators. The algebra T is called the
Hecke algebra, and T0 is called the anemic Hecke algebra.

Now we introduce the notion of newforms. Some modular forms in Sk(Γ1(N))
more naturally belongs to lower levels. These are the oldforms, defined as follows.

Definition 4.4. Let d | N . Let

αd =

(
d 0
0 1

)
f [αd]k(τ) = dk−1f(d · τ).

Let

id : Sk(Γ1(N/d))
2 → Sk(Γ1(N)) : (f, g) 7→ f + g[αd]k.

The subspace of oldforms at level N consists of

Sk(Γ1(N))old =
∑
p|N

ip(Sk(Γ1(N/p))
2),

where the p’s are primes. The subspace Sk(Γ1(N))new is defined to be the orthogo-
nal complement of the subspace of oldforms at level N with respect to the Petersson
inner product. The oldforms and newforms are stable under the Hecke operators
Tn and ⟨n⟩. Thus, they also have orthogonal bases of eigenforms for T0.
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A modular form f ∈Mk(Γ1(N)) that is an eigenform for T (not just T0) is called
an Hecke eigenform, or simply an eigenform. An eigenform is normalized if
a1(f) = 1. A newform is a normalized eigenform in Sk(Γ1(N))new. Amazingly,
the eigenvalues for the newforms are precisely their Fourier coefficients:

Theorem 4.5. Let f ∈ Sk(Γ1(N))new be a nonzero eigenform for T0. Then

(1) f is a Hecke eigenform, i.e., f is an eigenform for T. A suitable scalar
multiple of f is a newform.

(2) If f is a newform, then Tnf = an(f)f for all n ∈ Z+.

(3) (Multiplicity One) If f̃ is also an eigenform with the same Tn-eigenvalues,

then f̃ = cf for some constant c.

Moreover, the set of newforms in Sk(Γ1(N))new is an orthogonal basis of the space.

This theory will allow one to give an explicit basis for Sk(Γ1(N)).

Theorem 4.6. The set

Bk = {f(nτ) :M | N, f is a newform of level M,n | N/M}
is a basis for Sk(Γ1(N)).

The following proposition says that every normalized eigenform is almost a new-
form in some potentially lower levels.

Proposition 4.7. Let g ∈ Sk(Γ1(N)) be a normalized eigenform. Then there is
a newform f ∈ Sk(Γ1(M))new for some M | N such that ap(f) = ap(g) for all
p ∤ N/M . If g ∈ Sk(N,χ), then f ∈ Sk(M,χM ) where χM lifts to χ mod N .

Proposition 4.8. Let f ∈ Mk(N,χ). Then f is a normalized eigenform if and
only if the following conditions are satisfied:

(1) a1(f) = 1.
(2) apr = ap(f)apr−1(f)− χ(p)pk−1apr−2(f) for all prime p and r ≥ 2.
(3) amn(f) = am(f)an(f) when (m,n) = 1.

Note that the forward direction of this Proposition easily follows from definitions.

Example 4.9. In [12], Ramanujan studied the following function

(2π)−12∆ = q
∏
n=1

(1− qn)24 =

∞∑
n=1

τ(n)qn

and conjectured that τ(nm) = τ(n)τ(m) if (n,m) = 1 and τ(p)τ(pn) = τ(pn+1) +
p11τ(pn−1) if p is a prime and n ≥ 1. This conjecture can be proved using the
theory sketched above. It is known (cf. subsection 3.3) that ∆ is a cusp form
of weight 12 and that the first Fourier coefficient ∆(1) = (2π)12. Moreover, one
has dimS12(Γ1(1)) = 1 (cf. [11] or Chapter 3 of [4] for a more complete dimension
computation), so the space spanned by ∆ must be stable under the Hecke operators.
Hence, (2π)−12∆ is a normalized eigenform, and Ramanujan’s conjecture follows
from Proposition 4.8.

4.4. Jacobian and Picard groups. In algebraic geometry, there is an important
association of an algebraic curve over a field k with their Jacobians. In this subsec-
tion, we will consider the action of Hecke operators on the Jacobian and the Picard
groups.
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Definition 4.10. Let X be a curve of genus g over a field k. The Jacobian of
X is a certain abelian variety of dimension g over k whose underlying group is
functorially isomorphic to Pic0(X).

Definition 4.11. Let J1(N) = Jac(X1(N)Q), and J0(N) = Jac(X0(N)Q).

The Jacobians of curves over C have a more explicit model. By the theory of
Riemann surfaces, there is an embedding

ι : H1(X,Z)→ Ω1(X)∧ : γ 7→
∫
γ

·

where X is a Riemann surface (equivalently, a complex non-singular projective
curve) and Ω1(X) is the space of holomorphic 1-forms on X. If X has genus g,
then H1(X,Z) ∼= Z2g. Then we realize Jac(X) as a quotient

Jac(X) = Ω1(X)∧/ι(H1(X,Z)).
This is a complex torus of complex dimension g. Now consider the modular curve
X1(N)Q. We have

J1(N)(C) = Jac(X1(N)Q(C)) = Jac(X1(N)C) = Ω1(X1(N)C)
∧/ι(H1(X1(N)C,Z)).

The most important case is when k = 2. Then by Proposition 3.14,H0(X1(N),Ω1) ∼=
S2(Γ1(N)). Thus,

J1(N)(C) ∼= S2(Γ1(N))∧/ι(H1(X1(N)Q,Z)).
For simplicity of notation, we may as well write J1(N)(C) ∼= S2(Γ1(N))∧/H1(X1(N),Z).

Proposition 4.12. The dual of the Hecke operator

T : S2(Γ1(N))∧ → S2(Γ1(N))∧ : φ 7→ φ ◦ T
for T = Tp or T = ⟨d⟩ descends to a map T : J1(N)(C)→ J1(N)(C).

To prove this, recall that a map h : X → Y of curves induces a forward map
h∗ and a backward map h∗ of Picard group (cf. subsection 2.1). This functorially
transfers to a forward map and a backward map of the Jacobians.

Proof sketch. (Details can be found in Section 6.3 of [4]) Denote Γ1 = Γ1(N) and

α =

(
1 0
0 p

)
. We first decompose Tp into a composition of forward and backward

maps on Picard groups. Consider the configuration

Γ1 ← Γ3
∼−→ Γ3 → Γ1,

where Γ3 = α−1Γ1α ∩ Γ1 and Γ′
3 = αΓ3α

−1 = αΓ1α
−1 ∩ Γ1. This induces a

configuration on modular curves

X1
π1←− X3

∼−→ X ′
3
π2−→ X1,

where the isomorphism is Γ3τ → Γ′
3α(τ). The configuration produces a map of

divisor groups given by

(Γ1τ)
π−1
1−−→

∑
j

(Γ3γj(τ))
α−→
∑
j

(Γ′
3βj(τ))

π2−→
∑
j

Γ1βj(τ),

where Γ3\Γ1 =
⋃
j Γ3γj and βj = αγj . One can check that this composition

is exactly Tp on Div(X1(N)). One also checks from the definition of forward and
backward maps of Picard groups (cf. subsection 2.1) that this composition is exactly



24 WENSHI ZHAO

π1,∗ ◦ α∗ ◦ π∗
2 = (π1 ◦ α)∗ ◦ π∗

2 . The forward and backward maps are defined on
Picard groups, hence also on the Jacobians.

For the Diamond operator ⟨d⟩, take α =

(
a b
c δ

)
as before, and observe that ⟨d⟩

is exactly the forward map α∗. □

Remark 4.2. It also follows from the fact that T is a morphism over Q that the
map T : J1(N)(C) → J1(N)(C) restricts to a map T : J1(N) → J1(N). We will
skip this detials. See Corollary 5.22 of [13].

Theorem 4.13. Let f ∈ S2(Γ1(N)) be a normalized eigenform. Then the field
Kf = Q({an : n ∈ Z+}) is a finite extension over Q. This is called the number
field of f .

Proof. Let T = Tp or T = ⟨d⟩ for (d,N) = 1. Dualizing, we have

T : S2(Γ1(N))∧ → S2(Γ1(N))∧ : φ 7→ φ ◦ T.
This descends to the Jacobian J1(N)(C). Thus, the operators act as endomorphisms
on the kernel H1(X1(N)C,Z) ∼= Z2g, so TZ ⊂ End(H1(X1(N)C,Z)), which implies
that TZ is a finitely generated Z-module. Let

λf : TZ → C Tf = λf (T )f.

The image of this map is

Of := Z[{an(f) : n ∈ Z+}],
which must also be finitely generated over Z. Thus, Kf = Q({an(f)}) is finitely
generated as a vector space over Q, hence a finite extension. □

Theorem 4.14. Let f ∈ S2(N,χ) be a normalized eigenform. Let Kf be its number
field. For any embedding σ : Kf → C, the conjugated fσ (defined by conjugating the
coefficients in the Fourier expansion) is also a normalized eigenform in S2(N,χσ),
where χσ(n) = χ(n)σ.

Proof. See Section 6.5 of [4]. □

5. Modular Galois Representation

In this section, we will construct the Galois representation associated to a modu-
lar form. We will then state the Modularity Theorem using this construction. The
construction of Galois representations for elliptic curves is relatively simple. To
associate a Galois representation to normalized eigenforms, however, is much more
difficult. For k ̸= 2, the construction involves étale cohomology. If k = 2, there is
luckily a geometric object associated to normalized eigenform, namely the abelian
variety Af . We will describe this construction for a newform f ∈ S2(Γ1(N)).
Throughout the rest of the subsection, we will fix a positive integer N , and every
modular form considered will be of weight 2.

5.1. Abelian varieties. The main tool in the construction of Af is the following
theorem:

Theorem 5.1. Let k be a field and A be an abelian variety over k. Suppose that
B is an abelian subvariety of A. Then there exists an abelian variety C over k and
a surjective morphism A→ C with kernel exactly B.



GALOIS REPRESENTATIONS AND MODULARITY THEOREM 25

The abelian variety C may be considered to be the quotient A/B of A by B.

Proof. See Section 9.5 of [14] or the discussion in [15]. □

Let f ∈ S2(N,χ) be a newform, and let λf : T → C be defined as in the proof
of Theorem 4.13. Because the Hecke operators are morphisms of abelian varieties
over Q on J1(N), IfJ1(N) is an abelian subvariety of J1(N), where If = ker(λf ).
By Theorem 5.1, we may define an abelian variety Af over Q as the quotient
J1(N)/IfJ1(N). Over C, the same theorem shows the existence of a surjective
morphism J1(N)(C)→ Af (C) with kernel exactly IfJ1(N)(C). Moreover, Af (C) =
Af,C. (See Chapter 14 of [16] for an alternative definition of Af .)

Definition 5.2. Let f ∈ S2(Γ1(N)) be a newform. Let Vf = Span(fσ : σ ∈
Aut(C/Q)) ⊂ S2(Γ1(N)). Restricting the subgroup H1(X1(N),Z) of S2(Γ1(N))∧

to functions on Vf gives a subgroup Λf = H1(X1(N),Z)|Vf
⊂ V ∧

f .

Proposition 5.3. Let f ∈ S2(Γ1(N)) be a newform with number field Kf . Then
there is a group isomorphism

Af,C
∼−→ V ∧

f /Λf φ+ IfJ1(N)→ φ|Vf
+ Λf for φ ∈ S2(Γ1(N))∧.

The right side is a complex torus of dimension [Kf : Q]. It follows that dimAf =
dimCAf,C = [Kf : Q].

Proof. Let S2 = S2(Γ1(N)), H1 = H1(X1(N),Z), Af = Af,C. Then

Af = J1(N)/IfJ1(N) = (S∧2 /H1)/If (S∧2 /H1) ∼= (S∧2 /IfS∧2 )/H1,

where H1 is the image of H1 in S∧2 /IfS∧2 . By some linear algebra, S∧2 /IfS∧2 ∼=
S2[If ]∧, where S2[If ] consists of the elements of S2 annihilated by If and the isomor-

phism is given by restriction φ+ IfS∧2 → φ|S2[If ]. Thus, Af
∼−→ S2[If ]∧/H1|S2[If ].

We need to show that S2[If ] = Vf and Λf = H1|Vf
is a lattice. Clearly Vf ⊂

S2[If ]. The converse is shown by a dimension argument. First, observe that we
have a perfect pairing, invariant under the action of the Hecke operators,

TC × S2 → C : (T, f) 7→ a1(Tf),

where TC = C[{Tn, ⟨n⟩ : n ∈ Z+}], so S∧2 /IfS∧2 ∼= TC/IfTC. Hence

dim(S2[If ]) = dim(S2[If ]∧) = dim(S∧2 /IfS∧2 ) = dim(TC/IfTC).

We also know that the natural surjection TZ ⊗ C → TC descends to a surjection
(TZ ⊗ C)/(If ⊗ C)→ TC/IfTC. So

dimS2[If ] ≤ dim((TZ ⊗ C)/(If ⊗ C)) = dim((TZ/If )⊗ C)
= rank(TZ/If ) = [Kf : Q] = dimVf .

4

Since Vf ⊂ S2[If ], the dimension argument shows that S2[If ] = Vf . Lastly, to
show that Λf is a lattice in V ∧

f , one needs to show that SpanR(Λf ) = V ∧
f and

rank(Λf ) ≤ dimR(V
∧
f ). For the first, note that the inclusion Vf ⊂ S2 gives a

surjective restriction map π : S∧2 → V ∧
f . Since SpanR(H1) = S∧2 , SpanR(Λf ) =

SpanR(π(H1)) = π(S∧2 ) = V ∧
f . For the second, take dimensions over R:

dimR V
∧
f = dimR(S∧2 /IfS∧2 ) = dimR((H1 ⊗ R)/If (H1 ⊗ R))

= dimR((H1/IfH1)⊗ R) = rank(H1/IfH1).

4Since by Theorem 4.6, the fσ ’s for σ : Kf → C are linearly independent.



26 WENSHI ZHAO

But Λf = π(H1) ∼= H1/(H1 ∩ kerπ). Since Vf = S2[If ], IfH1 ⊂ H1 ∩ kerπ. Thus,
there is a surjection H1/IfH1 → Λf , so rank(Λf ) ≤ rank(H1/IfH1) = dimR(V

∧
f ).

This completes the proof. □

5.2. Modular Galois Representations. We will use the following general fact
about abelian varieties.

Theorem 5.4. Let n ∈ Z+. Let k be a field of characteristic 0 or p with (p, n) = 1.
If A is an abelian variety of dimension d, then A[n] ∼= (Z/nZ)2d.

Proof. See section I.7 of [17]. □

Let f be a newform of level N . Write A = Af , K = Kf , and d = [K : Q] for
simplicity. Let l be a prime. Define

Tal(A) := lim←−
n

A[ln], Vl(A) := Ql ⊗Zl
Tal(A).

As a Ql-vector space, Vl(A) ∼= Q2d
l by Theorem 5.4. Now note that Of := TZ/If

is isomorphic as a Z-module to Z[{an(f) : n ∈ Z+}], which has rank [Kf : Q],
and it acts on the group Af = J1(N)/IfJ1(N). Hence, there is a natural action of
Of ⊗Z Ql = Of ⊗Z (Q⊗Q Ql) = (Of ⊗Z Q)⊗Q Ql = K ⊗Ql on Vl(A). By algebraic
number theory,

K ⊗Q Ql =
∏
λ|l

Kλ,

where λ are primes lying over l and Kλ are the λ-adic completion of K. Thus,
there is a decomposition

Vl(A) =
∏
λ|l

Vλ(f).

Lemma 5.5. For all λ lying over l, dimKλ
Vλ(f) = 2.

Proof. Write A(C) = V/L, where V = Vf and L is a lattice. We have A[ln] =
l−nL/L ∼= L/lnL. Thus, Vl(A) ∼= L ⊗ Ql as a K ⊗ Ql-module (using the Hecke
action on V/L). Also, L is a free Z-module of rank 2d, and since L is an Of -module,
L⊗Q is a vector space over K. Then L⊗Q ∼= K2 as a K-vector space by dimension
counting over Q. This shows that

Vl(A) ∼= (L ⊗Q)⊗Q Ql ∼= (K2)⊗Q Ql ∼= (K ⊗Q Ql)2

It follows that Vλ(A) ∼= K2
λ when we decompose it using K ⊗Q Ql =

∏
Kλ. □

Since the Hecke operators are defined over Q, as morphisms of varieties, they can
be locally expressed as rational functions over Q, hence the Galois action commutes
with the Hecke operators, so GQ acts compatibly on Vl(A) with the action of K⊗Q
Ql. Thus, we can define

ρl = ρf,l : GQ → AutK⊗Ql
Vl(A) ∼= GL2(K ⊗Ql) ∼=

∏
λ|l

GL2(Kλ),

so ρl decomposes into

ρf,λ : GQ → GL2(Kλ).

This is the desired Galois representation associated to f .
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5.3. Modularity Theorem. We are finally in a position to state the Modularity
Theorem.

Definition 5.6. An irreducible Galois representation ρ : GQ → GL2(Ql) such
that det ρ = χl is modular if there exists a newform f ∈ S2(Γ0(Mf )) such that
Kf,λ = Ql for some maximal ideal λ of OKf

lying over l and such that ρf,λ ∼ ρ.

Theorem 5.7. (Modularity Theorem, Version R) Let E be an elliptic curve
ovre Q. Then ρE,l is modular for some l.

This is the version of Modularity Theorem proved in Wiles’ paper [1].

Theorem 5.8. (Modularity Theorem, Strong Version R) Let E be an elliptic
curve over Q with conductor N (cf. Definition 2.9). Then for some newform
f ∈ S2(Γ0(N)) with number field Kf = Q, ρf,l ∼ ρE,l for all l.

These two versions are in fact equivalent, as we will see in the next section.

6. Eichler–Shimura Relation

In this section, we will exhibit the relationship between the Modularity Theorem
stated in the previous section and explicit problem of counting points on elliptic
curves mod p. We will almost never work on the complex analytic modular curve,
hence the notations X1(N), S1(N), and so on, will replace the previous notations
X1(N)Q, S1(N)Q, and so on.

6.1. Reduction of elliptic curves over Q. We’ve defined reduction of elliptic
curves over Q in section 2. Here, we will define the reduction of elliptic curves over
Q. This is important because the moduli space interpretation of S1(N) ⊂ X1(N)
is in terms of isomorphisms classes of elliptic curves (with torsion data) over Q.

Let E be an elliptic curve over Q. Let p be a prime in Z. Take a Weierstrass
equation for E. Using an admissible change of variables, we may assume that
the Weierstrass equation has coefficients in Z(p). We say that such a Weierstrass
equation is p-integral. Any p-integral Weierstrass equation reduces coefficient-wise

to a Weierstrass equation Ẽ over Fp.

Definition 6.1. The reduction types of E at p (good, bad, ordinary, etc.) are
defined for p-integral Weierstrass equations as in Definition 2.8. A p-integral Weier-
strass equation with good or multiplicative reduction is called p-minimal.

Proposition 6.2. Any elliptic curve over Q has a p-minimal Weierstrass equation.
Ordinary, supersingular, and multiplicative reduction are well defined on equivalence
classes of p-minimal Weierstrass equations. If E and E′ are equivalent p-minimal
Weierstrass equations with good reduction at p, then their reductions define isomor-
phic elliptic curves over Fp.

Proof. See Section 8.4 of [4]. □

Proposition 6.3. Let E be an elliptic curve over Q. Then

(1) If E has good reduction at p, then E[N ]→ Ẽ[N ] is surjective for all N .
(2) For any isogenous elliptic curve E′, E has good reduction at p iff E′ does.

Proof. (1) can be shown using VII.2.1 and VII.3.1 while (2) is VII.7.2 of [3]. □
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6.2. Reduction of modular curves. Modular curves are algebraic curves. We
first define generally the reduction of algebraic curves mod p.

Definition 6.4.

(1) Let C = Spec(Q[x1, . . . , xn]/(φ1, . . . , φm)) be a non-singular affine alge-
braic curve over Q. Then C has good reduction at p if
(a) Spec(Z(p)[x1, . . . , xn]/(φ1, . . . , φm)) is a variety (i.e., (φ1, . . . , φm) is

prime in Z(p)[x1, . . . , xn]).
(b) Let φ̃1, . . . φ̃m ∈ Fp[x1, . . . , xn] be the polynomials obtained by reduc-

ing the coefficients mod p. Then C̃ = Spec(Fp[x1, . . . , xn]/(φ̃1, . . . , φ̃m))
defines a non-singular curve over Fp.

In this case C̃ is the reduction of C at p.
(2) Let C be a non-singular projective curve over Q. Then C has good re-

duction at p if every affine piece Ci either has good reduction at p or has

empty reduction at p. The curve C̃ is defined to be the projectivization of
the reduction of any affine piece Ci that has good reduction at p.

Theorem 6.5. Let E and E′ be elliptic curves over Q with good reduction at p,

and let Ẽ and Ẽ′ denote their respective reductions. Let φ : E → E′ be an isogeny
over Q of elliptic curves over Q. Then there is an isogeny

φ̃ : Ẽ → Ẽ′

such that

(1) If ψ : E′ → E′′ is also an isogeny, then ψ̃ ◦ φ = ψ̃ ◦ φ̃.
(2) The following diagram commutes

E E′

Ẽ Ẽ′

φ

φ̃

(3) deg(φ̃) = deg(φ).

Proof. See Section 8.5 of [4]. □

Proposition 6.6. Let E be an elliptic curve over Q. If E has ordinary (resp.
supersingular) reduction at p, then so does E/C.

Proof. Let φ : E → E′ be an isogeny. By Theorem 6.5, φ reduces to an isogeny

φ̃ : Ẽ → Ẽ′. Heading towards a contradiction, assume without loss of generality
that E has ordinary reduction and E′ has supersingular reduction at p (for the other

way around, simply use the dual isogeny of φ). By definition, Ẽ[pe] ∼= (Z/pZ)e,
and Ẽ′[pe] = 0. Then φ̃(Ẽ[pe]) = 0 for all e ∈ Z+, which contradicts that ker φ̃ is
a finite set. □

Next, consider the special case of X1(N). Define

S1(N)′gd = {[E,Q] ∈ S1(N) : E has good reduction at p, j̃(E) ̸∈ {0, 1728}}.

S̃1(N) = {[E,Q] : E is an elliptic curve over Fp, Q ∈ E is a point of order N}

S̃1(N)′ = {[E,Q] ∈ S̃1(N) : j(E) ̸∈ {0, 1728}}
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Theorem 6.7. (Igusa) Let N be a positive integer and let p be a prime with p ∤ N .
The modular curve X1(N) has good reduction at p. Moreover, reducing the modular
curve is compatible with reducing the moduli space in the sense that the following
diagram commutes

S1(N)′gd X1(N)

S̃1(N)′ X̃1(N)

ψ1

ψ̃1

Proof. See [18]. □

6.3. The Eichler–Shimura Relation. The Eichler–Shimura relation is a neat
description of Hecke operators on the reduction of modular curve at p using the
Frobenius morphism. In this subsection, we will provide some intuition on why such
a description is true. We will assume that there is a natural reduction of Tp acting

as Tp : Pic
0(X̃1(N))→ Pic0(X̃1(N)) such that the following diagram commutes:

Pic0(X1(N)) Pic0(X1(N))

Pic0(X̃1(N)) Pic0(X̃1(N))

Tp

T̃p

(cf. Theorem 9.5.1 of [19].) Then we will show a version of the Eichler–Shimura
relation in the context of moduli spaces. The rest of the proof of the Eichler–
Shimura relation is just diagram chasing (using the above assumption) and passing
between the various equivalent notions of Hecke operators. For this part of the
proof, we refer the readers to [4, Section 8.7].

Let E be an elliptic curve over Q with ordinary reduction at p. Let Q ∈ E be

a point of order N . Let C0 be the kernel of the reduction map E[p] → Ẽ[p]. By
the structure theorem of torsion points of elliptic curves, E[p] ∼= (Z/pZ)2, and by

definition |Ẽ[p]| = p. From Proposition 6.3(1), it follows that C0 is an order p
subgroup.

Lemma 6.8. Under the hypotheses of the previous paragraph, for any order p
subgroup C of E,

[Ẽ/C, Q̃+ C] =

{
[Ẽσp , Q̃σp ] if C = C0,

[Ẽσ
−1
p , [p]Q̃σ

−1
p ] if C ̸= C0.

Proof sketch. (For full details, see Lemma 8.7.1 in [4].) Let E′ = E/C, φ : E → E′

be the quotient isogeny, and ψ : E′ → E be the dual isogeny so that ψ ◦ φ = [p]
and φ ◦ ψ = [p]. Let Q′ = φ(Q).

Case 1: C = C0. A diagram chase on the following diagram

E′[p] E[p] E′[p]

Ẽ′[p] Ẽ[p]

ψ

π′

φ

π

ψ̃
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shows that ker([p]
Ẽ′) = ker(ψ̃) = Ẽ′[p]. Since ψ̃ is an isogeny,

degsep([p]Ẽ′) = | ker[p]Ẽ′ | = p =⇒ degins([p]Ẽ′) = deg([p]
Ẽ′)/ degsep([p]Ẽ′) = p,

and since [p]
Ẽ′ = ψ̃ ◦ φ̃, it follows that

degsep(ψ̃) = p, degins(ψ̃) = 1, degsep(φ̃) = 1, degins(φ̃) = p.

Thus, it follows from subsection 2.4 that φ̃ = i ◦ σp, where i : Ẽσp → Ẽ′ is an

isomorphism taking Q̃σp to Q̃′. Thus,[Ẽ′, Q̃′] = [Ẽσp , Q̃σp ].
Case 2: C ̸= C0. Let C ′ = kerψ and C ′

0 = kerπ′. In this case, a diagram chase
on

E[p] E′[p] E[p]

Ẽ[p] Ẽ′[p]

φ

π

ψ

π′

φ̃

allows us to show that C ′ = C ′
0. Then, applying the argument in case 1, replacing

E,Q,φ by E′, Q′, ψ, respectively, one obtains ψ̃ = i ◦ σp, where

i : Ẽ′σp ∼−→ Ẽ Q̃′σp → ˜ψ(Q′) =[p]Q̃.

Applying σ−1
p to the coefficients of i gives

iσ
−1
p : Ẽ′ → Ẽσ

−1
p : Q̃′ 7→ [p]Q̃σ

−1
p .

Thus, [Ẽ′, Q̃′] = [Ẽσ
−1
p , [p]Q̃σ

−1
p ], which completes the proof. □

Now define the Diamond operators on S̃1(N) in the usual way:

⟨̃d⟩ : S̃1(N)→ S̃1(N) [E,Q] = [E, d ·Q] (d,N) = 1.

For an elliptic curve E over Q with ordinary reduction at p, take the sum over all
order p subgroups C ⊂ E:∑

C

[Ẽ/C, Q̃+ C] = (σp + p⟨̃p⟩σ−1
p )[Ẽ, Q̃].

Lemma 6.8 also applies to the case of supersingular reduction (the proof is similar).
Thus, the above formula holds for any elliptic curve over Q with good reduction at
p.

This is arguably the meat of the Eichler–Shimura relation. One can transfer this
formula on the moduli space to the divisor group of the modular curves, then to

the Pic0 of modular curves, replacing σp, ⟨̃p⟩ and pσ−1
p with the suitable induced

maps on Picard groups (cf. subsection 2.1 and subsection 2.4). The end product
of these translations is:

Theorem 6.9. (Eichler–Shimura relation) Let p ∤ N . The following diagram
commutes:

Pic0(X1(N)) Pic0(X1(N))

Pic0(X̃1(N)) Pic0(X̃1(N))

Tp

σp,∗+⟨̃p⟩∗σ
∗
p
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In particular, since ⟨̃p⟩ acts trivially on X̃0(N), the following diagram commutes
as well.

Pic0(X0(N)) Pic0(X0(N))

Pic0(X̃0(N)) Pic0(X̃0(N))

Tp

σp,∗+σ
∗
p

6.4. Characteristic polynomial of Frobenius; Modularity Theorem.

Theorem 6.10. (Modularity Theorem, Version ap) Let E be an elliptic curve
over Q with conductor NE (cf. Definition 2.9). Then for some newform f ∈
S2(Γ0(NE)),

ap(f) = ap(E) for all primes p.

This version of Modularity Theorem tells us that the information about the
number of points on the reduction of elliptic curves mod p is always encoded in the
coefficient of a modular form. In the rest of the subsection, we will demonstrate the
relationship between this and the (strong) version R of the Modularity Theorem,
defined in the previous section.

Recall that J1(N) = Jac(X1(N)) is an abelian variety of dimension g, where g
is the genus of X1(N). Theorem 5.4 tells us that J1(N)[ln] ∼= (Z/lnZ)2g. Thus, we
can use the same construction to obtain

Vl(X1(N)) = lim←−
n

(J1(N)[ln])⊗Ql ∼= Q2g
l .

and the Galois action, which takes a point Q ∈ J1(N)(Q) to Qσ, defines a repre-
sentation

ρX1(N),l : GQ → GL(Vl(X1(N))).

Theorem 6.11. Let l be a prime and N be a positive integer. The Galois repre-
sentation ρX1(N),l is unramified at every prime p ∤ lN . For such p, let p ⊂ Z be a
prime over p. Then ρX1(N),l(Frobp) satisfies the polynomial equation

x2 − Tpx+ ⟨p⟩p = 0.

Proof. Let p lie over p and p ∤ lN . For each n ∈ Z+ the following diagram commutes:

Dp Aut(J1(N)[ln])

GFp Aut(Jac(X̃1(N))[ln])

π

The map π is induced from the reduction map X1(N)→ X̃1(N). We will take as

a fact that the map Pic0(X1(N))[ln]→ Pic0(X̃1(N))[ln] is an injection (for details,
see the discussion in [20]), which also shows that this map is an isomorphism,
since by Theorem 5.4 both sides are isomorphic to (Z/lnZ)2g. Thus, the map π
is also an isomorphism. By diagram chasing, the kernel of the left vertical map is
Ip ⊂ ker ρX1(N),l. Thus, ρX1(N),l is unramified at p.
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To prove the polynomial equation, use the Eichler–Shimura relation

Pic0(X1(N)) Pic0(X1(N))

Pic0(X̃1(N)) Pic0(X̃1(N))

Tp

σp,∗+⟨̃p⟩∗σ
∗
p

(Recall that J1(N) is funtorially isomorphic to Pic0(X1(N)), so we use the two no-
tations interchangeably.) The same diagram but with Tp replaced by Frobp +

p⟨p⟩Frob−1
p also commutes. Since the vertical arrows are isomorphisms, Tp =

Frobp + p⟨p⟩Frob−1
p on Pic0(X1(N))[ln]. Multiplying by Frobp on both sides gives

the desired polynomial relation. Since n is arbitrary, this extends to Vl(X1(N)). □

Next, we will show that the representation ρX1(N),l is compatible with ρAf ,l.

Lemma 6.12. The map J1(N)[ln]→ Af [l
n] is a surjection.

Proof. Use the model of J1(N) and Af over C. Let y ∈ Af [l
n]. Then y = x +

IfJ1(N) for some x ∈ J1(N) such that lnx ∈ IfJ1(N). Thus, lnx = lnx′ for some
x′ ∈ IfJ1(N). Then x− x′ ∈ J1(N)[ln] maps to y. □

Since the morphism J1(N)→ Af is defined over Q, and hence locally defined by
rational functions over Q, the Galois action commutes with the morphism, i.e., for
σ ∈ GQ, the following diagram commutes:

J1(N) J1(N)

Af Af

σ

σ

Since Tp acts as ap(f) and ⟨p⟩ acts as χ(p), it follows that ρAf ,l(Frobp) also satisfies
the polynomial equation

x2 − ap(f)x+ χ(p)p = 0.

Now the modular Galois representation ρf,λ is ρAf ,l followed by a projection onto
GL2(Kf,λ); thus, ρf,λ(Frobp) also satisfies the above polynomial equation. This
proves:

Theorem 6.13. Let f ∈ S2(N,χ) be a newform with number field Kf . Let l be
a prime. For each prime λ of OKf

lying over l, there is a Galois representation
ρf,λ : GQ → GL2(Kf,λ) which is unramified at every prime p ∤ lN such that for any
p lying over such p, ρf,λ(Frobp) satisfies the polynomial equation

x2 − ap(f)x+ χ(p)p = 0.,

In particular, if f ∈ S2(Γ0(N)), then the relation is x2 − ap(f)x+ p = 0.

Theorem 6.14. The three versions of Modularity Theorems (Version R, Strong
Version R, and Version ap) are all equivalent.

Proof. Assume Version R. Let E be an elliptic curve over Q with conductor N .
Then by Version R, there is a newform f ∈ S2(Γ0(Mf )) such that ρf,λ ∼ ρE,l for
some maximal ideal λ ofOKf

lying over l. Thus, ρE,l(Frobp) satisfies the polynomial

x2 − ap(f)x + p for any Frobp where p lies over p ∤ lMf . But we also know from
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Theorem 2.12 that ρE,l(Frobp) has characteristic polynomial x2−ap(E)+p. Thus,
ap(f) = ap(E) for almost all p. By [21], this implies that ap(f) = ap(E) for all
prime p.

Conversely, suppose Version ap of Modularity is true. Let E be an elliptic curve
over Q with conductor N . There is a newform f ∈ S2(Γ1(N)) such that ap(f) =
ap(E) for all p. Since ap(f) ∈ Z, it follows that Kf = Q and Af is an elliptic
curve. The respective characteristic polynomials for ρf,l(Frobp) and ρE,l(Frobp)
are x2 − ap(f)x + p and x2 − ap(E)x + p for all but finitely many p. But then
this means that the characteristic polynomials are equal on a dense subset of GQ,
and since trace and determinant are continuous, the characteristic polynomials are
always equal. Consequently, the representations are equivalent (cf. Exercise 9.6.1
of [4]). This implies strong Version R of Modularity, which clearly implies Version
R of Modularity.

□

The proof above also shows the following remarkable fact:

Proposition 6.15. Let E be an elliptic curve over Q. If ρE,l is modular for some
l, then ρE,l is modular for all l.
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[20] J. Apple and A. Youcis. Seeking References for Facts from Diamond & Shurman. Math

StackExchange. Available at https://math.stackexchange.com/questions/4295108/seeking-

references-for-facts-from-diamond-shurman
[21] H. Carayol. Sur les Représentations l-adiques Associées aux Formes Modulaires de Hilbert.

Ann. Sci. E. N. S., 19 (1986), 409-468, DOI 10.24033/asens.1512.


	1. Introduction
	2. Elliptic Curves and Galois Representations
	2.1. Basic facts of elliptic curves
	2.2. Galois representation
	2.3. Tate module
	2.4. Reduction of elliptic curves
	2.5. The characteristic polynomial

	3. Modular Curves as Moduli Spaces of Elliptic Curves
	3.1. Complex tori and complex elliptic curves
	3.2. X0(N), X1(N), and X(N)
	3.3. Modular forms
	3.4. Modular curves over Q

	4. Hecke operators
	4.1. Hecke operators over C
	4.2. Hecke operators over Q
	4.3. Hecke eigenforms
	4.4. Jacobian and Picard groups

	5. Modular Galois Representation
	5.1. Abelian varieties
	5.2. Modular Galois Representations
	5.3. Modularity Theorem

	6. Eichler–Shimura Relation
	6.1. Reduction of elliptic curves over Q
	6.2. Reduction of modular curves
	6.3. The Eichler–Shimura Relation
	6.4. Characteristic polynomial of Frobenius; Modularity Theorem

	Acknowledgments
	References

