GALOIS REPRESENTATIONS AND MODULARITY THEOREM

WENSHI ZHAO

ABSTRACT. This paper serves as an introduction to the theory of modular
forms and Galois representations. We begin by defining the Galois represen-
tation associated with an elliptic curve. Next, we describe modular curves
as moduli spaces of elliptic curves equipped with enhanced torsion data. We
then outline the theory of Hecke operators and their actions on various objects,
including the modular curves and the space of cusp forms. Using these pre-
liminaries, we construct the Galois representation associated with a newform
in the weight-2 case and state the Modularity Theorem. Finally, we apply
the Eichler—Shimura relation to connect this formulation of the Modularity
Theorem with another version, which predicts the relationship between the
number of points on elliptic curves modulo p and the Fourier coefficients of
their associated newforms.
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1. INTRODUCTION

The Modularity Theorem is a theorem roughly of the following form: every el-
liptic curve is associated with a modular form. In this paper, we will introduce
two formulations of the Modularity Theorem. The first is through Galois repre-
sentations, i.e., representations of the absolute Galois group Gg = Gal(Q/Q). For
every prime [ and every elliptic curve E over Q, there is an associated Galois rep-
resentation pg ;. For a newform f (defined in subsection 4.3), we may associate an
abelian variety Ay over @@, and through this geometric object we may also define
a representation, denoted py x. The Modularity Theorem states that every pg; is
equivalent to some ps » for some newform f. The central achievement of Andrew
Wiles’ famous 1995 paper [1] proving Fermat’s Last Theorem was to establish this
formulation of the Modularity Theorem in the case of semistable elliptic curves.'

The second formulation of the Modularity Theorem is as follows. In many cases
(see Definition 6.1), one can reduce an elliptic curve E over Q at a prime p € Z.
Let a,(E) = p+1— |E(F,)|, where E is the reduction of E at p and E(F,) denotes
its Fp-points. For a modular form f, let f(7) = > .2 an(f)g™ be its Fourier
expansion. The second version of the Modularity Theorem states that, for each
elliptic curve E over Q, there is a newform f such that a,(E) = a,(f). Thus, the
Fourier coefficients of f encode the number of points of the various reductions of
E.

The main objective of this paper is to introduce these two formulations of the
Modularity Theorem and show that they are equivalent. In doing so, we will touch
on Galois representations in general, modular forms, modular curves, Hecke opera-
tors, Jacobians, and related topics. In section 2, we review some basic facts about
elliptic curves, define the Galois representation associated with elliptic curves, and
compute the characteristic polynomial of the image of crucial elements Frob, € Gg.
This characteristic polynomial will serve as the link between the two versions of the
Modularity Theorem. In section 3 and section 4, we outline parts of the classical
theory of modular curves, modular forms, and Hecke operators. We will repeatedly
emphasize the perspective of the modular curve as a moduli space (i.e., a space of
solutions to classification problems) of elliptic curves. In section 5, we define the
Galois representation associated with a newform and state the first version of the
Modularity Theorem. Finally, section 6 introduces reductions of algebraic curves
(in particular, modular curves), sketches the proof of the Eichler—Shimura relation,
and shows the equivalence of the two formulations of the Modularity Theorem.

Readers for this paper should be familiar with basic algebra, complex anal-
ysis, and topology. Familiarity with Riemann surface, basic algebraic geometry
(Hartshorne 1.1-1.6 and 2.2), and elliptic curves will be very helpful.

This paper is intended as a short introduction, so we will sketch many results
without going into too much detail. We want to give readers a glimpse into these
beautiful theories without requiring them to work through excessive technicalities.
References are included for those who wish to study this material in greater depth.

1Roughly speaking, the proof of Fermat’s Last Theorem reduces to showing the nonexistence
of certain elliptic curves. This nonexistence follows from properties of modular forms, together
with the connections established by the Modularity Theorem. See [2] for a nice exposition.
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2. ErripTic CURVES AND GALOIS REPRESENTATIONS

2.1. Basic facts of elliptic curves. We begin by recording the basic facts about
elliptic curves over a field. These facts will be used freely in the rest of the paper.
For details, see [3].

(1)

An elliptic curve over a field k is a pair (E,0g), where F is a nonsingular
curve of genus one over k and O € E. For the rest of this subsection,
assume that Char(k) # 2, 3. Every elliptic curve is isomorphic to the plane
curve in IE”%, given by a Weierstrass equation

E :y? =423 — gox — g3,
where the isomorphism sends Og to the point of infinity [0 : 1 : 0]. Now let
A=gs—2Tg5€k,  j=1728¢5/A€k.

The quantity A (resp. j) is called the discriminant (resp. invariant) of
the Weierstrass equation, respectively.

Any two Weierstrass equations for isomorphic elliptic curves E are related
by an admissible change of variables, meaning one of the form

r = u’r, y = uy’ (u € k).

We say that two Weierstrass equations are equivalent if they are related
by an admissible change of variables. Under this change of variables, we
have

A=u?N, j=7.
In particular, the invariant depends only on the elliptic curve E and not on
the choice of Weierstrass equation.
For any extension K/k, let F(K) denote the set of K-points of E. If E' is
given by a Weierstrass equation E(z,y) € k(z,y), then E(K) = {(z,y) €
K :E(z,y) =0} U{0g}.
The k-points of an elliptic curve have a group law defined by the property
that if P,@, and R are collinear, then P + Q) + R = 0. If we denote the
coordinate P = (zp,yp) € A%, then

($P+Q,yP+Q> = (T(xpva’yP>yQ>7S(IP7mQ>vayQ))
for some r, s € k(zp,q,yp, Y, 92, g3). For K C k, E(K) is a subgroup of

E = E(R).
Let [N] : E — E be the multiplication by N map, and let E[N] = ker([N])

be the N-torsion points. Then

EIN] =[] Elp**]  where N =[] p*.
If p # Char(k), then E[p¢] = (Z/p°Z)?. If p = Char(k), then E[p¢] = Z/p°Z
for all e > 1, or E[p°] =0 for all e > 1. If p = Char(k), and E[p] = Z/pZ,
then F is called ordinary; if E[p] = 0, then E is supersingular.

Let X be an algebraic curve. The divisor group is the group of finite integer
combinations of points of X:

Div(X)= & Z
x a closed point of X

For a regular function f on X, let div(f) be the divisor whose value at x
is the order of vanishing of f at z. A divisor of the form div(f) is called a
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principal divisor. The subgroup of principal divisors of X is denoted as
Div!(X).
(7) The degree of a divisor D = (n,) € Div(X) is

deg D = Z n, degx,
zeX
where deg x is the degree of its residue field2. Principal divisors on algebraic
curves have degree 0. Let Div’(X) C Div(X) be the subgroup of degree-
zero divisors. Define the Picard group of C' as

Pic’(X) = Div’(X)/Div!(X).

(8) We denote the point z in the Picard group as [z]. If h : X — Y is a
morphism of algebraic curves, then it induces forward backward maps on
Picard groups:

hy : Pic®(X) — Pic’(Y)  h, (Z nx[g;]> = ng[h(z)],

reX zeX

r* : Pic’(Y) — Pic?(X) h* Z nylyl | = Z Ny Z en(z)[z],
yey yey xeh~1(y)
where ep,(z) is the degree of ramification at . These induced maps are
functorial, namely, if h : X — Y and g : Y — Z are morphisms, then
(goh)x = g« 0 hy, and (go h)* = g* o h*. Moreover, they satisfy

heoh® =degh,

where deg h denotes multiplication by deg h.
(9) Let E be an elliptic curve. Then the map

Div(E) — E: > np(P)— > npP
(where (P) is the point in Div(E) corresponding to P € E) induces a group
isomorphism
Pic’(E) = E.
In particular, this gives a characterization of principal divisors:

an(P) € Divi(E) «— an =0 and anP =0g.

(10) Let uxn denote the group of N*! roots of unity in k. If Char(k) = 0, then
there is a bilinear, alternating, and non-degenerate pairing ey : E[N] x
E[N] — pn that also satisfies the following properties:

e For any o € Gal(k/k), exn(P,Q)° = ex(P7,Q°).

e ey is compatible with isomorphism, i.e., if ¢ : E — E’ is an isomor-
phism of elliptic curves taking P (resp. Q) to P’ (resp. Q'), then
en(P,Q)=en(P,Q").

e If P, @ forms an ordered basis for E[N], then ex (P, Q) is a primitive
Nth root of unity.

This is called the Weil pairing.

21f X is an algebraic variety, then the residue field of z € X is defined to be k(z) = Ox z/mx 4,
where Ox , is the local ring at x and mx , is its maximal ideal.
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2.2. Galois representation. One of the fundamental objects of study for number
theorists is finite extensions of @, and in particular, the Galois extensions. This
naturally leads to investigating the structure of their Galois groups, and hence, the
absolute Galois group
Gg == Aut(Q/Q).

Understanding Gg amounts to understanding its representations. This subsection
defines l-adic Galois representations and discusses the one-dimensional case.

Because the group structure of the infinite group Ggq is extremely complicated,
it is desirable to impose a continuity condition on the representations of Gg, and
to this end we first need to define a topology on Gg. We would like this topology
to “restrict to the discrete topology” when we project to the quotient Gal(K/Q) =
Go/Gk for any finite extension K/Q. This motivates:

Definition 2.1. The Krull topology on Gg is the topology on Gg generated by
Uy (K) := 0 - ker(Ggp — Gal(K/Q))

for K a number field Galois over Q and o € Gg, where Gg — Gal(K/Q) is restric-
tion from Q to K. Let U(K) = Uy (K).

Definition 2.2. Let [ be a prime of Z. An [-adic Galois representation is a
continuous group homomorphism

p: Gg — GL, (L),
where L is a finite extension of Q.

Before proceeding, we shall explain why we consider [-adic representations in-
stead of complex representations. Consider a continuous representation p : Gg —
GL,(C). Choose an open neighborhood W of the identity in GL,,(C) that contains
no non-trivial subgroups. Since p~!(W) is a neighborhood of 1 in Gg, it must
contain some U(K) for some number field K. Since U(K) is a subgroup, so is
p(U(K)) ¢ W, and by the choice of W, p(U(K)) = 1. Thus, p factors as a rep-
resentation Gal(K/Q) — GL,(C), which means that p fails to capture the infinite
structure of Gg.

On the other hand, we now construct a 1-dimensional I-adic Galois representation
that does keep track of some infinite structure of Gg. For o € G, let x;(o,n) be
defined by

=M i(on) € Z.

The identification Gal(Q(u»)/Q) = (Z/I1"Z)* takes o|g(u.) to xi(o,n). Further-
more, under this identification, the restriction Gal(Q(p)/Q) — Gal(Q(pn-1)/Q)
is compatible with the natural restriction (Z/I"Z)* — (Z/I1""'Z)*. Hence, there is
a map

xi: Go = Im{(Z/1"2)"} = Zi ¢ Qf = GL1(Q1): o= (xlo,1),xu(0,2),...).
n
This is clearly a group homomorphism. To check continuity, it suffices to how that
x; '(1+1"Z;) is open in Gg. To see this, observe that
o€ Xl_l(l +1"Z;) < xi(o,m) = lfor each m <n
= Ilogun) =1
= o€ UQ(um)).
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Definition 2.3. The [-adic Galois representation x; : Gg — GL1(Q;) constructed
above is called the [-adic cyclotomic character.

Example 2.4. Recall the following notions from algebraic number theory. Let
p C Z be a prime that lies over a prime p € Z. Then the decomposition group is
defined to be

Dy :={0c€Gg:p° =p}.
Now, reduction mod p defines a surjective homomorphism
D, — Gal(F,/F,),
whose kernel is
I, :={c€Gg:2° =2 mod p for all z € Gg}.

The Frobenius automorphism in F,/F, which takes = € F,, to 27 pulls back to an
element Frob, € D,/I,, which satisfies

2P = 2P mod p e Q.

The notation Frob, may be used to denote any element in the coset D, /I,. We now
claim that x;(Frob,) = p for p # {. Indeed, Q(~)/Q is unramified over p and the
Galois group is abelian, hence Froby|g(,,.) is uniquely determined. It is precisely
the map juyn + p,. Thus, x;(Froby,n) = p for all n, so x;(Froby) = p € GL1(Q;).

Definition 2.5. Let p be a Galois representation and let p be a prime. Then p is
unramified at p if I, C ker p for any nonzero prime p C Z lying over p.

For example, x; is unramified at p for p # [.
For p unramified, p(Froby) is well-defined for each p and changing p conjugates
it, and so the conjugacy class of p(Frob,) only depends on p.

2.3. Tate module. In this subsection we define the Tate module and construct
the Galois representation associated to an elliptic curve. Each Galois action is sent
to an automorphism of the Tate module.

Definition 2.6. Let E be an elliptic curve over Q. Consider the inverse system
Bl &£ B2 &L BP) « -
The Tate module of E is defined to be the inverse limit
Tay(B) = lm{ E[I"]}.

By choosing a basis for all n, compatibly with multiplication by [, we have
Tay(E) = 73.

The Galois group Gg acts on the points of an elliptic curve E over QQ coordinate-
wise: if P = (xzp,yp) € Q(E), then P° = (2%,y%). Since (zpiq,ypig) =
(ri(zp,ypr,20,yq),m2(zpP,yr, Q,yq)), where r; are rational functions over Q, the
Galois action commutes with 7;, hence (P + Q)? = P° + Q°. In other words, any
o € Gg gives a group homomorphism on the points of E. If we take the inverse
limit of the following diagram
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B[] — B[]
B[] —Q E[l™]
we obtain an automorphism o of Ta;(E). We thus get a group homomorphism
pE  Gg — Aut(Tal(E)) = GLQ(Z[) C GLQ(Q[).

This is the desired representation. This is continuous. Indeed, a distinguished base
near id € GL2(Qy) is the set of (id + Max2(1"Z;)) N GL2(Qy), and

pp ((id 4+ Mayo(I"Z1)) N GLy(Q)) = {o € Gg : olppry = 1}
= {U c GQ : J|Q(E[ln]) = 1},
where Q(E[I™]) is the finite extension over Q obtained by adjoining the coordinates

of all E[I"]-torsion points. This is open in the Krull topology, hence proving the
continuity.

2.4. Reduction of elliptic curves. In this subsection, we first state some pre-
liminaries on reductions of elliptic curves (for details, see [4] or [3]), then record
some important facts about the Frobenius morphism.

For elliptic curves in general characteristic (particularly 2 or 3), one has to
consider a more general form of Weierstrass equation, and express the discriminant
and the invariant using the general form. We will skip this detail and refer the
interested readers to Section 8.1 of [4].

Definition 2.7. For an elliptic curve E over Q, let
vp(E) = min{v,(A(E")) : E integer coefficient and equivalent to E'}.

Considering possible admissible changes of variables, if v,(A) < 12, v,(E) = v,(A).
Define the global minimal discriminant of F to be

Apin(E) = Hpvp(E).
p

In fact, the p-adic valuation of the discriminant can be minimized to v,(E) simul-
taneously for all p by an admissible change of variables. Thus, there is a global
minimal Weierstrass equation. Assume E is global minimal. Define a Weier-
strass equation I over [F,, by reducing the coefficients of £ mod p.

Definition 2.8. An elliptic curve F has reduction at p which is

(1) good (nonsingular, stable) if E is again an elliptic curve. Equivalently,
P 1 Amin(E). Moreover, the reduction is
(a) ordinary if E[p] = Z/pZ.
(b) supersingular if E[p] = 0.
(2) bad (singular) if E is not an elliptic curve. Moreover, putting E in the
form (y — myz)(y — max) = 23, the reduction is
(a) multiplicative (semistable) if the singular point is a node (m; # ms);
(i) split if mqy,mg € ).
(ii) non-split if my, mg & F).
(b) additive (unstable) if the singular point is a cusp (m; = ma).
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These reduction types are all independent of the choice of global minimal Weier-
strass equation.

The following notion tracks the primes where an elliptic curve has bad reduction.
This will be used in section 5 and section 6.

Definition 2.9. Let E be an elliptic curve over Q. Then define the algebraic
conductor of E to be Ng = Hp pfr, where

0 if £ has good reduction at p,
I = 1 if F has multiplicative reduction at p,
P2 if F has additive reduction at p and p & {2, 3},

2+, if E has additive reduction at p and p € {2, 3},

for certain d, < 6 and d3 < 3, which measures “wild ramification” in the action of
the inertia group on Ta;(E) (see Appendix Cin [3]). In particular, p | Apin(E) <~

In the positive characteristic setting, there is an important map, called the Frobe-
nius endomorphism. We state preliminary results on the Frobenius map, which will
be used freely later in the paper.

(1) Recall the Frobenius endomorphism
op: k= ko a?

for any field k of characteristic p, which is an automorphism for k = F,. It
induces for any projective curve C' C P" over F,, a morphism

op: C— C%: [Zo - r@p] e [ah -2l

where C? is defined by applying o, to the coefficients of the equations
defining C.

(2) We say that a morphism of curves is separable (resp. inseparable, purely in-
separable) if the induced map of function fields is separable (resp. insepara-
ble, purely inseparable). The Frobenius morphism o, is purely inseparable
with degree p [3, p. 25].

(3) Since any field extension can be factored as a separable extension and a
purely inseparable extension, any morphism h : C — C’ of curves can be
factored as

heC ey o s o,

Any purely inseparable extension is obtained by successively adjoining p-th
roots of multiplicity p. Geometrically, this means (for curves) that hins = o},
for some e > 0 up to isomorphism. Thus, h = hsep 0 0p. For all but
finitely many points y € C’, |h™*(y)| = degg.,(h). In the special case where
@ : C — (' is an isogeny, all fibers have the same cardinality (since ¢ is
a group homomorphism), so [h~!(y)| = deg,.,(h) for all y. In particular,
| ker o| = deggep, (h).

(4) The separable (resp. inseparable) degree of a morphism h : C — C’ is
defined to be the degree of hgep (resp. hins). These degrees are multi-
plicative: if ' : C" — C” is another morphism, then deg. (h' o h) =
degge, (h') - degg., (h) and similarly for inseparable degrees.



GALOIS REPRESENTATIONS AND MODULARITY THEOREM 9

(5) The induced forward and backward maps of o, on the Picard group are
easily computed to be

Opst (P) = (0p(P)),  op: (P) = ploy ' (P)).

: P
For h : C — C’, the following equalities hold:
® hoopc = o0pcroh.
e h,o O’;C = O’;Lv/ o hy.

2.5. The characteristic polynomial. In this subsection, we will show that the
characteristic polynomial of pg ;(Frob,) is related to the solution counts of E mod-
ulo p. The characteristic polynomial is especially important, since by the Cheb-
otarev density theorem, the Frobenius elements (possibly excluding those over
finitely many integer primes for which pg; is ramified) are dense in Gg. Since
pE, is continuous, these pg ;(Frob,) determine the representation pg; completely.

]i)eﬁnition 2.10. Let F be an elliptic curve over Q with good reduction at p and
FE be its reduction mod p. Then define

ay(E) :=p+1 - |E(F,)|.

This definition captures how much the number of F,-points of E differs from
the estimated number, which is p 4+ 1. (Intuitively, for p not equal to 2 and 3, the
Weierstrass equation can be written as y? = f(x) for some cubic polynomial f. For
roughly half the z’s in F,,, f(z) is a quadratic residue, yielding two solutions for y,
while for roughly half the z’s, it is a non-quadratic residue, yielding no solutions
for y. Adding in the point at infinity, there should be about p+ 1 solutions in F,,.)

Lemma 2.11. With the same setup as in the above definition,
ap(E) = op« + 0, on Pic®(E).
Proof. Note that
E(F,) ={P € E: P’ = P} = ker(o, — 1).
And observe that o, — 1 is separable: indeed, if not, then o, — 1 = f o 0}, for some

morphism f, so that (1 — f) oo, = 1, showing that o, is an isomorphism; this is
not the case, contradiction. Thus,

|E(Fp)| = |ker(op — 1)| = deg(op, — 1) = (0 = 1)so(0p = 1)" =p+1-0p. — 0,

p’
from which the result follows. O

Theorem 2.12. Let [ be a prime and E an elliptic curve over Q with conductor
N. The Galois representation pg, is unramified at every prime p t IN. For any
such p, let p C Z be any mazimal ideal over p. Then the characteristic polynomial
of pg,(Froby) is

2 — a,(E)z +p=0.
Moreover, pg, is irreducible.

Proof. Observe that the following diagram commutes:

D, —"— Aut(E[I"])

| |

Gr, —— Aut(E[I")
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From Chapter VII Proposition 3.1 of [3], one knows that, if E has good reduction
at p and p # 1 (ie., if p 1 IN), E[I"] — E[I"] is injective.? Using the known
structure of the torsion subgroups of elliptic curves and comparing cardinalities, it
follows that E[I"] — E[i"] is an isomorphism. Hence, m, is an isomorphism. By
definition, ker m, = I,, so I, = kerm, C kerm, o p, = ker p,. This proves that the
representation is unramified at such primes.

Consider the two diagrams below:

B 25 ppm B O gy
E") ——— E[i"] E"] ——— ElI"]

The second diagram commutes by facts from the last subsection; the first diagram
commutes by the lemma and the identification of E with Pic’(E). Since the vertical
maps are isomorphism, this means a,(£) = Frob, + pFrob, 1 Thus, Frobg —
ap(E)Frob, +p = 0.

To show that this is indeed the characteristic polynomial, it suffices to show that
det pg i(Frob,) = p. To see this, pick an ordered basis P,Q of E[I"], and pick a
primitive root of unity py» = en (P, Q). Then

pin =en(P,Q)° =en(P?,Q%) = M?ftﬂn(a)

where ey is the Weil pairing. But by definition of x;, uf = ,uﬁ(a’"). Thus,
det p,(0) = xi(o,n) in Z/I™Z. Taking inverse limits, this shows that det pg; = x;.
But x;(Froby,) = p, so det pg ;(Frob,) = p, as desired.

For the last statement, Theorem IV.2.1(a) of [5] proves that pg ; is irreducible if £
has no complex multiplication over Q. But E/Q cannot have complex multiplication
over Q (cf. discussions in [6]). O

We will come back to use this characteristic polynomial when we show that the
two formulations of the Modularity Theorem discussed in this paper are equivalent.

3. MODULAR CURVES AS MODULI SPACES OF ELLIPTIC CURVES

Whenever we are given a mathematical object, it is natural to ask: can we
classify these objects up to isomorphism? In algebraic geometry, such classification
problems often have a set of solutions that itself carries a geometric structure, such
as a Riemann surface, a variety, or a scheme. Roughly speaking, these “parameter
spaces” are called moduli spaces. In this section, we introduce modular curves as
moduli spaces of elliptic curves equipped with additional data, and modular forms
as differentials on modular curves. We begin by examining the relationship between
complex tori and complex elliptic curves. Next, we define three important families
of modular curves: Xo(N), X1(N), and X(N). We then briefly discuss modular
forms, and finally, we present a model of these modular curves over Q.

3In [3], F is assumed to be an elliptic curve over a local field. The Proposition applies to our
case because there is an injection E[m] — E(Qp)[m|, which allows us to pass to the local field
case.
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3.1. Complex tori and complex elliptic curves. In this subsection, we prove
some elementary properties of complex tori, and we will show that complex tori are
the same as complex elliptic curves.

Definition 3.1. A complex torus is the space C/A, for a lattice A in C.

A complex torus has a natural Riemann surface structure induced from that of
C. It is also an abelian group under addition.

Definition 3.2. An isogeny between complex tori is a non-constant holomorphic
group homomorphism between complex tori ¢ : C/A; — C/As. An isomorphism
of complex tori is a biholomorphic isogeny.

We now characterize different maps of complex tori.

Proposition 3.3. Let ¢ : C/A — C/A be a non-constant map of complex tori.
(1) ¢ is holomorphic if and only if ¢ is of the form o(z+ A) =mz+b+ A,
where m,b € C and mA C A'.
(2) ¢ is an isogeny if and only if ¢ is of the form (z + A) = mz + A, where
m € C and mA C A.
(3) ¢ is an isomorphism of complex tori if and only if v is of the form p(z +
A) =mz+ N, where m € C and mA = A'.

Proof. All the “if” directions are clear. We will only prove (1) since the rest easily
follows. Suppose ¢ is holomorphic. Since C is the universal cover for both complex
tori, o can be lifted to a map ¢ : C — C such that the following diagram commutes:

c—*% ,c

ﬂl l’“

C/A —5— C/N

Now for each A € A, let fi(z) := @(2 +A) — @(2). Then 7’ o fr = p(z + A+
A)—p(z+A) =04+ A, soim(fy) € A’. But f is continuous and A’ is discrete,
forcing fy to be a constant. Differentiating fy, we obtain &'(z + \) = ¢'(2), so ¢’
is A-periodic. But this implies that @’ is bounded, hence constant by Liouville’s
Theorem. Thus, @ is linear, and ¢ is of the desired form. This proves (1). O

Let H denote the complex upper half-plane {z € C : Im(z) > 0}. The group
SLo(Z) acts on H by fractional linear transformations:

az+b

a b
v(2) = oo D (c d) € SLy(Z), z € H.

Proposition 3.4.
(1) Let A = Zwy ®Zws and N = Zw' ® Zwhy such that wy Jwe,w| /wh € H. Then

A=A — (Zi) =7 <w1) for some v € SLy(Z).

)

(2) Let Ar = Z1 D Z for 7 € H. Then every complex torus is isomorphic to
some C/A.
(3) C/A., is isomorphic to C/A., if and only if 1 = 1o for some v € SLy(Z).

Proof. Simple exercise. O
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Now we state the relationship between complex tori and elliptic curves.

Definition 3.5. The Weierstrass gp-function is

@(Z)ZL‘F 1 —i>, z€C—A.

Definition 3.6. Let A C C be a lattice. The weight-k Eisenstein series is
Gr(A) jGAZ_{O} %, k > 2 even.
Also define
92(A) = 60G4(A),  g3(A) = 140Gg(A).
Theorem 3.7. Let A C C be a lattice, and g2 = g2(A), g3 = g3(A).
(1) The functions p and its derivative ' satisfy

(¢'(2))% = 4p(2)° — g2(A)p(2) — g3 ().

(2) The polynomial 4x® — go(A) — g3(A) has distinct roots, hence the discrimi-
nant A(A) = g2(A)3 — 27g3(A)? is non-zero.
(3) The curve E : y? = 423 — go(N)x — g3(A) is an elliptic curve, and the map

¢: C/A — E(C) Cc P*(C): 2 [p(2) : 9'(2) : 1]

is an isomorphism of complex Lie groups (i.e., a biholomorphic group iso-
morphism).

(4) Every pair of g2,93 € C satisfying g5 — 2793 # 0 can be expressed as
92 = g2(A), g3 = g3(A) for some lattice A C C.

(5) Let Eq, Ey be the complex elliptic curves associated to lattices Ay, Ay re-
spectively. Then there is a functorial bijection

{isogenies ¢: C/A; — C/Ag} — {isogenies ¢: By — Fs}.

defining an equivalence between the categories of tori and elliptic curves.

Proof. See Chapter VI of [3] or Chapter 2 of [4]. O

3.2. Xo(N), X1(N), and X(N). By Proposition 3.4, we see that each complex
torus can be represented by C/A. where 7 € H, and such a representation is unique
up to action by SLy(Z). Thus, the quotient space SLy(Z)\H is a moduli space of
complex tori, i.e., in bijection with the set of complex tori up to isomorphism. By
Theorem 3.7, there is a bijective correspondence between complex tori and elliptic
curves. Thus, the space SLo(Z)\H also classifies complex elliptic curves. The space
SLo(Z)\H is an example of a modular curve over C. The group SLy(Z) is generated

0 -1 11
=) =)

and the space SLo(Z)\H can be visually represented by:



GALOIS REPRESENTATIONS AND MODULARITY THEOREM 13

FIGURE 1. Fundamental Domain of SLy(Z)\H [7].

The (open) shaded region is called a fundamental domain for SLy(Z)\H. The
arrows on the boundary lines indicate that these lines are identified by the given
transformations.

By modifying the classification problem, we can obtain other spaces of solutions.
For example, we could keep track of not just the isomorphism class of an elliptic
curve but also additional torsion data.

Definition 3.8. Let
So(N) = {isomorphism classes of pairs (E,C), where E is a complex

elliptic curve and C is a cyclic subgroup of order N},

S1(N) = {isomorphism classes of pairs (E,Q), where E is a complex

elliptic curve and @ is a point of order N},
S(N) = {isomorphism classes of pairs (E, (P,Q)), where E is a complex
elliptic curve and (P, Q) is a pair of points that generate E[N]}.

As a special case, the space of elliptic curves over C can be viewed as S1(1)(C).
As in this special case, there are subgroups I'g(V), I'1(N), and I'(N) that describe
algebraically the parameter space for these elliptic curves with additional data.
These groups are defined by

T(N) = {'y €SLy(Z) : 7 = ((1) ‘i) mod N}7
Ty (N) = {7 € SLy(Z) iy = ((1) ) mod N}

To(N) = {7 € SLy(Z) : vy = (3 *) mod N}

Note that I'(N) C I'1 (V) C T'o(N) C SLa(Z), and T'(1) =T'1(1) =Ty(1) = SLa(Z).
Now also define

Y(N)=T(N\H, Yi(N)=Ti(N\H,  Yo(N)=To(N)\H.
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Theorem 3.9. Let N be a positive integer. For T € H, denote by E, the complex
elliptic curve corresponding to the complex torus C/A,. Then

(1) So(N) ={[E-,(1/N + A.)] : 7 € H}, and there is a bijection
Yo: So(N) = Yo(N): [C/A, (1/N + A;)] — To(N)T.
(2) S1(N)=A{[E;,1/N+A;]: 7 € H}, and there is a bijection
Pr: S1(N) = Yi(N): [C/A+,1/N + A ] — T1(N)T.
(3) S(N)={[C/A+, (/N +A;,1/N +A;)] : 7 € H}, and there is a bijection
Y: S(N) = Y(N): [C/A;, (/N + A, 1/N + A)] = T(N)7.

Proof sketch. (For details, see section 1.5 in [4].) We will prove (2), the other
parts being similar. We may take E = C/A.s for some 7/ € H, so that Q =
(e’ + d)/N + A, for some ¢,d € Z. For the first statement, it suffices to find
m, T € C such that mA, = A, and m(1/N + A;) = Q. Towards this, since @ has
order N, ged(c,d, N) = 1, so we can find a,b, k € Z such that ad — bc — kN = 1.

Z reduces mod N to SLg(Z/NZ). Observe that changing its

entries mod N does not change Q. So, since SLy(Z) surjects onto SLy(Z/NZ), we
can take v € SLy(Z/NZ). Take m = ¢t’+d and 7 = v(7'), and this yields what we
wanted following a direct computation. We can also show that [E.,1/N + A;] =
[E;,1/N + A/ if and only if T’y (N)r = T';(N)7’. Hence, v is a bijection. O

The matrix v =

Definition 3.10. A subgroup I' of SLy(Z) that contains I'(N) is called a congru-
ence subgroup of level N. A space of the form Y (I') := I'\SL2(Z) is called a
modular curve. By adding finitely many points, called cusps, one can compact-
ify Y/(T'), and the resulting compact Riemann surface is denoted X (I"). The spaces
X (T') are also called modular curves. In particular, denote by Xo(N), X1(NV), and
X (N) the compactifications of Y5(N),Y1(N), and Y (), respectively.

3.3. Modular forms. Modular forms naturally arise as differentials on the mod-
ular curve. In this subsection, we will first define modular forms as functions on H,
then interpret them as differentials on X (T').

Definition 3.11. Let I" be a congruence subgroup of SLy(Z), and k an integer. A
function f : H — C is a modular form of weight k£ with respect to T if

(1) f is holomorphic.
(2) f is weight-k invariant under T, i.e.,

_ Jfla@) _ _(a b
fla)e(r) == ot df f(r) foralla= (c d) el.

(3) fla]k is holomorphic at oo for all a € SLy(Z).

We explain condition (3) here. Any congruence subgroup I'(N) C T' C SLy(Z)
contains a translation matrix of the form

1 h
(0 1) T T+ h,

for example for h = N. Thus, if f satisfies (1) and (2) for T', then g = f[a]y satisfies
them for o~ 'T'ae D T'(N) and can be written as g’ ogy,, where g5, (1) = €>™7/". Define
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fla]x to be holomorphic at co if ¢’ extends holomorphically to ¢ = 0. In particular,
this means that f has a Fourier expansion

oo
fE) = angy, g =emT0
n=0

Definition 3.12. The space of modular forms of weight k& with respect to I" is
denoted My (T). If ap = 0 in the Fourier expansion for f[a]; for all a € SLy(Z),
then f is said to be a cusp form. The space of cusp forms of weight k£ with respect
to T is denoted Si(T").

The spaces My (') are all finite-dimensional vector spaces [4, Sections 3.5, 3.6].

Example 3.13.

(a) The weight-k Eisenstein series defined before is a weight-k modular form
in Mg(SL2(Z)) for even k > 4. In particular, go(7) = 60G4(7) and g3 =
140G¢(7) are modular forms of weight 4 and 6, respectively.

(b) The discriminant function A is defined by

A:H—C: 7= (92(7))® — 27(gs(7))%.

This is a cusp form of weight 12.
(¢) Any weight-0 modular form is constant by compactness of X (I").
(d) Consider
g2(7)?
Alr)
It is almost a modular form, except that it is not holomorphic at co. In
fact, it defines an isomorphism of Riemann surfaces from X (1) to PL.

j:H—=C: T 1728

Introduce the notation
jlv, 1) =cr+d for v = <LCL Z) € SLoy(Z).

Observe that

dy(r) = j(v,7)"%dr.
It follows that the differential f(7)(d7)¥/? is T-invariant. The most important case
for us occurs when k = 2. In this case, a weight-2 cusp form f € S»(T") corresponds
to a holomorphic 1-form w on Y (I') = X (I") — {cusps}, and with a bit of work one
can show that this extends to a holomorphic 1-form on all of X (I'). For instance,
at infinity, f(7) = >.—, anq)’, where g, = e2mit/h Tt follows that dr = - 94

27t qp
hence
> h dgp h —
dr = n n e . = 5 n nld )
vt = () 0 (e S )

is holomorphic in ¢ at 0, which is a Riemann surface coordinate at co. Applying
this to fla]y for all a € SLa(Z), we see that w extends to all the cusps.

Conversely, if we are given a holomorphic 1-form w on X(I'), then using the
projection H — Y (T'), w pulls back to a form f(7)dr on H (every holomorphic
1-form on H can be expressed in this way since H is simply connected). Since w is
defined at Y'(I"), one easily shows that fla]s = f for all @ € T, so one may write
(1) =320 angl, where g, = €2™7/" for suitable h. By a similar calculation as
above, one shows that f € So(I'). This (cf. section 3.3 of [4] for the full details)
shows that:
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Proposition 3.14. The complex vector space of weight-2 cusp forms Sa(T") is iso-
morphic to the space of holomorphic differentials Q; ,,(X (I)).

3.4. Modular curves over Q. In order to extract the arithmetic information from
the modular curves, we will need an algebro-geometric description of the modular
curve. In this subsection, we will sketch such a description. The main tool is the
following:

Definition 3.15. A field K/k is called a function field over k if K Nk = k and K
is a finite extension of k(t) for some transcendental element ¢ over k.

Theorem 3.16. There is an equivalence of categories between the category of non-
singular projective curves over k (with non-constant morphisms) and the category
of fields of transcendence degree 1 over k (with injective field homomorphism). In
this correspondence:

(1) C corresponds to k(C), the function field of C

(2) To pass from a function field K to a curve C, first write K = k(z, f),
where x is transcendental over k and f is algebraic over k(x) . Then K =
klz,y]l/(p(x,y)) for some irreducible polynomial p. Normalizing the affine
curve defined by p(x,y) gives the desired curve C.

(3) Non-constant morphisms C — C' bijectively correspond to injective homo-
morphisms k(C") — k(C) by pullback.

Proof. See Chapter 7 of [8] or [9, Tag 0BY1]. O

Remark 3.1. An analogous correspondence holds for Riemann surfaces and their
fields of meromorphic functions. There is an equivalence of categories between
the category of Riemann surfaces (with non-constant holomorphic maps) and the
category of function fields over C [10]. Thus, algebraic curves over C may be viewed
analytically as complex Riemann surfaces, and vice versa.

The first step in defining a model of the modular curve over Q is to compute the
function fields over C. Let

fﬁ _ 92(7—) (C’UT + du
O gs(m)”T N

where the overline T denote reduction mod N. This function lies in C(X(NNV)). Let

) v =(c,,dy) € 72

_ N-1 _
FIr) = ") for d#£0 mod N, fo(r) =" fd(r),
d=1
fio= 5(1’0), foir=hH= 5(0’1),

and finally let jn(7) = j(NT).
Proposition 3.17. The fields of meromorphic functions on X1(N) and Xo(N) are
C(X1(N)) = C( f1),
C(Xo(N)) = C(j, fo) = C(4, jn)-
Proof. See Section 7.5 of [4]. O
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Now we define the “same” function fields for X5 (N) and Xo(N) but over Q. Let

KOZQ(jaf0)7 KIZQ(.77fl)
It turns out that Ko and K are actually function fields over Q, i.e., for i = 0,1, f;
is algebraic over Q(j), and K; NQ = Q.

Definition 3.18. The curves that correspond (by Theorem 3.16) to Ky and K,
are denoted Xo(N)g and X;(N)g, respectively.

Example 3.19. The curve X((11)g is the elliptic curve with Weierstrass equation
y?+y = 23— 22— 102 —20. The curve X;(11)q is the elliptic curve with Weierstrass
equation y? +y = 23 — 22. Obtaining these equations is a non-trivial task, and we
refer the interested readers to [7].

The most difficult part of this argument is in proving that K; N Q = Q. For
details, see Section 7.5-7.6 of [4]. The condition that K; NQ = Q for ¢ = 0,1 is
important for the following reasons.

Lemma 3.20. Let X be a variety over a field k. Then X is geometrically irreducible
over k (i.e., for any field extension k' over k, the base change X (k') is irreducible)
if and only if the separable algebraic closure of k in K(X) is k.

Proof. 9, Tag 054Q). O

Thus, the fact that K is a function field ensures that the base change X;(N)g xg C
is a variety, and in fact, a non-singular projective curve over C by [9, Tag 0BY4].
Now take an open affine subvariety X’ = Spec(Q[4, y]/(p(4,v))) of X;(N)g. Then
kE(X) = k(X') = Frac(Q[j,y]/(p)). The base change X’ xg C is an open subvariety
of X;(N)g xg C. Thus, k(X;(N)g xg C) = k(X' xqg C) = Frac(C[j,y]/(p)), which
is also the function field of X;(N)c. Thus, it follows that

Xi(N)Q X0 C= XZ(N)C

Remark 3.2. There are also more intrinsic ways of defining the modular curve
over Q, using the general theory of representable functors. See [2].

4. HECKE OPERATORS

In this section, we sketch the theory of Hecke operators. We begin by defining
them in several equivalent forms and then specialize the definitions to the case over
Q. Next, we focus on the interpretation of Hecke operators as endomorphisms on
the space of cusp forms and state some classical results. The proofs of these results
will not be given here, as they would take us too far afield. Finally, we introduce
the Jacobian of a curve and describe the action of Hecke operators on the Jacobians
of modular curves.

4.1. Hecke operators over C. We will define Hecke operators in this subsection.
There are two kinds of Hecke operators, and each can be interpreted as operators
on spaces of modular forms, homomorphisms of divisor groups, or maps between
moduli spaces. See [4] for a detailed treatment. For an interpretation of Hecke
operators as functions on the space of lattice in the level 1 case, see Chapter VII of
[11].

Recall that there is a map 1 : S1(N) = Y1(N) € X;(N), where S;(N) is the
moduli space of elliptic curves over C together with a torsion point of order N.
Now define the two types of Hecke operators on S1(N) as follows:
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(1) (Diamond operator) For d € Z, such that (d, N) =1, let
(d): Div(S1(N)) — Div(S1(N)): [E,Q]— [E,d- Q]
(2) For a prime p € Z, define
T, : Div(S1(N)) — Div(S;(N)): [E,Q] > [E/C,Q+C]
c

where the sum is taken over all order p subgroups C' C FE such that C intersects (Q)
(the cyclic subgroup generated by Q) trivially. Using the isomorphism Y;(N) =
S1(N) to obtain an endomorphism of Div(Y;(N)), and extending over the finite
number of cusps in a canonical way, one can obtain a corresponding endomorphism

of Div(X71(N)):

(d): Div(X1(N)) — Div(X1(N)): x — alx),
T,: Div(X;(N)) = Div(X;(N)):  Ty(N)r — Z I'1(N)B;(),

. . b . .
where « is any matrix ((Cl 5) € I'p with § =d mod N, and 3; are representatives

; 2) Ty (N).

Since modular forms behave as “differentials” on X; (), one can pull back these
maps Div(X;(N)) — Div(X;(N)) and obtain operators on the space of modular
forms (cusp forms, in particular). One obtains

(d): Mi(T1(N)) = Mp(T'1(N)): f = flalk

for any o = (Z (I; € I'y(N) with § =d mod N. It can be shown that the space

for cosets of T'1 (IV) in the double-coset T’y (IV)

My (T1(N)) decomposes into eigenspaces
My(T1(N)) = D Mi(N, X),

Dirichlet characters x mod N

Mi(N,x) = {f € Mu(TL(N) ¢ (d)f = x(d)f for all d € (Z/NZ)"}.

The second type of Hecke operators becomes the following map. Write the
following double coset as a union of cosets:

) ()T = Ui,

0 p

Then
Tp: My(T1(N)) = Me(Ti(N): [ fIBylk-

Explicitly, if f has Fourier expansion
e .
f) = an(Hg",  q=€"",
n=0

then
an(Tpf) = anp(f) + In(P)P* tan)p (D) f),  F € Mi(T1(NV)).
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This Hecke operator is also compatible with the decomposition of My (T'; (IV)) into
My (N, x) above. So

an(Tpf) = anp(f) + x@)P*  anyp(f),  if f € Mi(N,x).
For general n, first define

Tyr =TT fpk71<p>Tpr—2 (r>2).

T, = HT;; for n = Hp:

Finally, set 77 = 1. All the above Hecke operators restrict to endomorphisms of

Sk(T'1(N)).
Remark 4.1. We can define T}, in the moduli space definition directly by having

T.([E,Q]) =) [E/C,Q+C]

C

Then take

where the sum runs over all cyclic subgroups of order n that intersect (Q) trivially,
and show the recurrence above for T} and T,.

Proposition 4.1. All Hecke operators commute with each other.

Proof. See section 5.2-5.3 of [4]. O

4.2. Hecke operators over Q. In this subsection we will sketch a definition of
Hecke operators as correspondences of varieties over Q. We will provide intuitions
to the fact that the “same” definition of the Hecke operators as maps between

moduli spaces carries over to a moduli space over Q. First define
S1(N)g = {isomorphism classes of pairs (£, C), where E is an
elliptic curve over Q and Q is a point of order N}.

Our previously defined S1(N) will be written as S1(N)c. If E, E’ are elliptic
curves over Q, and if [F,Q] and [E’,Q’] are isomorphic over C, then they are
isomorphic over Q (this can be seen using Weierstrass equations). Thus, S1(N)g C
Sy (N)C

To connect the moduli space with modular curves, we will need a version of ¥ :
S1(N)e — X1(N)c (cf. Theorem 3.9), but over Q. First, consider the commutative
diagram

S1(N)e ——— Si(1)c [£,Q] —— [£]
) | | |
X1(N)g(C) —— X1(1)c P —— j(E)

(The point P simply denotes the image of [E,Q] under v¢1.) Now [E,Q] €
S1(N)c is an element of S1(N)g if and only if j(E) € Q (the forward direction is
clear; for_ converse, if j # 0,1728, E has a Weierstrass model y? = 423 — jfl#% .
T — jff’?28; if 5 =0, take y2 = 23 + B for B € Q*; and if j = 1728, take
y? = 23 + Az for A € Q*). The morphism « is defined over Q, so the preimage

of the Q-points of X;(1)g(C) under a also consists of Q-points; in other words,
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1(S1(N)g) C o 1(X1(1)(Q)) C X1(N)g(Q). Thus, the restriction of ¢ to
S1(N)q defines
wLQ : S1(N)Q — Xl(N)Q.
Now, on S1(N)g, the Hecke operators can be defined in the same way:

(d): Div(S1(N)g) — Div(S1(N)g): [E,Q] — [E,d-Q]  (for (d,N)=1),
T, : Div(S1(N)g) — Div(S1(N)g): [E,Q]— > [E/C,Q+C].
C

Then the diagrams

Div(S1(N)e) —— Div(S(N)e) Div(81(N)e) — = Div(81(N)e)
w] [ o] [
Div(X1(N)e) —— Div(X1(N)e) Div(X1(N)C) — Div(X1(N)e)
restrict to the diagrams
Div(S1(N)g) —2— Div(S1(N)g) Div(S1 (N)g) — 2 Div(81(N)g)
oa [ o [
Div(Xi(N)g) —— Div(Xi(N)g)  Div(Xi(N)Q) — Div(X1(N)g)

which means that the moduli space interpretation of Hecke operators carries over
when one defines them over Q.
Another way to define Hecke operators over QQ is by passing to function fields.
Let (d,N) = 1. The corresponding map of function fields is the pullback
(d)* : C(X1(N)) = C(X1(N)). Recall that C(X;(N)) = C(4, f1) and Q(X1(N)) =
Q(J, f1). Thus, we shall show that (d)*(Q(j, f1)) € Q(4, f1), which would corre-
spond to a morphism (d): X1 (N)g — X1(IN)g by curve-field correspondence. Now

@) =Tt o= (4 5) s=d moaw.

*

Thus, ((d)*j)(7) = j oy(7). Since j is of weight 0, j o y(7) = 7, hence (d)*j = j.
For f1, compute that

+(0,1) +(0, +(0,d)
fron=f oy = 7007 = 500,

Recall that fo (1) = p(d/N)ga(r)/gs(r), and fi = p(1/N)gs(r)/ga(r). Fix
T € H such that j(7) & {0,1728}. This means that go(7) and g3(7) are nonzero
since j = 1728¢3 /(g3 — 27g%). Consider the map

(9r92(7)/95(7), 9% (92(7) /93(7))*/*9},) : C/ A+ — C* U {00}
This differs from (p,, ©)) by an admissible change of variables (z,y) = (u?z’, u3y’)

where u = (g3(7)/g2(7))'/?, and defines a bijective correspondence between the
complex torus C/A, and the elliptic curve

E:y2—4z3_<j(72)7i(;)7253>x_<m>

Then f; (resp. fgt 09 s the function that takes 7 to the z-coordinate of torsion
point @ (resp. d- Q) in Ej(,) that corresponds to the point 1/N in the complex
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torus C/A,. By Exercise 3.7(a) and (d) in [3], the point z(d - ) can be expressed
as g(275/(j — 1728),x(Q)), where g is a rational function in two variables over Q.
Thus, for some g € Q(4, f1), (d)*f1 = (?[(O’d) and ¢(j, f1) agree at all but finitely
many 7 € C(X1(N)) (excluding the cusps and the points with j-invariant 0 or
1728), which means they must agree completely. Thus, (d)* f1 € Q(j, f1).

The proof that T}, is defined over Q follows roughly the same structure, but it is
a bit more technical, and we omit it here. See Section 7.9 in [4].

4.3. Hecke eigenforms. We have defined the Hecke operators as correspondences
over C and over Q. In this subsection we will consider them as endomorphisms of
Sk(I'1(NN)), which leads to many beautiful results and reveals a lot about modular
forms and the Hecke operators. We only state the main results. The details can be
found in Chapter 5 of [4].

We begin by giving Si(T") the structure of an inner product space. The Peters-
son inner product on Si(I") is defined as:

1 _
(e Sk xS =€ {fgr = 3 F(m)g(7)(Tm(r))* dp(r).
T Jx(m)
where dy(7) = dﬂy‘f‘jy for 7 = & + iy € H is the hyperbolic measure. (Intuitively, this

is the familiar inner product on function spaces, but adding the factor of (Im(7))"
to account for the factors of automorphy in the definition of modular forms.) Then

Theorem 4.2. The Hecke operators (n) and T, for (n,N) = 1 are normal (i.e.
commutes with their Hermitian adjoints). This is a commuting family of normal
operators on a finite-dimensional inner product space. Thus, by linear algebra,
Sk(T'1(N)) has an orthogonal basis of simultaneous eigenforms for the Hecke oper-

ators {(n), T, : (n,N) =1}.
Definition 4.3. Let
T =Z[{T,, (n) : n € N}] To=Z[{Tn,(n): (n,N)=1}]C T

i.e., the algebra generated by the Hecke operators. The algebra T is called the
Hecke algebra, and Ty is called the anemic Hecke algebra.

Now we introduce the notion of newforms. Some modular forms in Si(T'1(N))
more naturally belongs to lower levels. These are the oldforms, defined as follows.

Definition 4.4. Let d | N. Let

*d = (g (1)) flagli(r) =d* " f(d- 7).

Let
ia: Sk(P1(N/d))? = Sk(T1(N)): (f.9) = f+ glaalk.
The subspace of oldforms at level N consists of

Si(L1(N))M = iy (Sk(T1(N/p))?),

p|N

where the p’s are primes. The subspace S (T'1(N))**" is defined to be the orthogo-
nal complement of the subspace of oldforms at level N with respect to the Petersson
inner product. The oldforms and newforms are stable under the Hecke operators
T, and (n). Thus, they also have orthogonal bases of eigenforms for T.
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A modular form f € My (T'1(N)) that is an eigenform for T (not just Ty) is called
an Hecke eigenform, or simply an eigenform. An eigenform is normalized if
a1(f) = 1. A newform is a normalized eigenform in Si(I'; (IV))"*". Amazingly,
the eigenvalues for the newforms are precisely their Fourier coeflicients:

Theorem 4.5. Let f € Sp(T'1(N))™ be a nonzero eigenform for To. Then

(1) f is a Hecke eigenform, i.e., f is an eigenform for T. A suitable scalar
multiple of f is a newform.

(2) If f is a newform, then Ty, f = an(f)f for alln € ZT.

(3) (Multiplicity One) If f is also an eigenform with the same T, -eigenvalues,
then f: cf for some constant c.

Moreover, the set of newforms in Si(I'1(N))"™™ is an orthogonal basis of the space.
This theory will allow one to give an explicit basis for S(T'1 (V).
Theorem 4.6. The set
B ={f(nt): M | N, [ is a newform of level M,n | N/M}
is a basis for Sp(T'1(N)).

The following proposition says that every normalized eigenform is almost a new-
form in some potentially lower levels.

Proposition 4.7. Let g € Sk(T'1(N)) be a normalized eigenform. Then there is
a newform f € Sp(T1(M))™" for some M | N such that a,(f) = ap(g) for all
pt N/M. If g € Sp(N, x), then f € Sg(M,xn) where xar lifts to x mod N.

Proposition 4.8. Let f € My(N,x). Then f is a normalized eigenform if and
only if the following conditions are satisfied:

(1) ar(f) =1.
(2) apr = ap(fay—1(f) — x(P)p*Layr—2(f) for all prime p and r > 2.
(3) amn(f) = am(f)an(f) when (m,n) = 1.

Note that the forward direction of this Proposition easily follows from definitions.

Example 4.9. In [12], Ramanujan studied the following function

@m)PA=q[a-g)* =) ()"

and conjectured that 7(nm) = 7(n)7(m) if (n,m) = 1 and 7(p)7(p") = 7(p" 1) +
pt7(p"~1) if p is a prime and n > 1. This conjecture can be proved using the
theory sketched above. It is known (cf. subsection 3.3) that A is a cusp form
of weight 12 and that the first Fourier coefficient A(1) = (27)!2. Moreover, one
has dim S12(T'1(1)) = 1 (cf. [11] or Chapter 3 of [4] for a more complete dimension
computation), so the space spanned by A must be stable under the Hecke operators.
Hence, (27)712A is a normalized eigenform, and Ramanujan’s conjecture follows
from Proposition 4.8.

4.4. Jacobian and Picard groups. In algebraic geometry, there is an important
association of an algebraic curve over a field k& with their Jacobians. In this subsec-
tion, we will consider the action of Hecke operators on the Jacobian and the Picard
groups.
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Definition 4.10. Let X be a curve of genus g over a field k. The Jacobian of
X is a certain abelian variety of dimension g over k& whose underlying group is
functorially isomorphic to Pic®(X).

Definition 4.11. Let J1(N) = Jac(X1(N)g), and Jo(N) = Jac(Xo(N)g).

The Jacobians of curves over C have a more explicit model. By the theory of
Riemann surfaces, there is an embedding

v Hi(X,Z) — QY(X)": ’w—)/-

where X is a Riemann surface (equivalently, a complex non-singular projective
curve) and Q'(X) is the space of holomorphic 1-forms on X. If X has genus g,
then H;(X,7Z) = Z%9. Then we realize Jac(X) as a quotient

Jac(X) = QY (X)"/u(H (X, Z)).

This is a complex torus of complex dimension g. Now consider the modular curve
X1(N)g. We have

J(N)(C) = Jac(X, (N)g(C)) = Jac(X, (N)e) = ' (X1 (N)e) /o Hy (X1 (N)e, Z)):

The most important case is when k = 2. Then by Proposition 3.14, Ho(X1(N), Q1)
82 (Fl (N)) ThU.S,

I

JIN)(C) = S(T'1(N)"/e(Hi (X1 (N)g, Z))-
For simplicity of notation, we may as well write J; (V)(C) = So(T'1 (N))"/H1(X1(N),Z).
Proposition 4.12. The dual of the Hecke operator
T: S(T1(N))" = Sa(I'1 (V)" ol
for T =T, orT = (d) descends to a map T : J1(N)(C) — J1(N)(C).

To prove this, recall that a map A : X — Y of curves induces a forward map
h. and a backward map h* of Picard group (cf. subsection 2.1). This functorially
transfers to a forward map and a backward map of the Jacobians.

Proof sketch. (Details can be found in Section 6.3 of [4]) Denote I'y = I'1(N) and

0
maps on Picard groups. Consider the configuration

a = (1 2) We first decompose 7}, into a composition of forward and backward

Fl (—Fg l>F3—>F1,
where I's = o™ 'T'ia NIy and T = al'sa™! = al'ta~t N Ty. This induces a
configuration on modular curves
D CIRLEND St AL ¢

where the isomorphism is I's7 — I';a(7). The configuration produces a map of
divisor groups given by

-1

(T17) == ) (Ta;(m)) 5 Y (T4B5(7)) = Y T1B;(7),
J J J

where T's\I'; = Uj I'sy; and B; = ay;. One can check that this composition

is exactly T}, on Div(X;(N)). One also checks from the definition of forward and

backward maps of Picard groups (cf. subsection 2.1) that this composition is exactly
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1, 0 @y 0Ty = (T 0 &)y o m5. The forward and backward maps are defined on
Picard groups, hence also on the Jacobians.

For the Diamond operator (d), take o = (Lcl g) as before, and observe that (d)

is exactly the forward map av,. O

Remark 4.2. It also follows from the fact that 7" is a morphism over QQ that the
map T : Ji(N)(C) — J1(N)(C) restricts to a map T : J1(N) — J1(N). We will
skip this detials. See Corollary 5.22 of [13].

Theorem 4.13. Let f € S2(I'y(N)) be a normalized eigenform. Then the field
Ki =Q{an : n € ZT}) is a finite extension over Q. This is called the number

field of f.
Proof. Let T =T, or T = (d) for (d, N) = 1. Dualizing, we have
T:SQ(Fl(N))/\*)SQ(Fl(N))A: QDHC)OOT

This descends to the Jacobian J; (N)(C). Thus, the operators act as endomorphisms
on the kernel Hy(X;(N)¢,Z) =2 Z%9, so Tz C End(H;(X1(N)c,Z)), which implies
that Ty is a finitely generated Z-module. Let

/\fiTz—>C Tf:/\f(T)f
The image of this map is
Op = Zl[{an(f) : n € Z7}],

which must also be finitely generated over Z. Thus, K; = Q({a,(f)}) is finitely
generated as a vector space over QQ, hence a finite extension. ([

Theorem 4.14. Let f € S3(N, x) be a normalized eigenform. Let K be its number
field. For any embedding o : Ky — C, the conjugated f° (defined by conjugating the
coefficients in the Fourier expansion) is also a normalized eigenform in Sa(N, x7),
where x7(n) = x(n)°.

Proof. See Section 6.5 of [4]. O

5. MODULAR GALOIS REPRESENTATION

In this section, we will construct the Galois representation associated to a modu-
lar form. We will then state the Modularity Theorem using this construction. The
construction of Galois representations for elliptic curves is relatively simple. To
associate a Galois representation to normalized eigenforms, however, is much more
difficult. For k # 2, the construction involves étale cohomology. If k = 2, there is
luckily a geometric object associated to normalized eigenform, namely the abelian
variety A;. We will describe this construction for a newform f € Si(I'1(N)).
Throughout the rest of the subsection, we will fix a positive integer N, and every
modular form considered will be of weight 2.

5.1. Abelian varieties. The main tool in the construction of Ay is the following
theorem:

Theorem 5.1. Let k be a field and A be an abelian variety over k. Suppose that
B is an abelian subvariety of A. Then there exists an abelian variety C over k and
a surjective morphism A — C with kernel exactly B.
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The abelian variety C' may be considered to be the quotient A/B of A by B.
Proof. See Section 9.5 of [14] or the discussion in [15]. O

Let f € Sa(N, x) be a newform, and let Ay: T — C be defined as in the proof
of Theorem 4.13. Because the Hecke operators are morphisms of abelian varieties
over Q on Ji(N), I§J1(N) is an abelian subvariety of J1(IN), where Iy = ker(Ay).
By Theorem 5.1, we may define an abelian variety Ay over Q as the quotient
Ji(N)/IzJi(N). Over C, the same theorem shows the existence of a surjective
morphism J; (N)(C) — A;(C) with kernel exactly I7J;(N)(C). Moreover, Af(C) =
Ay c. (See Chapter 14 of [16] for an alternative definition of Ay.)

Definition 5.2. Let f € S2(I'1(N)) be a newform. Let Vy = Span(f? : ¢ €
Aut(C/Q)) C S2(T'1(N)). Restricting the subgroup Hy(X1(N),Z) of So(T'1(N))*
to functions on Vy gives a subgroup Ay = Hy(X1(N),Z)|y, C V.

Proposition 5.3. Let f € So(T'1(N)) be a newform with number field Ky. Then
there is a group isomorphism
Af,(c = VfA/Af Y+ Ile(N) — (p‘vf =+ Af fOT (RS Sz(rl(N>)/\.
The right side is a complex torus of dimension [Ky : Q]. It follows that dim Ay =
dim(c Af’(c = [Kf : (@]
Proof. Let So = So(T'1(N)), Hi = Hi(X1(N),Z), Ay = Afc. Then
Ap = L(N)/IpJi(N) = (S /H1)/I;(S5 [ Hy) = (S5 /1S85) [ H,

where H; is the image of H; in 85 /I;S5. By some linear algebra, S5 /I;S5 =
Sa[If]", where Sy[I 5] consists of the elements of Sy annihilated by I and the isomor-
phism is given by restriction ¢ + IS5 — ¢[s,(1,)- Thus, Ay = Sa[I;]"/Hi|s,(1,)-

We need to show that Sp[ly] = Vy and Ay = Hily, is a lattice. Clearly Vy C

Sy[I¢]. The converse is shown by a dimension argument. First, observe that we
have a perfect pairing, invariant under the action of the Hecke operators,

Tc x S — C: (T, f) = a(T'f),
where T¢c = C{T},, (n) : n € Zy}], so 85 /1;S5 = T¢/IfTc. Hence
We also know that the natural surjection Tz ® C — T¢ descends to a surjection
(Tz ®(C)/(If ®C)— T@/Ich. So
din’lSQ[If] < dim((TZ X (C)/(If ® (C)) = dim((Tz/If) ® (C)
= rank(’]I‘Z/If) = [Kf : @] = dim Vf.4
Since Vy C Ss[Iy], the dimension argument shows that Sy[If] = V. Lastly, to
show that Ay is a lattice in V', one needs to show that Spanp(Ay) = V{* and
rank(Ay) < dimg(V}'). For the first, note that the inclusion Vy C Sy gives a
surjective restriction map 7 : S — V{*. Since Spang(H;) = S2', Spang(Af) =
Spang (7 (H:)) = 7(S5') = V. For the second, take dimensions over R:
dimg V/ = dimg(S3 /1;S5) = dimg((H; ® R)/1;(H, @ R))
=dimp((H1/IyH,) @ R) = rank(H, /Iy Hy).

4Since by Theorem 4.6, the f?’s for o: Ky — C are linearly independent.
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But Ay = w(Hq) = Hy/(Hy Nkerm). Since Vy = Sy[Iy], I;H1y C Hy Nkerw. Thus,
there is a surjection Hy/IyHy — Ay, so rank(Af) < rank(H/IHy) = dimg(V}).
This completes the proof. ([l

5.2. Modular Galois Representations. We will use the following general fact
about abelian varieties.

Theorem 5.4. Letn € Z,. Let k be a field of characteristic 0 or p with (p,n) = 1.
If A is an abelian variety of dimension d, then A[n] = (Z/nZ)*.

Proof. See section 1.7 of [17]. O

Let f be a newform of level N. Write A = Ay, K = Ky, and d = [K : Q] for
simplicity. Let [ be a prime. Define

Ta(A) == m A["),  Vi(4) == Q @z, Tay(A).

As a Qq-vector space, V;(A) = Q%4 by Theorem 5.4. Now note that Oy := Tz/I;
is isomorphic as a Z-module to Z[{a,(f) : n € Z4}], which has rank [K; : Q),
and it acts on the group Ay = J1(N)/I;J1(N). Hence, there is a natural action of
Of ®zQ; = Of Kz (Q 290 Ql) = (Of X7z Q) ®0Q = K®Q; on VZ(A) By algebraic
number theory,
K®qQ = HK,\,
All

where A\ are primes lying over [ and K, are the A-adic completion of K. Thus,
there is a decomposition

Vi(A) = [[Va(h).

All
Lemma 5.5. For all X\ lying over I, dimg, Vi(f) = 2.

Proof. Write A(C) = V/L, where V. = V; and L is a lattice. We have A[l"] =
I="L/L = L/I"L. Thus, Vj(A) 2 L@ Q; as a K ® Q-module (using the Hecke
action on V/L). Also, £ is a free Z-module of rank 2d, and since £ is an O -module,
L®Q is a vector space over K. Then L&Q = K2 as a K-vector space by dimension
counting over Q. This shows that

Vi(A) = (L2 Q) ®q Q= (K?) ©q Q = (K ®q Q)?
It follows that V) (A) = K% when we decompose it using K ®g Q; = [] K. O
Since the Hecke operators are defined over QQ, as morphisms of varieties, they can
be locally expressed as rational functions over Q, hence the Galois action commutes

with the Hecke operators, so Gg acts compatibly on V;(A) with the action of K ®q
Q;. Thus, we can define

pL=pPs1: GQ — AutK®QlV2(A) = GLQ(K ®Ql) = HGLQ(K)\),
All

so p; decomposes into
P GQ — GLQ(K)\).

This is the desired Galois representation associated to f.
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5.3. Modularity Theorem. We are finally in a position to state the Modularity
Theorem.

Definition 5.6. An irreducible Galois representation p : Gg — GL2(Q;) such
that det p = x; is modular if there exists a newform f € Sy(I'g(My)) such that
Ky x = Q for some maximal ideal A of O, lying over [ and such that ps \ ~ p.

Theorem 5.7. (Modularity Theorem, Version R) Let E be an elliptic curve
ovre Q. Then pg, is modular for some l.

This is the version of Modularity Theorem proved in Wiles’ paper [1].

Theorem 5.8. (Modularity Theorem, Strong Version R) Let E be an elliptic
curve over Q with conductor N (cf. Definition 2.9). Then for some newform
f e S(To(N)) with number field Ky = Q, pg; ~ pg, for all L.

These two versions are in fact equivalent, as we will see in the next section.

6. EICHLER—SHIMURA RELATION

In this section, we will exhibit the relationship between the Modularity Theorem
stated in the previous section and explicit problem of counting points on elliptic
curves mod p. We will almost never work on the complex analytic modular curve,
hence the notations X;(N), S1(IV), and so on, will replace the previous notations
X1(N)g, S1(N)g, and so on.

6.1. Reduction of elliptic curves over Q. We've defined reduction of elliptic
curves over QQ in section 2. Here, we will define the reduction of elliptic curves over
Q. This is important because the moduli space interpretation of S1(N) C X1 (N)
is in terms of isomorphisms classes of elliptic curves (with torsion data) over Q.
Let E be an elliptic curve over Q. Let p be a prime in Z. Take a Weierstrass
equation for F. Using an admissible change of variables, we may assume that
the Weierstrass equation has coefficients in Z(p). We say that such a Weierstrass
equation is p-integral. Any p-integral Weierstrass equation reduces coefficient-wise

to a Weierstrass equation E over F,,.

Definition 6.1. The reduction types of E at p (good, bad, ordinary, etc.) are
defined for p-integral Weierstrass equations as in Definition 2.8. A p-integral Weier-
strass equation with good or multiplicative reduction is called p-minimal.

Proposition 6.2. Any elliptic curve over Q has a p-minimal Weierstrass equation.
Ordinary, supersingular, and multiplicative reduction are well defined on equivalence
classes of p-minimal Weierstrass equations. If E and E' are equivalent p-minimal
Weierstrass equations with good reduction at p, then their reductions define isomor-
phic elliptic curves over Ej.

Proof. See Section 8.4 of [4]. O

Proposition 6.3. Let E be an elliptic curve over Q. Then

(1) If E has good reduction at p, then E[N] — E[N] is surjective for all N.
(2) For any isogenous elliptic curve E', E has good reduction at p iff E' does.

Proof. (1) can be shown using VII.2.1 and VII.3.1 while (2) is VIL.7.2 of [3]. O
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6.2. Reduction of modular curves. Modular curves are algebraic curves. We
first define generally the reduction of algebraic curves mod p.

Definition 6.4.

(1) Let C = Spec(Qz1,...,2n]/(¥1,...,pm)) be a non-singular affine alge-
braic curve over Q. Then C has good reduction at p if

(a) Spec(Zyy[z1,- - Tn]/ (@1, m)) is a variety (ie., (@1,...,0m) is
prime in Z,)[1, ..., Ta]).

(b) Let &1,...0m € Fpz1,. .., x,] be the polynomials obtained by reduc-
ing the coefficients mod p. Then C' = Spec(Fplz1, .-, 2n]/(P1s- -+, Pm))
defines a non-singular curve over [Fp,.

In this case C is the reduction of C at p.

(2) Let C be a non-singular projective curve over Q. Then C has good re-
duction at p if every affine piece C; either has good reduction at p or has
empty reduction at p. The curve C' is defined to be the projectivization of
the reduction of any affine piece C; that has good reduction at p.

Theorem 6.5. Let I and E' be elliptic curves over Q with good reduction at p,
and let E"and E' denote their respective reductions. Let ¢ : E — E’ be an isogeny
over Q of elliptic curves over Q. Then there is an isogeny

Y E— E
such that
(1) If Y : E' — E" is also an isogeny, then ¥ op =1 o Q.

(2) The following diagram commutes

E 25 F

|

©

(3) deg(p) = deg(e).
Proof. See Section 8.5 of [4]. O

Proposition 6.6. Let E be an elliptic curve over Q. If E has ordinary (resp.
supersingular) reduction at p, then so does E/C.

Proof. Let ¢ : E — E’ be an isogeny. By Theorem 6.5, ¢ reduces to an isogeny

Q: E — F. Heading towards a contradiction, assume without loss of generality

that E has ordinary reduction and E’ has supersingular reduction at p (for the other

way around, simply use the dual isogeny of ¢). By definition, E‘[pe] >~ (Z/pZ)e,

and ﬁ[pe] = 0. Then G(E[p®]) = 0 for all ¢ € Z, which contradicts that ker @ is

a finite set. O
Next, consider the special case of X1 (V). Define

S1(N)gq ={[E,Q] € S1(N) : E has good reduction at p, j(E) ¢ {0,1728}}.

S1(N) ={[E,Q] : E is an elliptic curve over F,,Q € E is a point of order N}
S1(N) ={[E,Q] € Sy(N) : j(E) ¢ {0,1728}}
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Theorem 6.7. (Igusa) Let N be a positive integer and let p be a prime withp { N.
The modular curve X1(N) has good reduction at p. Moreover, reducing the modular
curve is compatible with reducing the moduli space in the sense that the following
diagram commutes

SUN), —s Xy (N)

| l

Proof. See [18]. O

6.3. The Eichler—Shimura Relation. The Eichler—-Shimura relation is a neat
description of Hecke operators on the reduction of modular curve at p using the
Frobenius morphism. In this subsection, we will provide some intuition on why such
a description is true. We will assume that there is a natural reduction of T}, acting

as T : Pic’(X1(N)) — Pic’(X1(NN)) such that the following diagram commutes:

Pic’ (X1 (N)) —2 Pic®(X, (N))

| |

Pic’(X1(N)) —— Pic’ (X1 (N))

(cf. Theorem 9.5.1 of [19].) Then we will show a version of the Eichler-Shimura
relation in the context of moduli spaces. The rest of the proof of the Eichler—
Shimura relation is just diagram chasing (using the above assumption) and passing
between the various equivalent notions of Hecke operators. For this part of the
proof, we refer the readers to [4, Section 8.7].

Let E be an elliptic curve over Q with ordinary reduction at p. Let Q € E be
a point of order N. Let Cj be the kernel of the reduction map E[p] — E[p]. By
the structure theorem of torsion points of elliptic curves, E[p] = (Z/pZ)?, and by
definition |E[p]| = p. From Proposition 6.3(1), it follows that Cy is an order p
subgroup.

Lemma 6.8. Under the hypotheses of the previous paragraph, for any order p
subgroup C of E,

1B, Q77 if C = Co,
E O, C == ~ —1 ~ 1 i
FIeexcl {W%,M@P]#C#%-

Proof sketch. (For full details, see Lemma 8.7.1 in [4].) Let E' = E/C, ¢ : E — E’
be the quotient isogeny, and ¢ : E' — E be the dual isogeny so that ¢ o ¢ = [p]

and po1p = [p]. Let Q" = ¢(Q).
Case 1: C = Cj. A diagram chase on the following diagram

E'lp) —* Elp] —2— E'lp)
o

B'p] — Elp
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shows that ker([p]z) = ker(1)) = ﬁ[p] Since 1) is an isogeny,
deggep ([P 57) = |kerlpl | = p = degins([pl) = deg([p]z)/ degeep ([P15) = P,

and since [p|z = ¥ o @, it follows that

degeep(¥) =p,  degig () =1,  degy,(¥) =1,  deg(p) =p.
Thus, it follows from subsection 2.4 that ¢ = i o g, where ¢ : E°» — F'is an
isomorphism taking Q°» to Q’. Thus,[E’, Q'] = [E7?,Q°"].
Case 2: C' # Cy. Let C" = ker ¢ and Cj) = ker . In this case, a diagram chase
on

E[p] —— E'lp] —— E[p|
Elp] —— E'[p]

allows us to show that C’ = C{. Then, applying the argument in case 1, replacing
E,Q,¢ by E',Q', 1, respectively, one obtains ¢ = i o ;,, where

BT SE Q7 = (@) =hle.
Applying o, ! to the coeflicients of i gives
% B - E% /Q\/’H[p]@”;.
Thus, [ﬁ, @] = [E‘75 1, [p]@”; 1], which completes the proof. O
Now define the Diamond operators on Sy (N) in the usual way:
(d):5:(N) = 51(N)  [B.Q=[E,d-Q (dN)=1.

For an elliptic curve E over Q with ordinary reduction at p, take the sum over all
order p subgroups C C E:
Y [E/C,Q+C] = (0, +pp)o, E, Q.
c
Lemma 6.8 also applies to the case of supersingular reduction (the proof is similar).
Thus, the above formula holds for any elliptic curve over Q with good reduction at
.

This is arguably the meat of the Eichler—-Shimura relation. One can transfer this
formula on the moduli space to the divisor group of the modular curves, then to
the Pic® of modular curves, replacing o, (p) and po, I with the suitable induced
maps on Picard groups (cf. subsection 2.1 and subsection 2.4). The end product
of these translations is:

Theorem 6.9. (Eichler—Shimura relation) Let p t N. The following diagram
commutes:

Pic (X, (N)) — 5 Pic®(X,(N))

| |

Pic"(X1(N)) ———— Pic®(X1(N))

Up,*+<P>*‘7p



GALOIS REPRESENTATIONS AND MODULARITY THEOREM 31

In particular, since <p7/> acts trivially on XO(N), the following diagram commutes
as well.

Pic®(Xo(N)) — 5 Pic®(Xo(N))

| |

Pic®(X(N)) ———— Pic®(Xo(N))

ap,*Jra;
6.4. Characteristic polynomial of Frobenius; Modularity Theorem.

Theorem 6.10. (Modularity Theorem, Version a,) Let E be an elliptic curve
over Q with conductor Ng (c¢f. Definition 2.9). Then for some newform f €
S2(Lo(NE)),

ap(f) = ap(E) for all primes p.

This version of Modularity Theorem tells us that the information about the
number of points on the reduction of elliptic curves mod p is always encoded in the
coefficient of a modular form. In the rest of the subsection, we will demonstrate the
relationship between this and the (strong) version R of the Modularity Theorem,
defined in the previous section.

Recall that J;(N) = Jac(X1(V)) is an abelian variety of dimension g, where g
is the genus of X;(N). Theorem 5.4 tells us that J;(N)[I"] & (Z/I"Z)?9. Thus, we
can use the same construction to obtain

Vi(X1(N)) = lm(/ (N)[I"]) © Qv = Q7.

n

and the Galois action, which takes a point Q € J1(N)(Q) to Q7, defines a repre-
sentation

px, vy Go — GL(VI(X1(N))).

Theorem 6.11. Let | be a prime and N be a positive integer. The Galois repre-
sentation px,(n), is unramified at every prime p{ IN. For such p, let p C Z be a
prime over p. Then px, (n),(Froby) satisfies the polynomial equation

2% — Tz + (p)p = 0.
Proof. Let plie over pand p 1 IN. For each n € Z the following diagram commutes:

D, —— Aut(Ji(N)[I"])
Gy, — Aut(Jac(X,(N))[I"])

The map 7 is induced from the reduction map X1(N) — X1(N). We will take as
a fact that the map Pic®(X1(N))[I"] — Pic®(X1(N))[I™] is an injection (for details,
see the discussion in [20]), which also shows that this map is an isomorphism,
since by Theorem 5.4 both sides are isomorphic to (Z/I"7Z)?9. Thus, the map 7

is also an isomorphism. By diagram chasing, the kernel of the left vertical map is
I, C ker px, (). Thus, px, (), is unramified at p.
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To prove the polynomial equation, use the Eichler—Shimura relation

Pic®(X1(N)) —— 2 Pic%(X, (V)

| |

Pic’ (X1 (N)) —= Pic’ (X1 (N))
Op, (P *U;
(Recall that J; (N) is funtorially isomorphic to Pic’(X;(N)), so we use the two no-
tations interchangeably.) The same diagram but with T}, replaced by Frob, -+
p(p)Frob, ! also commutes. Since the vertical arrows are isomorphisms, T, =
Frob, + p(p)Fl“Ob;l on Pic’(X;(N))[i"]. Multiplying by Frob, on both sides gives
the desired polynomial relation. Since n is arbitrary, this extends to V;(X1(N)). O

Next, we will show that the representation px, (n), is compatible with pa, ;.
Lemma 6.12. The map Jy(N)[I"] = Af[I"] is a surjection.

Proof. Use the model of Ji(N) and Ay over C. Let y € Af[I"]. Then y = = +
I+ Ji(N) for some x € Ji(N) such that ["x € Iy Jy(N). Thus, {"z = "z’ for some
x' € I;J1(N). Then z — 2’ € J;(N)[I"] maps to y. O

Since the morphism J; (N) — Ay is defined over Q, and hence locally defined by
rational functions over QQ, the Galois action commutes with the morphism, i.e., for
o € Gq, the following diagram commutes:

J1(N) —2= J1(N)

| |

AfT)Af

Since T}, acts as a,(f) and (p) acts as x(p), it follows that pa, ;(Frob,) also satisfies
the polynomial equation

z® — ap(f)z + x(p)p = 0.

Now the modular Galois representation py x is pa,; followed by a projection onto
GL2(Ky,5); thus, psa(Froby) also satisfies the above polynomial equation. This
proves:

Theorem 6.13. Let f € S2(N,x) be a newform with number field K;. Let | be
a prime. For each prime A of Ok, lying over I, there is a Galois representation
prx s Gog — GLo(Ky\) which is unramified at every prime p 1IN such that for any
p lying over such p, ps.A(Froby) satisfies the polynomial equation

2® — ap(f)z + x(p)p = 0.,
In particular, if f € Sa(To(N)), then the relation is x> — a,(f)x +p = 0.

Theorem 6.14. The three versions of Modularity Theorems (Version R, Strong
Version R, and Version a,) are all equivalent.

Proof. Assume Version R. Let E be an elliptic curve over Q with conductor N.
Then by Version R, there is a newform f € Sy(I'o(My)) such that ps ~ pg, for
some maximal ideal A of O, lying over I. Thus, pg,i(Frob,) satisfies the polynomial

22 — a,(f)x + p for any Frob, where p lies over p { [M;. But we also know from
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Theorem 2.12 that pg (Froby) has characteristic polynomial 2% — a,(E) + p. Thus,
ap(f) = ap(E) for almost all p. By [21], this implies that a,(f) = a,(E) for all
prime p.

Conversely, suppose Version a, of Modularity is true. Let E be an elliptic curve
over Q with conductor N. There is a newform f € S3(I'1(V)) such that a,(f) =
ap(E) for all p. Since a,(f) € Z, it follows that Ky = Q and Ay is an elliptic
curve. The respective characteristic polynomials for py;(Frob,) and pg ;(Frob,)
are 2 — a,(f)z + p and 22 — a,(E)z + p for all but finitely many p. But then
this means that the characteristic polynomials are equal on a dense subset of G,
and since trace and determinant are continuous, the characteristic polynomials are
always equal. Consequently, the representations are equivalent (cf. Exercise 9.6.1
of [4]). This implies strong Version R of Modularity, which clearly implies Version
R of Modularity.

O

The proof above also shows the following remarkable fact:

Proposition 6.15. Let E be an elliptic curve over Q. If pg; is modular for some
l, then pg, is modular for all l.
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