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ABSTRACT. lan Agol and Francesco Lin proved the existence of hyperbolic
four-manifolds with vanishing Seiberg-Witten invariants. We prove that the
number of such manifolds of volume at most v is asymptotically bounded by
ve? considered up to commensurability, which has the same form as the lower
bound and upper bound of the number of hyperbolic four-manifolds of volume
at most v proved by Tsachik Gelander and Arie Levit.
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1. INTRODUCTION

Seiberg-Witten theory gives rise to a powerful interplay between the geometry
and topology of smooth 4-manifolds. Witten [Wit94] proved that if a 4-manifold
with b; > 2 admits a metric of positive scalar curvature, then all its Seiberg-Witten
invariants vanish. In [LeB01, Conjecture 1.1], Claude LeBrun asked whether the
Seiberg-Witten invariants of compact hyperbolic 4-manifolds vanish, based on the
estimates of the scalar curvature and Weyl curvature for the spin® structure s with
non-trivial Seiberg-Witten invariants.

Proposition 1.1. [LeB01, Theorem 3.5]

Let M be a smooth compact oriented 4-manifold with by > 2, and suppose that
5 1s a spin structure with non-trivial Seiberg- Witten invariant. Let g be any Rie-
mannian metric on M, and let ¢ be a g-self-dual harmonic 2-form with de Rham
class [¢] € H*(M,R). Let sy be the scalar curvature and w, be the lowest eigenvalue
of the self-dual Weyl curvature W of g. Then the function f = \/@ satisfies

J (§59 + 2wg> |pgldpg + 4J \df\;d,ug < (4mV2)ey () - [4]
M M
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So the Seiberg—Witten basic classes satisfy stronger constraints for hyperbolic
manifolds (M, g) with the scalar curvature s, = —12 and the Weyl curvature W, =
0.

In [AL18, Theorem 1.1], Tan Agol and Francesco Lin proved the existence of
hyperbolic four-manifolds with vanishing Seiberg-Witten invariants, and remarked
that there are infinitely many commensurability classes of arithmetic hyperbolic
4-manifolds containing representatives with vanishing Seiberg-Witten invariants.

Let C'(v) denote the number of commensurability classes of hyperbolic manifolds
admitting a representative of volume at most v. In [GL14, Theorem 1.2], Tsachik
Gelander and Arie Levit proved that there are positive constants a and b, such that
v® < C(v) < v® for all v sufficiently large. Inspired by their methods, we show
that the number of commensurability classes of hyperbolic manifolds admitting a
representative with vanishing Seiberg-Witten invariants of volume at most v has
the same form:

Theorem 1.2. Let VC(v) denote the number of commensurability classes of hyper-
bolic manifolds admitting a representative with vanishing Seiberg- Witten invariants
of volume at most v. Then there exist positive constants b and ¢ such that

ey < VC(U) < ,Ubv
for all v sufficiently large.

Since VC(v) < C(v) for all volume v, the upper bound of Theorem 1.2 is taken
from [GL14], and our work focuses on constructing enough such manifolds to es-
tablish the lower bound. We first embed the L-space M; as a totally geodesic
non-separating hypersurface into non-commensurable hyperbolic 4-manifolds, us-
ing the main result of Kolpakov—Reid—Slavich|[KRS18]. By modifying Gelander-
levit’s approach in [GL14], most of our work is constructing appropriate building
blocks, each of whose boundaries is a union of totally geodesic copies of the L-space
Ms5. By gluing them according to decorated graphs, we obtain infinitely many non-
commensurable compact hyperbolic 4-manifolds with the non-separating L-space
M3, which satisfy the condition of [AL18, Corollary 2.5], .

In Section 2, we recall the basic construction of the Seiberg-Witten equations and
the definitions of Seiberg-Witten invariants for closed 4-manifolds and monopole
Floer homology groups for closed 3-manifolds. Then we present a vanishing criterion
for Seiberg-Witten invariants involving the L-space as a separating hypersurface.

In Section 3, we present the rough outline of embedding arithmetic hyperbolic
3-manifolds as a totally geodesic hypersurface into hyperbolic 4-manifolds. Here
certain technical details are required in order to ensure compactness and boundary
control.

In Section 4, we recall the construction in [GL14] by establishing connections
between interbreeding of hyperbolic manifolds and decorated graphs. We also ex-
plain how to construct hyperbolic manifolds from decorated graphs and show that
commensurable manifolds have isomorphic decorated graphs.

In Section 5, we recall the examples by [AL18]. Then we construct suitable
building blocks and check that the infinitely many manifolds obtained by these
building blocks satisfy the condition of Theorem 1.2.
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2. SEIBERG-WITTEN INVARIANTS AND A VANISHING CRITERION

We briefly review the necessary background on the Seiberg-Witten theory. Most
of our discussions and notations are based on [Mor96] and [KMO7].

Let X be an oriented 4-dimensional Riemannian manifold. A spin® structure is
a hermitian vector bundle Sx — X of rank 4, with a Clifford multiplication

p:TX — Hom(Sx, Sx),

such that at each x € X we can find an oriented orthonormal frame eg, ...e3 with

10 =D |0 —of .
e sl B O R K B
in some orthonormal basis of the fiber S,. Here I5 is the 2 x 2 identity matrix and
o; are the Pauli matrices. If we extend Clifford multiplication to complex forms,
then in the same basis for S, we have

p(voly) = [_012 102]

where vol = eg A €1 A ea A e3 is the oriented volume form. So the eigenspaces of
p(vol) give a decomposition of Sy into two orthogonal rank-2 bundles.

Let X be an oriented compact Riemannian 4-manifold with a spin® structure
sy = (Sx,p) and corresponding —1-eigenspace S% of the Clifford multiplication
p(vol,). The Seiberg-Witten equations associated to the spin® structure sx are
equations for a pair (A, ®) consisting of a spin® connection A and a section ® of
the associated spin bundle S;g. The equations are the following;:

W Di® =0
Fl, = (@d%), +1n

Here Fj{t is the self-dual part of the curvature 2-form Fy: of the connection A?
and DY is the positive part of the Dirac operator D4 of the connection A. (®®*),
denotes the trace-free part of the hermitian endomorphism ®®* of the bundle S};
and 7 is some perturbation of the 2-form. A solution (4, ®) is called reducible if
® = 0, and irreducible otherwise.

The gauge group G of X is the group of unitary bundle automorphisms of Sx
which commute with Clifford multiplication, and it can be identified with the group
of S'-valued functions u : X — S', acting by scalar multiplication. The set of
solutions (A, ®) is invariant under the action of the gauge group, and we write
N(X,sx) for the quotient space of the set of solutions of the equations (1) by
the action of G. Some properties of the moduli space N(X,sx) are listed in the
following theorem.

Theorem 2.1. [KMO07, Theorem 1.4.4], Suppose that the perturbation n is chosen
so that the moduli space N(X,sx) is reqular, i.e. the linearization of the equations
is a surjective linear operator for all solutions (A, ®), and that N(X,sx) contains
no reducible solutions, as we can always do when by (X) = 1. Then the moduli
space N(X,sx) is a smooth compact manifold, whose dimension d is given by the
formula

d= - (e1(55)°[X] = 2A(X) — 30(X)

1=
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We denote by B(X,sx) the quotient space of A x I'(S%) by the action of G,
and B*(X,sx) is the irreducible part. After choosing a perturbation 7, we assume
N(X,sx) c B*(X,sx), and if we further give a homology orientation, we have a
well-defined class [N(X,sx)] € Hq(B*(X,sx)).

Since B*(X,sx) is the quotient space of A x (I'(S%)\{0}) by the free action of
g, the quotient map

A x (D(S3)\{0}) — B*(X, sx)

is a principal G-bundle. If we choose a basepoint zg € X, then we obtain a ho-
momorphism G — S! by evaluation at g, and there is an associated principal S!
bundle P — B*(X,sx). Therefore, there is a well-defined 2-cohomology class

u=c(P)e H*(B*(X,sx); Z).
The Seiberg-Witten invariants m(X,sx) € Z are defined by the formula

_ <u%, [N(X,sx)]), when d is even,
m(X, sx) = { 0, when d is odd.

Let Y be a closed, connected, oriented Riemannian 3-manifold. For each iso-
morphism class of spin® structure s on Y, we choose a reference spin® connection
By = By(s) on a spin bundle S = S(s). The Chern-Simons-Dirac function of a
spin® connection B and a section ¥ of the corresponding spin bundle, is defined by

1 1
L(B.¥) = —¢ Jy(Bt = By) A (Fpe + Fiy) + 5 Jy<DB\I/, T)dvol,

and we obtain the gradient of the function
1
grad L = ((2 « Fpe + p 1 (0U*)) ® 13, DB\II> .

We can also define the gauge group G of Y as the group of unitary bundle
automorphisms of Sx which commute with Clifford multiplication. The downward
gradient gives a flow on the blow-up B?(Y,s) of the quotient space B(Y,s) = (A x
I'(S))/G, and after perturbing the function to achieve the transversality, we obtain
three complexes C’, C and C, corresponding to some combinations of boundary-
stable, boundary-unstable and interior critical points up to grading shifts. So the
monopole Floer homology groups @*(Y, s), HM (Y, 5),m*(K 5) are defined
for each spin® structure on Y corresponding the three complexes, and they fit into
the long exact sequence of graded Z[U]-modules

o HMA(Y,8) —2 HM(Y,8) —2 HM(Y,s) —25 HM(Y,5) — ---

where U has degree —2. The reduced group HM,(Y,s) is defined as the image of

Jx in m(Y}ﬁ). When Y is a rational homology sphere, we have an identification
of Z[U]-modules (up to grading shift) with the Laurent series([KMO7, Proposition
35.3.1])

HM,(Y,s) = Z[U ', U].

Definition 2.2. [KMOS04, Definition 9.1], We say that a rational homology sphere
Y is an L-space if j, is trivial for all spin® structures.

So for an L-space Y, HM,(Y,s) = 0 for all spin® structures s.
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Proposition 2.3. [KMO07, Proposition 3.11.1] Let X be a closed, oriented 4-manifold
with by (X) > 2, and suppose that X = X; U Xo with 0X; = —0Xy =Y, a con-

nected 3-manifold. If Y is an L-space, and by (X1) and by (X2) are both positive,

then m(X,sx) = 0 for all spin® structures sy .

Proof. Since b1(Y) = 0, a spin® structure sx on X is determined by the re-
strictions s; = sx|x,. This follows from the injectivity of the map H?(X;Z) —
H?*(X1;Z)®H?(X5;Z) in the Mayer-Vieoris sequence and that these groups classify
spin€ structures. Let 6 = sx|y. Then it is sufficient to show that m(u|X,sx) = 0 for
classes u = ujug where u; is a cohomology class in the configuration space B(X;, s;)
of X;. A cobordism W from Yj to Y7 induces a map in long exact sequences of
monopole Floer homology groups ([KMO07, Section 3.4]) and if b5 (W) > 1, we have
that HM 4(u|W,s) = 0 ([KMO7, Proposition 3.5.2]). So we can define the relative
invariant ¥y, |x, s,) € ﬁ]\\Lk(Y,s): let W7 be the cobordism obtained from X; by
removing a ball, and consider the induced map

HM . (u1|X1,81) : HM(S?) = Z[U] — HM4(Y,s).
Then ¥y, |x,,61) = HAM*(u1|W1,51)(1). We consider the commutative diagram

HM ,(S%) —2*— HM,(5%
@*(ul\wl,sl)l lm*(ul\wl,sl)
HM,(Y,s) —2* HM,(Y,s)

and as by (W;) > 1, the vertical map on the right vanishes, which implies that
Y(us|X1,01) € ker(ps) = HM,(Y,s). Similarly, using the map induced in homology
by Wa, we obtain an element t(y,|x,.s;) € HMx(—Y,5), which is identified with
HM*(Y,s). By the general gluing theorem in [KMO07, Equation 3.22],

m(u|X, 5X) = <’¢)(u1\X1,51)7 w(u2|X2,52)>7
where the angular brackets denote the natural pairing
HM,(Y,s) x HM*(Y,s) — Z.

In our assumpions, the group HM,(Y,s) vanishes, so this pairing is zero, and
m(u|X,sx) is zero for all spin® structures sx.
|

The construction of known examples by Agol and Lin [AL18] fundamentally
relies on the following corollary.

Corollary 2.4. [AL18, Corollary 2.5] Suppose X is a 4-manifold with b (X) = 1
which admits an embedded non-separating L-space Y. Then X admits infinitely
many covers which have all vanishing Seiberg- Witten invariants.

Proof. We consider the double cover X of X formed by gluing together two copies
Wy and Ws of the cobordism from Y to obtained by cutting X along Y. Consider a
properly embedded path v < W; between the two copies of Y, and denote by T its
tubular neighborhood. Then we have the decomposition X =(W\T)u(W2 u T),
where the two manifolds are glued along a copy of Y#Y.

By [Linl7, Section 4], the Heegaard Floer chain complexes have vanishing dif-
ferentials in a suitable sense, so the connected sum also gives a chain complex with
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trivial differential, which implies the Heegaard Floer homology is again minimal
and Y#Y is an L-space. Both Wi\T and Wy U T have b > 1, so we conclude. [J

3. EMBEDDING ARITHMETIC HYPERBOLIC MANIFOLDS

In this section, we discuss the embedding of arithmetic hyperbolic 3-manifolds as
totally geodesic hypersurfaces into arithmetic hyperbolic 4-manifolds in [KRS18].
We first review the definitions of admissible quadratic forms and arithmetic groups
of simplest type.

Let k be a totally real number field of degree d over Q with a fixed embedding
into R and the ring of integers Ry, and let V be an (n+ 1)-dimensional vector space
over k equipped with a non-degenerate quadratic form f defined over k which has
signature (n,1) at the fixed embedding, and signature (n + 1,0) at the remaining
d — 1 embeddings.

The quadratic form f is equivalent over R to the quadratic form x3 + 23 + --- +
22, — 22, and for any non-identity Galois embedding o : k — R, the quadratic
form {7 is equivalent over R to 23 + 23 +--- +22_; + 22. We call such a quadratic
form admissible.

Let F' be the symmetric matrix associated with the quadratic form f and let O(f)
denote the linear algebraic groups defined over k defined as:

O(f) = {X e GL(n +1,C) : X'FX = F} and
SO(f) = {X € SL(n + 1,C) : X'FX = F}

Let J,, denote both the quadratic form z3 + 2% +---22_; — 2, and the diagonal
matrix associated with the form. The hyperbolic space H” can be identified with

the upper half-sheet {x € R"*!: J, = —1, x,, > 0} of the hyperboloid, and we let
O(n,1) = {X € GL(n + 1,R) : X'J, X = J,}.

We can also identify Isom(H") with the subgroup of O(n,1) preserving the upper
half-sheet of the hyperboloid {z € R**! : J, = —1}, denoted by O™ (n,1).

Definition 3.1. Let G be a group, Hi, Hy < G be subgroups. We say that H; is
commensurable in G with Hy if [Hy : Hy n Ha] < o0, [Ha : Hy n Ha] < o0.

Given an admissible quadratic form defined over k of signature (n, 1), there exists
T € GL(n + 1,R) such that T7'O(f,R)T = O(n, 1).

Definition 3.2. A subgroup I' < O (n,1) is called arithmetic of simplest type if
I' is commensurable with the image in O*(n,1) of an arithmetic subgroup of O(f)
under the conjugation map above.

Definition 3.3. Let G be a group. Then G?) = (¢?|g € G).

The following proposition allows one to embed an arithmetic group in arithmetic
groups with higher dimensions.

Proposition 3.4. [KRS18, Corollary 4.2] Let T’ be an arithmetic subgroup of
O*(n,1) of simplest type arising from an admissible quadratic form f of signature
(n,1) defined over a totally real field k. Suppose that there is an admissible qua-
dratic form g of signature (n+1,1) defined over the same field k, with O(f) < O(g).
Then:

(1) If n is even, T' embeds in an arithmetic subgroup of Ot (n+ 1,1) of simplest
type.
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(2) If n is odd, T® embeds in an arithmetic subgroup of Ot (n+ 1,1) of simplest
type.

From the above proposition, we can simplify the problem to find an admissible
quadratic form g so that O(f) < O(g). Here we need only to consider the case k # Q
for our purpose.

Lemma 3.5. [KRS18, Proposition 5.1] Suppose that { is represented by the admis-
sible diagonal quadratic form agx3 + a1z? + -+ + a,_172_, — ba? over the field
k # Q, where a; € Ry are all positive and square free fori =0,...n—1, and b€ Ry,
is positive and square free. Then there is an admissible diagonal quadratic form g
of signature (n + 1,1) with O(f) < O(g).

Proof. If f is anisotropic over k, that is, f(z) = 0 if and only if 2 = 0, then we
can assume that b # a; for i = 0,...,n — 1. Since O(Af)=0(f) for all X € k*, we
can multiply f by a; 1 and assume that ay = 1, and also that all coefficients are
square-free. Then we can take g= dy?+f so that d is square-free in k, which will be

a quadratic form over k. O(g,Ry) is cocompact, as follows from [Mor15, Proposition
6.4.4]. O

Remark 3.6. The above lemma is also true for £ = Q, but we don’t need to discuss
this case here.

The general case can be reduced to the diagonal case by taking some T €
GL(n + 1,k) so that T71O(f)T = O(fp) for some admissible diagonal quadratic
form fy defined over k(see [Lam05]). Then we can extend T to define a matrix

~ (1 ] 0
T—(O | T)eGL(nJrQ,k)

which provides an equivalence of the diagonal form gy to an admissible quadratic
form g with O(f) < O(g).

Let M = H"/T be an orientable arithmetic hyperbolic n-manifold of simplest
type and if n is odd, we replace M by M3 = H"/F(z). By Proposition 3.4, there
exists an arithmetic lattice A of simplest type in SOt (n + 1,1) such that ' < A.
Then we can find a torsion-free subgroup A; < A with I' < A; and A; is GFERF
([KRS18, Proposition 7.1 and Theorem 6.2]) . In this case, Scott[Sco78] proved
that M embeds in a finite sheeted cover of H™! /A;1. Combining these results, we
obtain the following theorem:

Theorem 3.7. [KRS18, Theorem 1.1] Let M = H"/T" (n > 2) be an orientable
arithmetic hyperbolic n-manifold of simplest type.

(a) If n is even, M embeds as a totally geodesic submanifold of an orientable
arithmetic hyperbolic (n + 1)-manifold W.

(b) If n is odd, the manifold M® = H"/T'® embeds as a totally geodesic
submanifold of an orientable arithmetic hyperbolic (n + 1)-manifold W.

Moreover, when M is not defined over Q (and is therefore closed), the manifold
W can be taken to be closed.

Here the final sentence follows from the fact that closed arithmetic manifolds of
simplest type are associated with quadratic forms either over a finite extension k
of Q, k # Q, or with quadratic forms over Q which are anisotropic.
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4. DECORATED GRAPHS AND BUILDING BLOCKS

In this section, we present the construction methods in [GL14], involving deco-
rated graphs and building blocks.

Let F denote the free group generated by two non-commuting elements {a, b}.
The Schreir graph 'y corresponding to a subgroup H < F is the quotient of the
Cayley graph of F' by the natural action of H. Thus a Schreir graph is a 4-regular
graph with oriented edges that are labeled by the set {a*,b¥}.

Definition 4.1. [GL14, Definition 2.1] A decorated graph is a 4-regular graph T
with oriented edges labeled by {a®,b®} whose vertices are 2-colored, and we will
refer to each vertex as either colored or not.

A covering map of decorated graphs is a topological graph covering that preserves
both the edge orientations and labels, and the vertex coloring.

Decorated graphs with a single colored vertex are exactly Schreir graphs for
finite index subgroups of Fb, since we can identify the single colored vertex with
the identity element € in the quotient group, and obtain the corresponding finite
index subgroup H by the covering space theory.

Definition 4.2. [GL14, Definition 3.1] The building blocks are the six given mani-
folds with boundaries Vy,Vi,AT,A~,BT,B~, which satisfy the following properties:
e Each is a complete real hyperbolic n-dimensional manifold of finite volume
with totally geodesic boundary.
e 1 and V; have 4 boundary components each, while AT and B* have 2
boundary components each.
e Every boundary component of any of the above manifolds is isometric to a
fixed (n — 1)-dimensional complete finite-volume manifold N.
e The six manifolds are embedded in respective six manifolds without bound-
ary, which are arithmetic and pairwise non-commensurable.
Given a decorated graph A, we let Ma denote a manifold obtained by associating
a copy of either Vj or V for each vertex in A according to its color, and a copy of
the pair AT and A~ or the pair BT and B~ for every edge of A according to its
label and orientation, and gluing them according to the graph incidence relation by
identifying corresponding isometric copies of V.
We refer to the isometric copies of Vp, ..., B~ inside Ma as the building block
submanifolds.

Working with decorated graphs will be useful in ruling out common covering
spaces.

Proposition 4.3. [GL14, Proposition 2.2]
Let Ty and T's be two finite decorated graphs, each having a single colored vertex.
If Ty and T's are not isomorphic then they do not have a common decorated cover.

Proof. Since I'y and T'y each have a single colored vertex, we may regard them as
'y, for some finite-index subgroup H; < F, i = 1,2. Since the two graphs are not
isomorphic, we have that Hy # Hs as subgroups of F.

Assume for a contradiction that I'; and T's have a common decorated cover T
with covers p; : I' — I';. We consider some loop 7 in T'; based at the colored vertex
such that I(y) € H;\H>, and let 5 be a lift of v to I' and let z € T denote the
end-point of 4. Since + is a loop, the end-point of p; 05 =  is colored, while the
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end-point of ps 07 is not colored since I(y) ¢ Hs. This contradicts the fact that p;
and py are assumed to preserve the decorated structure since both end-points are
covered by z € T'. O

The following proposition generalizes Proposition 4.3, which reduces the problem
of constructing non-commensurable manifolds to the problem of constructing non-
isomorphic finite decorated graphs.

Proposition 4.4. [GL14, Proposition 3.3] Let Ay and As be two finite decorated
graphs, each having a single colored vertex. If Ay and Ay are not isomorphic then
the manifolds Ma, and Ma, are not commensurable.

Sketch of Proof. Suppose, by way of contradiction, that M is a common finite cover
of both Ma, and Ma, with associated covering maps m; : M — Ma,. Let z € M
be a point. We can prove that m (z) belongs to the interior of some building block
sub-manifold of Ma, if and only if 72 (x) belongs to the interior of a building block
of the same type in Ma, (see [GL14, Lemma 3.5]).

As in the proof of Proposition 4.3, we may write A; = Ag,, and let v be a
simple closed loop in A; of length k = |y| based at the colored vertex with labeling
I(y) € H{\H>. Fix a point p in the interior of the copy of V4 in Ma,. We associate
to v a closed path

¢y 1 [0,1] = Ma, with ¢,(0) = ¢, (1) = p

such that c, intersects the copies of the boundary submanifold N transversely at
times

O<ti<--- <tz <1

and so that each cy«,.,,,),0 < @ < 3k(with o = 0 and t341 = 1) is con-
tained in the interior of a single building block manifold. Moreover ¢, traces 7y
in the obvious sense: an edge of type a*! in vy corresponds to consecutive seg-
ments [t;,t;41], [ti+1,ti+2] on which ¢, travels along A~ and then along A* from
boundary to boundary, where both external boundaries are glued to copies of V
or Vp depending on whether or not that edge is incident to colored base-point
of .

Then we can choose a lift ¢, of ¢, to M and compare the end points of two paths
3 0 ¢y and ¢ to obtain a contradiction. O

5. ExpLICIT CONSTRUCTIONS

5.1. Known Examples. The construction in [AL18] starts from the Fibonacci
manifold M,, the cyclic branched n-fold cover over the figure-eight knot. For
n = 4, it is hyperbolic.

From the proof of Theorem 2.3, it suffices to consider the reduced invariants
with rational coefficients HM,(Y,s;Q). By the universal coefficients theorem on
homology, this is implied by the vanishing of HM, (Y, s;Z/27). Thus, it suffices to
show that the computation holds with coefficients in Z/27Z.

In [AL18], they proved that M, is an L-space with coefficients in Z/27Z for all n
such that n # 0 mod 3, using the fact that M, is the branched double cover over the
closure of the 3-braid (6105 ')™ and the surgery exact sequence [KMOS04]. Then
they showed that My is an arithmetic hyperbolic manifold of simplest type defined
by a quadratic form over the field Q(v/5).
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Since Mj is a Z,/27 homology sphere, for I' = w1 (M), I'® =T, so M5 =~ H"/T'?®)
embeds as a totally geodesic submanifold of a closed hyperbolic 4-manifold W by
Theorem 3.7. Since the Euler number of a closed oriented hyperbolic 4-manifold
is positive, we may assume that x (W) > 2 by passing to a 4-fold cover and hence
by (W) > 1. Thus by Corollary 2.4, these embed into a closed hyperbolic 4-manifold
with vanishing Seiberg-Witten invariants.

5.2. Construction of new manifolds. Before using the construction method in
Section 4, we need to find the six building blocks first.
We recall the following commensurability criterion:

Proposition 5.1. [GPS87, Section 2.6] Let ¢1 and g2 be two quadratic forms of
signature (n,1) defined over a totally real number field k. Assume that every non-
trivial Galois conjugate of q1 as well as of qo is positive definite.

Then the two hyperbolic orbifolds with monodromy groups SO(q;, O) fori = 1,2
are commensurable if and only if q is isometric over k to Aga for some X € k* (i.e.
Aqi At = \qz for some A€ GL(n + 1,k)).

We say two such quadratic forms are similar over k. Thus, our attention is
restricted to the quadratic forms, and we review some standard definitions and
basic results about the quadratic forms in [Ser73].

Definition 5.2. Let k be a p-adic field, and a,b € k*. The Hilbert symbol (a, b)
is defined to be 1 if the equation ax? 4 by? = 22 has a non-trivial solution in &, and
—1 otherwise.

Given a quadratic form g of rank n + 1, define its Hasse-Witt invariant

ex(q) = H(%aj)k e {1},

where a; € k and ¢ = alx% + e+ anHw%H in some orthogonal basis.

u
P
the equation v = 22 has a nonzero solution mod p and —1 otherwise.

Definition 5.3. For u € Z the Legendre symbol ( ) is 0 if w is divisible by p, 1 if

An element u with (%) = 1 is called a quadratic residue mod p.

Proposition 5.4. Let k be a p-adic field, and a,b,c € k*. The Hilbert symbol
satisfies

1. (ac,b)k = (a,b)x(c,b)g,

2. (a2,b)k = 1,
3. (a,b)x = (a,—ab)g,
and for a local field ky, and a,b € kS, (a,b)r, = —1 if and only if a is not a square

in ky and b is not a norm from ky(y/a)/ky.

Hasse invariants can be used to detect the non-commensurability of quadratic
forms over a p-adic field:

Proposition 5.5. [Ser73, Chapter IV, Section 2] For two quadratic forms q; and
q2 over the field k, a finite extension of Qp, if q1 is similar qo over k, they have the
same Hasse invariant.

Let us now concentrate on arithmetic hyperbolic manifolds and recall the process
of embedding arithmetic hyperbolic manifolds in Section 3. Given an admissible
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quadratic form f, we take qg = dy?+f, where d is square-free in k. We assume that
f has the diagonal form f=b;2? + - -- + byx? without loss of generality.
Q(\/g) is not a p-adic field, so we need to calculate the Hasse invariants at

some prime ideal p of its ring of integers O = Z [%] to find the suitable d; €

Q(v/5),i = 1,...,6 such that the corresponding arithmetic hyperbolic 4-manifolds
of SO(qq,, Q(+/5)) are pairwise non-commensurable.

We now recall the definition of the Frobenius automorphism. For a finite field
Fg, the Frobenius automorphism is the map x +— 9. It generates the Galois group
of Fyn /Fy, which is cyclic of order n.

Now consider a finite Galois extension L/K of number fields. Let p be an un-
ramified prime ideal of Ok and choose a prime P of Op lying over p. The Ga-
lois group Gal(L/K) acts transitively on such primes. The decomposition group
Dy < Gal(L/K) is the subgroup fixing 8. Within Dy, the Frobenius automor-
phism Frobys is defined by its action on the residue field O, /%B:

Frobg () = 2™*  mod P
where N, is the norm of p.

The Frobenius conjugacy class Frob, in Gal(L/K) is the conjugacy class of this
element (independent of the choice of 8 since all such primes are conjugate).

Now suppose L = K (+/d) is a quadratic Galois extension of fields, with Gal(L/K) =
{l,0}. Let p be a prime of K unramified in L. Then the Frobenius element
Frob, € Gal(L/K) acts either trivially or nontrivially. If it acts trivially, p splits in
L and if it acts as g, then p is inert. So the Frobenius automorphism acts trivially
if and only if the defining element d of L = K (+/d) is a square modulo p.

The Chebotarev density theorem can guarantee the existence of suitable prime
ideals.

Theorem 5.6. [Neu99, VIL.13, Chebotarev density theorem)]

Let L/k be a finite Galois extension of number fields with Galois group G =
Gal (L/k). For any conjugacy class C < G, the set of prime ideals p of k whose
Frobenius automorphism Froby, lies in C has natural density p:

p= 1,
G|
In particular, such primes exist and are infinite in number.

Proposition 5.7. For q; = dy?+f over Q(+/5), there exist six different numbers
d; € Q(v/5),i = 1,...,6 such that the corresponding closed arithmetic hyperbolic
4-manifolds of SO(qq,, Q(+/5)) are pairwise non-commensurable.

Proof. We denote Q(+/5) by F for simplicity. Square classes of F are elements of
F*/(F*)?, and there are infinitely many square classes for F' = Q(+/5). So we can
choose d;, ¢ = 1,...,6 so that d; and d; are not in the same square class of F'* for
i # j and that b; and d; *d; are not in the same square class of F for i # j.

Fix i # j. Let Ly = F(y/d;'d;), Ly = F(\/b1,...,/bs) and L = Ly - Ly be the

compositum of the two finite extensions. L/F' is a Galois extension, and Theorem
5.6 ensures the existence of some prime ideal p where:

1. Frob, acts as nontrivial on F(4/d; 'd;) (so d; 'd; is a non-square in F},).
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2. Frob, acts as nontrivial on F(v/b1) (so b is a non-square in F},).
3. Frob, acts as nontrivial on F'(4 /bldidj_l) (so by is a non-square in F, and b; is

not a norm from F(4y/d; *d;)/F).

4. Frob, acts as trivial on F'(1/b;) for [ # 1 (so b; are squares in Fy).

By Proposition 5.4, we obtain (by,d; 'd;)r, = —1and (b, d; 'd;)p, = 1forl # 1,
so we know that ep, (qq,) # €F, (¢q,). By Proposition 5.5, the two quadratic forms
qq, and qq; are not similar over F},, and hence a fortiori g4, and gq4; are not similar
over F'. Since ¢,j are arbitrary, the quadratic forms g4, are pairwise not similar
over F', and by Proposition 5.1, we prove the proposition. ([

By taking the double covers of the first four closed arithmetic hyperbolic 4-
manifolds as in Corollary 2.4 if necessary, we obtain four non-commensurable closed
arithmetic hyperbolic 4-manifolds Wy,,% = 1, ...,4 containing the L-space M5 as a
non-separating hypersurface. Cut Wy,,7 = 1, ...,4 along one copy of M5, and then
we obtain the building blocks A* and B*. They are the ones placed on the edges
of the finite decorated graph.

Recall the process of embedding arithmetic hyperbolic manifolds in Section 3.
Given an arithmetic hyperbolic (n —1)-manifold N, we embed N into an arithmetic
hyperbolic manifold M = H"/T" by considering the ¢g-hyperboloid model for H". Let
R=H"n{zeR" 29 =0} and N = R/Tg, we find I such that Ty < T is the
subgroup of I" consisting of elements that preserve R and embed N into M = H"/T".

To obtain building blocks with four totally geodesic boundary components, we
need the following proposition:

Proposition 5.8. [GL14, Proposition 4.3] For every m € Z there exists a finite
normal cover M' of M that contains (at least) m disjoint copies Ny, ..., N, of N

such that M"\ .731 N; is connected.
=

Proof. Suppose first that N is separating in M. It follows that I' is isomorphic to
the amalgamated product I'y p, I'y, where I'; and I'y are the fundamental groups
of the two connected components of M\N. By [GPS87, Section 0.1] the subgroups
[;,i = 1,2 are Zariski dense in SO(n, 1) and their Zariski closures in SO(n + 1,C)
are also semisimple algebraic groups. Since I'; € SO(n,1) < SO(n + 1,C) and
SO(n + 1,C) is an order 2 quotient of its universal covering, it follows from the
Weisfeiler—Nori strong approximation theorem (see [Rap13]) that each T';,i = 1,2
is mapped to a subgroup of index at most 2 in almost every congruence quotient
of T' by considering the lift of T'; to Spin(n + 1, C).
Since I'g is the intersection of I' with a parabolic subgroup

* * * *
Lo={yel:y=|. . }s
. * . *

* * * *

it is clear that we may find congruence quotients of I' in which the image of I'g is of
arbitrarily large index. Let I'(p) be principal congruence subgroup in I" such that

[Is nD(p) : To nT(p)] = ki = 3, fori = 1,2
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and denote by f‘j,i =0, 1,2 the image of T'; in the finite group I'/T'(p), respectively.
Set A =T'y *p, I'z and consider the map

Tirzrl*Forgﬁfl*fof‘ng.

According to the Bass-Serre theory (see [Bas93, Chapter I, Theorem 5.1]), the
group A acts on the (kq, ka)-bi-regular tree T'. It is well known (see [Ser80, p. 120])
that A has a finite index free subgroup A’ acting freely on 7" with A’\T' being a
(k1, k2)-bi-regular finite graph. By taking a further finite index subgroup A” we
can assume that A” is normal in A and of rank at least m. It follows that the graph
A"\T has at least m simultaneously non-separating edges.

The group I' acts on T as well via the map 7. Let I = 7= 1(A”) <T. As T”
acts on T with the same fundamental domain as A”, it splits as a graph of groups
over the graph A”\T. Moreover, this graph of groups covers the graph of groups of
A =Ty #p, Ty (see [Bas93, Section 4]).

To complete the proof in this case, let M’ be the normal cover of M corresponding
to I'”. The connected components of the preimage of N inside M’ serve as edges
in a decomposition of M’ according to the graph structure of I'"\T. Since M’ is
normal, it is clear from the construction that all these connected components are
isometric to N. Moreover as N embeds in M, every two of them are disjoint. The
result follows by taking copies of N which correspond to a jointly non-separating
set of m edges of I'"\T.

The remaining case where M is non-separating is dealt with by a similar argu-
ment. In that case I' is isomorphic to the HNN extension I'y#p,, where I'; is the
fundamental group of M\N. The map 7 is defined in an analogous fashion, and
essentially the same proof goes through. (Il

By the above proposition, we can obtain the building blocks V and V; by taking
the case 2m = 4 for N = M5 and M = Wy,,i = 5,6. So we have constructed the
six building blocks required in Section 4.

The following proposition tells the number of decorated graphs up to isomor-
phism:

Proposition 5.9. [LS03, Ch. 2] Let a,, denote the number of subgroups of index
n in the free group F on two generators. Then a, = n? for every n.

Let Vp denote the maximal volume of the six building blocks. For each rep-
resentative F’ of the isomorphism classes of subgroups of F' of the index n, the
corresponding Ma has volume V' < 5nVj.

So for given volume ¥, we can construct at least [V /10V;] P Cosed hyper-
bolic 4-mainfolds with volume below % containing the non-separating L-space Mgy

by Proposition 5.9. They are pairwise non-commensurable by Proposition 4.4, and
10V
by Corollary 2.4 we can find [V /10V,] rgel pairwise non-commensurable closed

hyperbolic 4-mainfolds at volume most V with vanishing Seiberg-Witten invari-
ants. By substituting n = |V/10V,]| into Proposition 5.9, we derive the lower
bound VC(v) = v for v sufficiently large.

The upper bound v*? is exactly from [GL14, Theorem 1.1], so we prove Theorem
1.2.
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