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Abstract. Ian Agol and Francesco Lin proved the existence of hyperbolic

four-manifolds with vanishing Seiberg-Witten invariants. We prove that the
number of such manifolds of volume at most v is asymptotically bounded by

vcv considered up to commensurability, which has the same form as the lower

bound and upper bound of the number of hyperbolic four-manifolds of volume
at most v proved by Tsachik Gelander and Arie Levit.
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1. Introduction

Seiberg-Witten theory gives rise to a powerful interplay between the geometry
and topology of smooth 4-manifolds. Witten [Wit94] proved that if a 4-manifold
with b`

2 ě 2 admits a metric of positive scalar curvature, then all its Seiberg-Witten
invariants vanish. In [LeB01, Conjecture 1.1], Claude LeBrun asked whether the
Seiberg-Witten invariants of compact hyperbolic 4-manifolds vanish, based on the
estimates of the scalar curvature and Weyl curvature for the spinc structure s with
non-trivial Seiberg-Witten invariants.

Proposition 1.1. [LeB01, Theorem 3.5]
Let M be a smooth compact oriented 4-manifold with b`

2 ě 2, and suppose that
s is a spinc structure with non-trivial Seiberg-Witten invariant. Let g be any Rie-
mannian metric on M , and let ϕ be a g-self-dual harmonic 2-form with de Rham
class rϕs P H2pM,Rq. Let sg be the scalar curvature and wg be the lowest eigenvalue

of the self-dual Weyl curvature W` of g. Then the function f “
a

|ϕ| satisfies
ż

M

ˆ

2

3
sg ` 2wg

˙

|ϕg|dµg ` 4

ż

M

|df |2gdµg ď p4π
?
2qc1psq ¨ rϕs

1
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So the Seiberg–Witten basic classes satisfy stronger constraints for hyperbolic
manifolds pM, gq with the scalar curvature sg “ ´12 and the Weyl curvature Wg “

0.
In [AL18, Theorem 1.1], Ian Agol and Francesco Lin proved the existence of

hyperbolic four-manifolds with vanishing Seiberg-Witten invariants, and remarked
that there are infinitely many commensurability classes of arithmetic hyperbolic
4-manifolds containing representatives with vanishing Seiberg-Witten invariants.

Let Cpvq denote the number of commensurability classes of hyperbolic manifolds
admitting a representative of volume at most v. In [GL14, Theorem 1.2], Tsachik
Gelander and Arie Levit proved that there are positive constants a and b, such that
vav ď Cpvq ď vbv for all v sufficiently large. Inspired by their methods, we show
that the number of commensurability classes of hyperbolic manifolds admitting a
representative with vanishing Seiberg-Witten invariants of volume at most v has
the same form:

Theorem 1.2. Let V Cpvq denote the number of commensurability classes of hyper-
bolic manifolds admitting a representative with vanishing Seiberg-Witten invariants
of volume at most v. Then there exist positive constants b and c such that

vcv ď V Cpvq ď vbv

for all v sufficiently large.

Since V Cpvq ď Cpvq for all volume v, the upper bound of Theorem 1.2 is taken
from [GL14], and our work focuses on constructing enough such manifolds to es-
tablish the lower bound. We first embed the L-space M5 as a totally geodesic
non-separating hypersurface into non-commensurable hyperbolic 4-manifolds, us-
ing the main result of Kolpakov–Reid–Slavich[KRS18]. By modifying Gelander-
levit’s approach in [GL14], most of our work is constructing appropriate building
blocks, each of whose boundaries is a union of totally geodesic copies of the L-space
M5. By gluing them according to decorated graphs, we obtain infinitely many non-
commensurable compact hyperbolic 4-manifolds with the non-separating L-space
M5, which satisfy the condition of [AL18, Corollary 2.5], .

In Section 2, we recall the basic construction of the Seiberg-Witten equations and
the definitions of Seiberg-Witten invariants for closed 4-manifolds and monopole
Floer homology groups for closed 3-manifolds. Then we present a vanishing criterion
for Seiberg-Witten invariants involving the L-space as a separating hypersurface.

In Section 3, we present the rough outline of embedding arithmetic hyperbolic
3-manifolds as a totally geodesic hypersurface into hyperbolic 4-manifolds. Here
certain technical details are required in order to ensure compactness and boundary
control.

In Section 4, we recall the construction in [GL14] by establishing connections
between interbreeding of hyperbolic manifolds and decorated graphs. We also ex-
plain how to construct hyperbolic manifolds from decorated graphs and show that
commensurable manifolds have isomorphic decorated graphs.

In Section 5, we recall the examples by [AL18]. Then we construct suitable
building blocks and check that the infinitely many manifolds obtained by these
building blocks satisfy the condition of Theorem 1.2.
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2. Seiberg-Witten invariants and a vanishing criterion

We briefly review the necessary background on the Seiberg-Witten theory. Most
of our discussions and notations are based on [Mor96] and [KM07].

Let X be an oriented 4-dimensional Riemannian manifold. A spinc structure is
a hermitian vector bundle SX Ñ X of rank 4, with a Clifford multiplication

ρ : TX Ñ HompSX , SXq,

such that at each x P X we can find an oriented orthonormal frame e0, ...e3 with

ρpe0q “

„

0 ´I2
I2 0

ȷ

, ρpeiq “

„

0 ´σ˚
i

σi 0

ȷ

pi “ 1, 2, 3q

in some orthonormal basis of the fiber Sx. Here I2 is the 2 ˆ 2 identity matrix and
σi are the Pauli matrices. If we extend Clifford multiplication to complex forms,
then in the same basis for Sx we have

ρpvolxq “

„

´I2 0
0 I2

ȷ

where vol “ e0 ^ e1 ^ e2 ^ e3 is the oriented volume form. So the eigenspaces of
ρpvolq give a decomposition of SX into two orthogonal rank-2 bundles.

Let X be an oriented compact Riemannian 4-manifold with a spinc structure
sX “ pSX , ρq and corresponding ´1-eigenspace S`

X of the Clifford multiplication
ρpvolxq. The Seiberg-Witten equations associated to the spinc structure sX are
equations for a pair pA,Φq consisting of a spinc connection A and a section Φ of
the associated spin bundle S`

X . The equations are the following:

(1)

"

D`
AΦ “ 0

F`
At “ pΦΦ˚q0 ` η

.

Here F`
At is the self-dual part of the curvature 2-form FAt of the connection At

and D`
A is the positive part of the Dirac operator DA of the connection A. pΦΦ˚q0

denotes the trace-free part of the hermitian endomorphism ΦΦ˚ of the bundle S`
X

and η is some perturbation of the 2-form. A solution pA,Φq is called reducible if
Φ “ 0, and irreducible otherwise.

The gauge group G of X is the group of unitary bundle automorphisms of SX

which commute with Clifford multiplication, and it can be identified with the group
of S1-valued functions u : X Ñ S1, acting by scalar multiplication. The set of
solutions pA,Φq is invariant under the action of the gauge group, and we write
NpX, sXq for the quotient space of the set of solutions of the equations (1) by
the action of G. Some properties of the moduli space NpX, sXq are listed in the
following theorem.

Theorem 2.1. [KM07, Theorem 1.4.4], Suppose that the perturbation η is chosen
so that the moduli space NpX, sXq is regular, i.e. the linearization of the equations
is a surjective linear operator for all solutions pA,Φq, and that NpX, sXq contains
no reducible solutions, as we can always do when b`

2 pXq ě 1. Then the moduli
space NpX, sXq is a smooth compact manifold, whose dimension d is given by the
formula

d “
1

4

`

c1pS`
Xq2rXs ´ 2λpXq ´ 3σpXq

˘
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We denote by BpX, sXq the quotient space of A ˆ ΓpS`
Xq by the action of G,

and B˚pX, sXq is the irreducible part. After choosing a perturbation η, we assume
NpX, sXq Ă B˚pX, sXq, and if we further give a homology orientation, we have a
well-defined class rNpX, sXqs P HdpB˚pX, sXqq.

Since B˚pX, sXq is the quotient space of A ˆ pΓpS`
Xqzt0uq by the free action of

G, the quotient map

A ˆ pΓpS`
Xqzt0uq Ñ B˚pX, sXq

is a principal G-bundle. If we choose a basepoint x0 P X, then we obtain a ho-
momorphism G Ñ S1 by evaluation at x0, and there is an associated principal S1

bundle P Ñ B˚pX, sXq. Therefore, there is a well-defined 2-cohomology class

u “ c1pP q P H2pB˚pX, sXq;Zq.

The Seiberg-Witten invariants mpX, sXq P Z are defined by the formula

mpX, sXq “

"

xu
d
2 , rNpX, sXqsy, when d is even,

0, when d is odd.

Let Y be a closed, connected, oriented Riemannian 3-manifold. For each iso-
morphism class of spinc structure s on Y , we choose a reference spinc connection
B0 “ B0psq on a spin bundle S “ Spsq. The Chern-Simons-Dirac function of a
spinc connection B and a section Ψ of the corresponding spin bundle, is defined by

LpB,Ψq “ ´
1

8

ż

Y

pBt ´Bt
0q ^ pFBt ` FBt

0
q `

1

2

ż

Y

xDBΨ,Ψydvol,

and we obtain the gradient of the function

gradL “

ˆ

p
1

2
˚ FBt ` ρ´1pΨΨ˚q0q b 1S , DBΨ

˙

.

We can also define the gauge group G of Y as the group of unitary bundle
automorphisms of SX which commute with Clifford multiplication. The downward
gradient gives a flow on the blow-up BσpY, sq of the quotient space BpY, sq “ pA ˆ

ΓpSqq{G, and after perturbing the function to achieve the transversality, we obtain

three complexes Ĉ, C̄ and Č, corresponding to some combinations of boundary-
stable, boundary-unstable and interior critical points up to grading shifts. So the

monopole Floer homology groups zHM˚pY, sq, HM˚pY, sq,~HM˚pY, sq are defined
for each spinc structure on Y corresponding the three complexes, and they fit into
the long exact sequence of graded ZrU s-modules

¨ ¨ ¨ HM˚pY, sq ~HM˚pY, sq zHM˚pY, sq HM˚pY, sq ¨ ¨ ¨
i˚ j˚ p˚

where U has degree ´2. The reduced group HM˚pY, sq is defined as the image of

j˚ in {HM˚pY, sq. When Y is a rational homology sphere, we have an identification
of ZrU s-modules (up to grading shift) with the Laurent series([KM07, Proposition
35.3.1])

HM˚pY, sq – ZrU´1, U s.

Definition 2.2. [KMOS04, Definition 9.1], We say that a rational homology sphere
Y is an L-space if j˚ is trivial for all spinc structures.

So for an L-space Y , HM˚pY, sq “ 0 for all spinc structures s.
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Proposition 2.3. [KM07, Proposition 3.11.1] Let X be a closed, oriented 4-manifold
with b`

2 pXq ě 2, and suppose that X “ X1 Y X2 with BX1 “ ´BX2 “ Y , a con-
nected 3-manifold. If Y is an L-space, and b`

2 pX1q and b`
2 pX2q are both positive,

then mpX, sXq “ 0 for all spinc structures sX .

Proof. Since b1pY q “ 0, a spinc structure sX on X is determined by the re-
strictions si “ sX |Xi

. This follows from the injectivity of the map H2pX;Zq Ñ

H2pX1;Zq‘H2pX2;Zq in the Mayer-Vieoris sequence and that these groups classify
spinc structures. Let s “ sX |Y . Then it is sufficient to show that mpu|X, sXq “ 0 for
classes u “ u1u2 where ui is a cohomology class in the configuration space BpXi, siq
of Xi. A cobordism W from Y0 to Y1 induces a map in long exact sequences of
monopole Floer homology groups ([KM07, Section 3.4]) and if b`

2 pW q ě 1, we have

that HM˚pu|W, sq “ 0 ([KM07, Proposition 3.5.2]). So we can define the relative

invariant ψpu1|X1,s1q P zHM˚pY, sq: let W1 be the cobordism obtained from X1 by
removing a ball, and consider the induced map

zHM˚pu1|X1, s1q : zHM˚pS3q “ ZrU s Ñ zHM˚pY, sq.

Then ψpu1|X1,s1q “ zHM˚pu1|W1, s1qp1q. We consider the commutative diagram

zHM˚pS3q HM˚pS3q

zHM˚pY, sq HM˚pY, sq

p˚

zHM˚pu1|W1,s1q HM˚pu1|W1,s1q

p˚

and as b`
2 pW1q ě 1, the vertical map on the right vanishes, which implies that

ψpu1|X1,s1q P kerpp˚q “ HM˚pY, sq. Similarly, using the map induced in homology
by W2, we obtain an element ψpu2|X2,s2q P HM˚p´Y, sq, which is identified with
HM˚pY, sq. By the general gluing theorem in [KM07, Equation 3.22],

mpu|X, sXq “ xψpu1|X1,s1q, ψpu2|X2,s2qy,

where the angular brackets denote the natural pairing

HM˚pY, sq ˆHM˚pY, sq Ñ Z.

In our assumpions, the group HM˚pY, sq vanishes, so this pairing is zero, and
mpu|X, sXq is zero for all spinc structures sX .

□

The construction of known examples by Agol and Lin [AL18] fundamentally
relies on the following corollary.

Corollary 2.4. [AL18, Corollary 2.5] Suppose X is a 4-manifold with b`
2 pXq ě 1

which admits an embedded non-separating L-space Y . Then X admits infinitely
many covers which have all vanishing Seiberg-Witten invariants.

Proof. We consider the double cover X̃ of X formed by gluing together two copies
W1 andW2 of the cobordism from Y to obtained by cutting X along Y . Consider a
properly embedded path γ Ă W1 between the two copies of Y , and denote by T its
tubular neighborhood. Then we have the decomposition X “(W1zT )Y(W2 Y T ),
where the two manifolds are glued along a copy of Y#Y .

By [Lin17, Section 4], the Heegaard Floer chain complexes have vanishing dif-
ferentials in a suitable sense, so the connected sum also gives a chain complex with
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trivial differential, which implies the Heegaard Floer homology is again minimal
and Y#Y is an L-space. Both W1zT and W2 YT have b`

2 ě 1, so we conclude. □

3. Embedding arithmetic hyperbolic manifolds

In this section, we discuss the embedding of arithmetic hyperbolic 3-manifolds as
totally geodesic hypersurfaces into arithmetic hyperbolic 4-manifolds in [KRS18].
We first review the definitions of admissible quadratic forms and arithmetic groups
of simplest type.

Let k be a totally real number field of degree d over Q with a fixed embedding
into R and the ring of integers Rk, and let V be an pn`1q-dimensional vector space
over k equipped with a non-degenerate quadratic form f defined over k which has
signature pn, 1q at the fixed embedding, and signature pn ` 1, 0q at the remaining
d´ 1 embeddings.

The quadratic form f is equivalent over R to the quadratic form x20 ` x21 ` ¨ ¨ ¨ `

x2n´1 ´ x2n, and for any non-identity Galois embedding σ : k Ñ R, the quadratic
form fσ is equivalent over R to x20 ` x21 ` ¨ ¨ ¨ ` x2n´1 ` x2n. We call such a quadratic
form admissible.

Let F be the symmetric matrix associated with the quadratic form f and let O(f)
denote the linear algebraic groups defined over k defined as:

Opfq “ tX P GLpn` 1,Cq : XtFX “ F u and

SOpfq “ tX P SLpn` 1,Cq : XtFX “ F u

Let Jn denote both the quadratic form x20 `x21 ` ¨ ¨ ¨x2n´1 ´x2n, and the diagonal
matrix associated with the form. The hyperbolic space Hn can be identified with
the upper half-sheet tx P Rn`1 : Jn “ ´1, xn ą 0u of the hyperboloid, and we let

Opn, 1q “ tX P GLpn` 1,Rq : XtJnX “ Jnu.

We can also identify Isom(Hn) with the subgroup of O(n,1) preserving the upper
half-sheet of the hyperboloid tx P Rn`1 : Jn “ ´1u, denoted by O`(n,1).

Definition 3.1. Let G be a group, H1, H2 ď G be subgroups. We say that H1 is
commensurable in G with H2 if rH1 : H1 XH2s ă 8, rH2 : H1 XH2s ă 8.

Given an admissible quadratic form defined over k of signature pn, 1q, there exists
T P GLpn ` 1,Rq such that T´1Opf,RqT “ Opn, 1q.

Definition 3.2. A subgroup Γ ă O`(n,1) is called arithmetic of simplest type if
Γ is commensurable with the image in O`(n,1) of an arithmetic subgroup of O(f)
under the conjugation map above.

Definition 3.3. Let G be a group. Then Gp2q “ xg2|g P Gy.

The following proposition allows one to embed an arithmetic group in arithmetic
groups with higher dimensions.

Proposition 3.4. [KRS18, Corollary 4.2] Let Γ be an arithmetic subgroup of
O`pn, 1q of simplest type arising from an admissible quadratic form f of signature
pn, 1q defined over a totally real field k. Suppose that there is an admissible qua-
dratic form g of signature pn`1, 1q defined over the same field k, with Opfq ă Opgq.
Then:

(1) If n is even, Γ embeds in an arithmetic subgroup of O`pn ` 1, 1q of simplest
type.
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(2) If n is odd, Γp2q embeds in an arithmetic subgroup of O`pn ` 1, 1q of simplest
type.

From the above proposition, we can simplify the problem to find an admissible
quadratic form g so that Opfq ă Opgq. Here we need only to consider the case k ‰ Q
for our purpose.

Lemma 3.5. [KRS18, Proposition 5.1] Suppose that f is represented by the admis-
sible diagonal quadratic form a0x

2
0 ` a1x

2
1 ` ¨ ¨ ¨ ` an´1x

2
n´1 ´ bx2n over the field

k ‰ Q, where ai P Rk are all positive and square free for i “ 0, ..., n´1, and b P Rk

is positive and square free. Then there is an admissible diagonal quadratic form g
of signature pn` 1, 1q with Opfq ă Opgq.

Proof. If f is anisotropic over k, that is, fpxq “ 0 if and only if x “ 0, then we
can assume that b ‰ ai for i “ 0, ..., n ´ 1. Since O(λf)=O(f) for all λ P k˚, we
can multiply f by a´1

0 and assume that a0 “ 1, and also that all coefficients are
square-free. Then we can take g“ dy2`f so that d is square-free in k, which will be
a quadratic form over k. O(g,Rk) is cocompact, as follows from [Mor15, Proposition
6.4.4]. □

Remark 3.6. The above lemma is also true for k “ Q, but we don’t need to discuss
this case here.

The general case can be reduced to the diagonal case by taking some T P

GLpn ` 1, kq so that T´1OpfqT “ Opf0q for some admissible diagonal quadratic
form f0 defined over k(see [Lam05]). Then we can extend T to define a matrix

pT “

ˆ

1 | 0
0 | T

˙

P GLpn ` 2, kq

which provides an equivalence of the diagonal form g0 to an admissible quadratic
form g with Opfq ă Opgq.

Let M “ Hn{Γ be an orientable arithmetic hyperbolic n-manifold of simplest
type and if n is odd, we replace M by M p2q “ Hn{Γp2q. By Proposition 3.4, there
exists an arithmetic lattice Λ of simplest type in SO`pn ` 1, 1q such that Γ ă Λ.
Then we can find a torsion-free subgroup Λ1 ă Λ with Γ ă Λ1 and Λ1 is GFERF
([KRS18, Proposition 7.1 and Theorem 6.2]) . In this case, Scott[Sco78] proved
that M embeds in a finite sheeted cover of Hn`1{Λ1. Combining these results, we
obtain the following theorem:

Theorem 3.7. [KRS18, Theorem 1.1] Let M “ Hn{Γ (n ě 2) be an orientable
arithmetic hyperbolic n-manifold of simplest type.

(a) If n is even, M embeds as a totally geodesic submanifold of an orientable
arithmetic hyperbolic pn` 1q-manifold W .

(b) If n is odd, the manifold M p2q “ Hn{Γp2q embeds as a totally geodesic
submanifold of an orientable arithmetic hyperbolic pn` 1q-manifold W .

Moreover, when M is not defined over Q (and is therefore closed), the manifold
W can be taken to be closed.

Here the final sentence follows from the fact that closed arithmetic manifolds of
simplest type are associated with quadratic forms either over a finite extension k
of Q, k ‰ Q, or with quadratic forms over Q which are anisotropic.
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4. Decorated Graphs and Building Blocks

In this section, we present the construction methods in [GL14], involving deco-
rated graphs and building blocks.

Let F denote the free group generated by two non-commuting elements ta, bu.
The Schreir graph ΓH corresponding to a subgroup H ď F is the quotient of the
Cayley graph of F by the natural action of H. Thus a Schreir graph is a 4-regular
graph with oriented edges that are labeled by the set ta˘, b˘u.

Definition 4.1. [GL14, Definition 2.1] A decorated graph is a 4-regular graph Γ
with oriented edges labeled by ta˘, b˘u whose vertices are 2-colored, and we will
refer to each vertex as either colored or not.

A covering map of decorated graphs is a topological graph covering that preserves
both the edge orientations and labels, and the vertex coloring.

Decorated graphs with a single colored vertex are exactly Schreir graphs for
finite index subgroups of F2, since we can identify the single colored vertex with
the identity element ē in the quotient group, and obtain the corresponding finite
index subgroup H by the covering space theory.

Definition 4.2. [GL14, Definition 3.1] The building blocks are the six given mani-
folds with boundaries V0,V1,A

`,A´,B`,B´, which satisfy the following properties:

‚ Each is a complete real hyperbolic n-dimensional manifold of finite volume
with totally geodesic boundary.

‚ V0 and V1 have 4 boundary components each, while A˘ and B˘ have 2
boundary components each.

‚ Every boundary component of any of the above manifolds is isometric to a
fixed pn´ 1q-dimensional complete finite-volume manifold N .

‚ The six manifolds are embedded in respective six manifolds without bound-
ary, which are arithmetic and pairwise non-commensurable.

Given a decorated graph ∆, we letM∆ denote a manifold obtained by associating
a copy of either V0 or V1 for each vertex in ∆ according to its color, and a copy of
the pair A` and A´ or the pair B` and B´ for every edge of ∆ according to its
label and orientation, and gluing them according to the graph incidence relation by
identifying corresponding isometric copies of N .

We refer to the isometric copies of V0, ..., B
´ inside M∆ as the building block

submanifolds.

Working with decorated graphs will be useful in ruling out common covering
spaces.

Proposition 4.3. [GL14, Proposition 2.2]
Let Γ1 and Γ2 be two finite decorated graphs, each having a single colored vertex.

If Γ1 and Γ2 are not isomorphic then they do not have a common decorated cover.

Proof. Since Γ1 and Γ2 each have a single colored vertex, we may regard them as
ΓHi

for some finite-index subgroup Hi ď F , i “ 1, 2. Since the two graphs are not
isomorphic, we have that H1 ‰ H2 as subgroups of F .

Assume for a contradiction that Γ1 and Γ2 have a common decorated cover Γ̄
with covers pi : Γ̄ Ñ Γi. We consider some loop γ in Γ1 based at the colored vertex
such that lpγq P H1zH2, and let γ̄ be a lift of γ to Γ̄ and let x P Γ̄ denote the
end-point of γ̄. Since γ is a loop, the end-point of p1 ˝ γ̄ “ γ is colored, while the
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end-point of p2 ˝ γ̄ is not colored since lpγq R H2. This contradicts the fact that p1
and p2 are assumed to preserve the decorated structure since both end-points are
covered by x P Γ̄. □

The following proposition generalizes Proposition 4.3, which reduces the problem
of constructing non-commensurable manifolds to the problem of constructing non-
isomorphic finite decorated graphs.

Proposition 4.4. [GL14, Proposition 3.3] Let ∆1 and ∆2 be two finite decorated
graphs, each having a single colored vertex. If ∆1 and ∆2 are not isomorphic then
the manifolds M∆1

and M∆2
are not commensurable.

Sketch of Proof. Suppose, by way of contradiction, thatM is a common finite cover
of both M∆1 and M∆2 with associated covering maps πi : M Ñ M∆i . Let x P M
be a point. We can prove that π1pxq belongs to the interior of some building block
sub-manifold of M∆1

if and only if π2pxq belongs to the interior of a building block
of the same type in M∆2

(see [GL14, Lemma 3.5]).
As in the proof of Proposition 4.3, we may write ∆i “ ∆Hi

, and let γ be a
simple closed loop in ∆1 of length k “ |γ| based at the colored vertex with labeling
lpγq P H1zH2. Fix a point p in the interior of the copy of V1 in M∆1 . We associate
to γ a closed path

cγ : r0, 1s Ñ M∆1 with cγp0q “ cγp1q “ p

such that cγ intersects the copies of the boundary submanifold N transversely at
times

0 ă t1 ă ¨ ¨ ¨ ă t3k ă 1

and so that each cγ|pti,ti`1q, 0 ď i ď 3k (with t0 “ 0 and t3k`1 “ 1) is con-
tained in the interior of a single building block manifold. Moreover cγ traces γ
in the obvious sense: an edge of type a`1 in γ corresponds to consecutive seg-
ments rti, ti`1s, rti`1, ti`2s on which cγ travels along A´ and then along A` from
boundary to boundary, where both external boundaries are glued to copies of V1
or V0——depending on whether or not that edge is incident to colored base-point
of γ.

Then we can choose a lift c̃γ of cγ toM and compare the end points of two paths
π2 ˝ c̃γ and c̃γ to obtain a contradiction. □

5. Explicit Constructions

5.1. Known Examples. The construction in [AL18] starts from the Fibonacci
manifold Mn, the cyclic branched n-fold cover over the figure-eight knot. For
n ě 4, it is hyperbolic.

From the proof of Theorem 2.3, it suffices to consider the reduced invariants
with rational coefficients HM˚pY, s;Qq. By the universal coefficients theorem on
homology, this is implied by the vanishing of HM˚pY, s;Z{2Zq. Thus, it suffices to
show that the computation holds with coefficients in Z{2Z.

In [AL18], they proved that Mn is an L-space with coefficients in Z{2Z for all n
such that n ‰ 0 mod 3, using the fact thatMn is the branched double cover over the
closure of the 3-braid pσ1σ

´1
2 qn and the surgery exact sequence [KMOS04]. Then

they showed that M5 is an arithmetic hyperbolic manifold of simplest type defined
by a quadratic form over the field Qp

?
5q.
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SinceM5 is a Z{2Z homology sphere, for Γ “ π1pMq, Γp2q “ Γ, soM5 – Hn{Γp2q

embeds as a totally geodesic submanifold of a closed hyperbolic 4-manifold W by
Theorem 3.7. Since the Euler number of a closed oriented hyperbolic 4-manifold
is positive, we may assume that χpW q ą 2 by passing to a 4-fold cover and hence
b`
2 pW q ą 1. Thus by Corollary 2.4, these embed into a closed hyperbolic 4-manifold
with vanishing Seiberg-Witten invariants.

5.2. Construction of new manifolds. Before using the construction method in
Section 4, we need to find the six building blocks first.

We recall the following commensurability criterion:

Proposition 5.1. [GPS87, Section 2.6] Let q1 and q2 be two quadratic forms of
signature pn, 1q defined over a totally real number field k. Assume that every non-
trivial Galois conjugate of q1 as well as of q2 is positive definite.

Then the two hyperbolic orbifolds with monodromy groups SOpqi,Oq for i “ 1, 2
are commensurable if and only if q1 is isometric over k to λq2 for some λ P k˚ pi.e.
Aq1A

t “ λq2 for some A P GLpn` 1, kqq.

We say two such quadratic forms are similar over k. Thus, our attention is
restricted to the quadratic forms, and we review some standard definitions and
basic results about the quadratic forms in [Ser73].

Definition 5.2. Let k be a p-adic field, and a, b P k˚. The Hilbert symbol pa, bqk
is defined to be 1 if the equation ax2 ` by2 “ z2 has a non-trivial solution in k, and
´1 otherwise.

Given a quadratic form q of rank n` 1, define its Hasse-Witt invariant

εkpqq “
ź

iăj

pai, ajqk P t˘1u,

where ai P k and q “ a1x
2
1 ` ¨ ¨ ¨ ` an`1x

2
n`1 in some orthogonal basis.

Definition 5.3. For u P Z the Legendre symbol
´

u
p

¯

is 0 if u is divisible by p, 1 if

the equation u “ x2 has a nonzero solution mod p and ´1 otherwise.

An element u with
´

u
p

¯

“ 1 is called a quadratic residue mod p.

Proposition 5.4. Let k be a p-adic field, and a, b, c P k˚. The Hilbert symbol
satisfies

1. pac, bqk “ pa, bqkpc, bqk,
2. pa2, bqk “ 1,
3. pa, bqk “ pa,´abqk,

and for a local field kp and a, b P kˆ
p , pa, bqkp

“ ´1 if and only if a is not a square

in kp and b is not a norm from kpp
?
aq{kp.

Hasse invariants can be used to detect the non-commensurability of quadratic
forms over a p-adic field:

Proposition 5.5. [Ser73, Chapter IV, Section 2] For two quadratic forms q1 and
q2 over the field k, a finite extension of Qp, if q1 is similar q2 over k, they have the
same Hasse invariant.

Let us now concentrate on arithmetic hyperbolic manifolds and recall the process
of embedding arithmetic hyperbolic manifolds in Section 3. Given an admissible
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quadratic form f, we take qd “ dy2`f, where d is square-free in k. We assume that
f has the diagonal form f=b1x

2
1 ` ¨ ¨ ¨ ` b4x

2
4 without loss of generality.

Qp
?
5q is not a p-adic field, so we need to calculate the Hasse invariants at

some prime ideal p of its ring of integers O “ Z
”

1`
?
5

2

ı

to find the suitable di P

Qp
?
5q, i “ 1, ..., 6 such that the corresponding arithmetic hyperbolic 4-manifolds

of SOpqdi ,Qp
?
5qq are pairwise non-commensurable.

We now recall the definition of the Frobenius automorphism. For a finite field
Fq, the Frobenius automorphism is the map x ÞÑ xq. It generates the Galois group
of Fqn{Fq, which is cyclic of order n.

Now consider a finite Galois extension L{K of number fields. Let p be an un-
ramified prime ideal of OK and choose a prime P of OL lying over p. The Ga-
lois group GalpL{Kq acts transitively on such primes. The decomposition group
DP Ă GalpL{Kq is the subgroup fixing P. Within DP, the Frobenius automor-
phism FrobP is defined by its action on the residue field OL{P:

FrobPpxq ” xNp modP

where Np is the norm of p.
The Frobenius conjugacy class Frobp in GalpL{Kq is the conjugacy class of this

element (independent of the choice of P since all such primes are conjugate).

Now suppose L “ Kp
?
dq is a quadratic Galois extension of fields, with GalpL{Kq “

t1, σu. Let p be a prime of K unramified in L. Then the Frobenius element
Frobp P GalpL{Kq acts either trivially or nontrivially. If it acts trivially, p splits in
L and if it acts as σ, then p is inert. So the Frobenius automorphism acts trivially
if and only if the defining element d of L “ Kp

?
dq is a square modulo p.

The Chebotarev density theorem can guarantee the existence of suitable prime
ideals.

Theorem 5.6. [Neu99, VII.13, Chebotarev density theorem]
Let L{k be a finite Galois extension of number fields with Galois group G “

Gal pL{kq. For any conjugacy class C Ď G, the set of prime ideals p of k whose
Frobenius automorphism Frobp lies in C has natural density ρ:

ρ “
|C|

|G|
.

In particular, such primes exist and are infinite in number.

Proposition 5.7. For qd “ dy2`f over Qp
?
5q, there exist six different numbers

di P Qp
?
5q, i “ 1, ..., 6 such that the corresponding closed arithmetic hyperbolic

4-manifolds of SOpqdi ,Qp
?
5qq are pairwise non-commensurable.

Proof. We denote Qp
?
5q by F for simplicity. Square classes of F are elements of

Fˆ{pFˆq2, and there are infinitely many square classes for F “ Qp
?
5q. So we can

choose di, i “ 1, ..., 6 so that di and dj are not in the same square class of Fˆ for

i ‰ j and that b1 and d´1
i dj are not in the same square class of F for i ‰ j.

Fix i ‰ j. Let L1 “ F p

b

d´1
i djq, L2 “ F p

?
b1, ...,

?
b4q and L “ L1 ¨ L2 be the

compositum of the two finite extensions. L{F is a Galois extension, and Theorem
5.6 ensures the existence of some prime ideal p where:

1. Frobp acts as nontrivial on F p

b

d´1
i djq (so d´1

i dj is a non-square in Fp).
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2. Frobp acts as nontrivial on F p
?
b1q (so b1 is a non-square in Fp).

3. Frobp acts as nontrivial on F p

b

b1did
´1
j q (so b1 is a non-square in Fp and b1 is

not a norm from F p

b

d´1
i djq{F ).

4. Frobp acts as trivial on F p
?
blq for l ‰ 1 (so bl are squares in Fp).

By Proposition 5.4, we obtain pb1, d
´1
i djqFp

“ ´1 and pbl, d
´1
i djqFp

“ 1 for l ‰ 1,
so we know that εFp

pqdi
q ‰ εFp

pqdj
q. By Proposition 5.5, the two quadratic forms

qdi
and qdj

are not similar over Fp, and hence a fortiori qdi
and qdj

are not similar
over F . Since i, j are arbitrary, the quadratic forms qdi

are pairwise not similar
over F , and by Proposition 5.1, we prove the proposition. □

By taking the double covers of the first four closed arithmetic hyperbolic 4-
manifolds as in Corollary 2.4 if necessary, we obtain four non-commensurable closed
arithmetic hyperbolic 4-manifolds Wdi

, i “ 1, ..., 4 containing the L-space M5 as a
non-separating hypersurface. Cut Wdi , i “ 1, ..., 4 along one copy of M5, and then
we obtain the building blocks A˘ and B˘. They are the ones placed on the edges
of the finite decorated graph.

Recall the process of embedding arithmetic hyperbolic manifolds in Section 3.
Given an arithmetic hyperbolic pn´1q-manifold N , we embed N into an arithmetic
hyperbolic manifoldM “ Hn{Γ by considering the q-hyperboloid model for Hn. Let
R “ Hn X tx P Rn`1 : x0 “ 0u and N “ R{Γ0, we find Γ such that Γ0 Ď Γ is the
subgroup of Γ consisting of elements that preserve R and embed N intoM “ Hn{Γ.

To obtain building blocks with four totally geodesic boundary components, we
need the following proposition:

Proposition 5.8. [GL14, Proposition 4.3] For every m P Z there exists a finite
normal cover M 1 of M that contains (at least) m disjoint copies N1, ..., Nm of N

such that M 1z
m
Y
i“1

Ni is connected.

Proof. Suppose first that N is separating in M . It follows that Γ is isomorphic to
the amalgamated product Γ1 ˚Γ0

Γ2, where Γ1 and Γ2 are the fundamental groups
of the two connected components of MzN . By [GPS87, Section 0.1] the subgroups
Γi, i “ 1, 2 are Zariski dense in SOpn, 1q and their Zariski closures in SOpn ` 1,Cq

are also semisimple algebraic groups. Since Γi Ă SOpn, 1q Ă SOpn ` 1,Cq and
SOpn ` 1,Cq is an order 2 quotient of its universal covering, it follows from the
Weisfeiler–Nori strong approximation theorem (see [Rap13]) that each Γi, i “ 1, 2
is mapped to a subgroup of index at most 2 in almost every congruence quotient
of Γ by considering the lift of Γi to Spin(n` 1,C).

Since Γ0 is the intersection of Γ with a parabolic subgroup

Γ0 “ tγ P Γ : γ “

¨

˚

˚

˚

˝

1 0 ¨ ¨ ¨ 0
˚ ˚ ˚ ˚

... ˚
. . . ˚

˚ ˚ ˚ ˚

˛

‹

‹

‹

‚

u,

it is clear that we may find congruence quotients of Γ in which the image of Γ0 is of
arbitrarily large index. Let Γppq be principal congruence subgroup in Γ such that

rΓi X Γppq : Γ0 X Γppqs “ ki ě 3, for i “ 1, 2
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and denote by Γ̄i, i “ 0, 1, 2 the image of Γi in the finite group Γ{Γppq, respectively.
Set Λ “ Γ̄1 ˚Γ̄0

Γ̄2 and consider the map

π : Γ “ Γ1 ˚Γ0
Γ2 Ñ Γ̄1 ˚Γ̄0

Γ̄2 “ Λ.

According to the Bass-Serre theory (see [Bas93, Chapter I, Theorem 5.1]), the
group Λ acts on the pk1, k2q-bi-regular tree T . It is well known (see [Ser80, p. 120])
that Λ has a finite index free subgroup Λ1 acting freely on T with Λ1zT being a
pk1, k2q-bi-regular finite graph. By taking a further finite index subgroup Λ2 we
can assume that Λ2 is normal in Λ and of rank at least m. It follows that the graph
Λ2zT has at least m simultaneously non-separating edges.

The group Γ acts on T as well via the map π. Let Γ2 “ π´1pΛ2q ⊴ Γ. As Γ2

acts on T with the same fundamental domain as Λ2, it splits as a graph of groups
over the graph Λ2zT . Moreover, this graph of groups covers the graph of groups of
Λ “ Γ̄1 ˚Γ̄0

Γ̄2 (see [Bas93, Section 4]).
To complete the proof in this case, letM 1 be the normal cover ofM corresponding

to Γ2. The connected components of the preimage of N inside M 1 serve as edges
in a decomposition of M 1 according to the graph structure of Γ2zT . Since M 1 is
normal, it is clear from the construction that all these connected components are
isometric to N . Moreover as N embeds in M , every two of them are disjoint. The
result follows by taking copies of N which correspond to a jointly non-separating
set of m edges of Γ2zT .

The remaining case where M is non-separating is dealt with by a similar argu-
ment. In that case Γ is isomorphic to the HNN extension Γ1˚Γ0

, where Γ1 is the
fundamental group of MzN . The map π is defined in an analogous fashion, and
essentially the same proof goes through. □

By the above proposition, we can obtain the building blocks V0 and V1 by taking
the case 2m “ 4 for N “ M5 and M “ Wdi , i “ 5, 6. So we have constructed the
six building blocks required in Section 4.

The following proposition tells the number of decorated graphs up to isomor-
phism:

Proposition 5.9. [LS03, Ch. 2] Let an denote the number of subgroups of index
n in the free group F on two generators. Then an ě n

n
2 for every n.

Let V0 denote the maximal volume of the six building blocks. For each rep-
resentative F 1 of the isomorphism classes of subgroups of F of the index n, the
corresponding M∆ has volume V ď 5nV0.

So for given volume V
2 , we can construct at least rV {10V0s

rV {10V0s

2 closed hyper-

bolic 4-mainfolds with volume below V
2 containing the non-separating L-space M5

by Proposition 5.9. They are pairwise non-commensurable by Proposition 4.4, and

by Corollary 2.4 we can find rV {10V0s
rV {10V0s

2 pairwise non-commensurable closed
hyperbolic 4-mainfolds at volume most V with vanishing Seiberg-Witten invari-
ants. By substituting n “ tV {10V0u into Proposition 5.9, we derive the lower
bound V Cpvq ě vcv for v sufficiently large.

The upper bound vav is exactly from [GL14, Theorem 1.1], so we prove Theorem
1.2.
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