
REPRESENTATION OF THE BRAID GROUP

CHENGYUE ZHANG

Abstract. In this expository paper, we study the braid group Bn on n

strands. First, we define Bn and show that there exists a group homomor-

phism between Bn and the mapping class group of the n-punctured disk D2
n.

The mapping class group then acts on the fundamental group π1

(
D2

n

)
, which

is naturally isomorphic to the free group Fn on n generators. Thus, Bn can

be represented as a subgroup of Aut (Fn), the automorphism group of the free
group, aligning with the Artin representation of Bn that is defined in purely

algebraic terms.
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1. Introduction to the Braid Groups

There are several geometric interpretations of the braid group, some of which we
will explore in this paper. Before defining the braid group, we first introduce the
notion of a braid. We can think of a braid as braided strings.

Definition 1.1. A braid on n strands consists of n non-intersecting strings sus-
pended between two parallel horizontal bars, such that each string runs monoton-
ically from the top bar to the bottom bar. Two braids are considered equivalent
if one can be continuously deformed into the other while keeping the endpoints of
the strings fixed.

We can represent a braid geometrically through a braid diagram.

Definition 1.2. A braid diagram is a projection of the braid onto the plane such
that no two crossings in the braid occur at the same height.

The set of braids on n strands forms a group under concatenation of braid
diagrams, called the braid group Bn. The group operation is defined by stacking
one braid beneath another, producing a new braid diagram.
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Figure 1. These two braids are equivalent through continuous
deformation. Image credit of [1] Figure 5.33

Definition 1.3. The braid group Bn on n strands is the group whose elements are
equivalence classes of braid diagrams on n strands, with the group operation given
by concatenation, i.e. stacking one braid diagram beneath the other.

Note that the group operation is associative; the empty braid (all strands vertical,
with no crossings) serves as the identity element; and each braid has an inverse
obtained by reflecting the braid vertically.

We now describe the braid group algebraically in terms of generators and rela-
tions, as originally defined by Emil Artin in [2].

Proposition 1.4. The braid group Bn on n strands is the group generated by
σ1, . . . , σn−1 with relations:

σiσj = σjσi for |i− j| > 1,

σiσi+1σi = σi+1σiσi+1 for 1 ≤ i ≤ n− 2.

We give a sketch on how the braid group has such a representation. Intuitively,
we can interpret σi to denote a crossing in which the ith strand passes over the
(i+ 1)st strand. Similarly, its inverse σ−1

i denotes the ith strand crossing under
the (i+ 1)st strand. One can check that concatenating these two braid diagrams
gives rise to the empty braid. The identity element is represented by the empty
word.

Example 1.5. Consider the braid group B4 with generators σ1, σ2, σ3. Let

β = σ1σ3σ2 and α = σ−1
2 σ−1

3 σ−1
1 .

Note that β and α are inverses of each other in B4. Thus, concatenating them gives
the identity braid:

β · α = β · β−1 = (σ1σ3σ2)
(
σ−1
2 σ−1

3 σ−1
1

)
= id.

α = σ−1
2 σ−1

3 σ−1
1

β = σ1σ3σ2

β · α = id

Figure 2. Illustration of inverses and the identity in Example 1.5
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Next, we illustrate the two relations. The first relation describes the fact that
distant crossings commute, while the second describes how adjacent crossings in-
teract. These two relations formally define when two braids are equivalent.

Example 1.6. Consider the braid group B4. By the relations in its representation
σ1σ3 = σ3σ1 and σ1σ2σ1 = σ2σ1σ2. Geometrically, as seen below, the braid repre-
sented by σ1σ3 can be continuously deformed into the braid represented by σ3σ1.
Similarly, the braid represented by σ1σ2σ1 can be continuously deformed into the
braid represented by σ2σ1σ2.

σ1σ3 σ3σ1

σ1σ2σ1 σ2σ1σ2

Figure 3. The two braid relations

2. Mapping Class Group of an n-Punctured Disk

So far we have viewed braid groups both geometrically and algebraically. We now
connect them with topology by introducing mapping class groups, which provide a
powerful framework for studying braids. In this section we show that there exists a
group homomorphism between Bn and the mapping class group of a n-punctured
disk D2

n. We begin by defining the mapping class group.

Definition 2.1. Let X and Y be topological spaces. A map φ : X → Y is called a
homeomorphism if φ is a continuous bijection, and the inverse map φ−1 : Y → X
is also continuous. If such a map exists, we say that X and Y are homeomorphic.

Definition 2.2. Let X and Y be topological spaces, and let f, g : X → Y be two
homeomorphisms. We say that f and g are isotopic if there exists a continuous
map

F : X × [0, 1] → Y

such that

(1) F (x, 0) = f(x) for all x ∈ X,
(2) F (x, 1) = g(x) for all x ∈ X,
(3) For each t ∈ [0, 1], the map Ft : X → Y defined by Ft(x) := F (x, t) is a

homeomorphism.

Such a map F is called an isotopy from f to g. Intuitively, f can be continuously
deformed into g through homeomorphisms.

Definition 2.3. Themapping class group of a topological spaceX, denoted Mod(X),
is the group

Mod(X) = Homeo+(X)
/
∼,

where Homeo+(X) is the group of orientation-preserving homeomorphisms of X,
where two homeomorphisms are equivalent if they are isotopic. If X is a manifold
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with boundary, then homeomorphisms are required to fix the boundary pointwise
throughout the isotopy. The group operation is composition.

Next, we will establish that there exists a group homomorphism from Bn to
the mapping class group of the n-punctured disk D2

n. To establish the connection,
we begin with a classical result known as Alexander’s trick, which shows that the
mapping class group of the closed disk is trivial.

Lemma 2.4. The mapping class group of the closed disk is trivial:

Mod(D2) = { id }.

Proof. Let f : D2 → D2 be a homeomorphism that fixes the boundary pointwise.
We want to show that f is isotopic to the identity. For t ∈ [0, 1) define a radius
rt := 1− t ∈ (0, 1]. For x ∈ D2 set

H(x, t) =

rt f

(
x

rt

)
, ∥x∥ ≤ rt,

x, ∥x∥ ≥ rt.

Define H (x, 1) := x for all x ∈ D2. Intuitively, for each t we apply f to the smaller
concentric disk of radius rt and then rescale back to radius rt, leaving the outer
annulus {rt ≤ ∥x∥ ≤ 1} fixed pointwise.

t=1

t=0

id

f

Figure 4. Cylinder D2 × [0, 1] with cone inside. The unshaded
annulus corresponds to the identity, while the shaded disk shows
the shrinking action of f

We now verify the required properties for an isotopy. First we check the end
points. For t = 0 we have r0 = 1, so

H(x, 0) = 1 · f
(x
1

)
= f(x),

for all x ∈ D2. Thus H (x, 0) = f (x) . For t = 1, we have r1 = 0, so H (x, 1) = x
for all x ∈ D2. Next note that if ∥x∥ = 1 then for every t we have ∥x∥ ≥ rt, hence
H (x, t) = x. Thus the isotopy fixes ∂D2 pointwise.
Next we check the continuity of H. On the regions {∥x∥ < rt} and {∥x∥ > rt} the
map (x, t) 7→ H(x, t) is a composition of continuous maps, hence continuous. On
the boundary ∥x∥ = rt, the inner formula gives

H(x, t) = rt f
(

x
rt

)
= rt · x

rt
= x,

since x
rt

∈ ∂D2 and f fixes the boundary. Thus the two cases agree, so H is
continuous everywhere.
Next we check that for all t ∈ [0, 1), the map H(·, t) is a homeomorphism. On the



REPRESENTATION OF THE BRAID GROUP 5

annulus { rt ≤ ∥x∥ ≤ 1 } we have H(x, t) = x, so it restricts to the identity. On the
inner disk { ∥x∥ ≤ rt } we can write

H(x, t) = rt f
(

x
rt

)
,

which is the conjugate of f by the radial rescaling x 7→ x
rt
. Thus H(·, t) is a

homeomorphism on the inner disk as well. Since the two definitions agree on the
boundary ∥x∥ = rt, it follows that H(·, t) is a homeomorphism of all of D2.
Moreover, its inverse is given explicitly by

H(·, t)−1
(y) =

rt f
−1

(
y
rt

)
, ∥y∥ ≤ rt,

y, ∥y∥ ≥ rt,

which is continuous for the same reasons that H is continuous. Hence H(·, t) is a
homeomorphism for each t ∈ [0, 1).
Thus we have proved that every boundary-preserving homeomorphism of the disk
is isotopic to the identity, so Mod(D2) = { id }. □

Definition 2.5. Let (G, ·) and (H, ·) be two groups. A map φ : G → H is called
a group homomorphism if for all g1, g2 ∈ G,

φ(g1 · g2) = φ(g1) · φ(g2) .
In other words, φ preserves the group operation. If φ is also bijective, it is called a
group isomorphism.

Theorem 2.6. There exists a group homomorphism

ρ : Mod
(
D2

n

)
−→ Bn,

sending each mapping class to a braid.

Proof. Let [f ] ∈ Mod
(
D2

n

)
be a mapping class, represented by a homeomorphism

f : D2
n → D2

n

that fixes the boundary ∂D2 pointwise. Fill in the punctures by marked points
p1, p2, . . . , pn, and extend f to a homeomorphism f ′ : D2 → D2 of the closed disk.
f ′ necessarily permutes the n marked points {p1, . . . , pn}.
By Lemma 2.4, f ′ is isotopic to the identity idD2 . Namely, there exists an isotopy

Ft : D
2 → D2, t ∈ [0, 1],

such that F0 = idD2 and F1 = f ′ (note that we reversed the time parameter in
Lemma 2.4). Now, consider the paths traced by the marked points under this
isotopy:

γi(t) = Ft(pi), i = 1, . . . , n.

The n paths (γ1, . . . , γn) form a braid in Bn. Define

ρ([f ]) := (γ1, . . . , γn) ∈ Bn.

Next we show that this map is well-defined. Suppose f0, f1 : D2
n → D2

n are isotopic
homeomorphisms relative to the boundary. Then any extensions f ′

0, f
′
1 : D2 → D2

are isotopic in D2. Thus the induced braids of f ′
0 and f ′

1 are isotopic and represent
the same element in Bn:

f0 ≃ f1 in D2
n =⇒ ρ([f0]) = ρ([f1]).
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Finally, composition of mapping classes corresponds to concatenation of isotopies,
which corresponds to multiplication in Bn. Therefore, ρ is a group homomorphism.

□

Example 2.7. Let D2 be a closed disk with three mark points P1, P2, P3. Suppose
f is a half twist between P1 and P2 defined as follow:

P1 P2

•
P3 P1 P2

•
P3

Figure 5. Illustration of a half twist. The green and blue lines
are drawn to illustrate the effect of the half twist

Note that f(P1) = P2, f(P2) = P1, and f(P3) = P3. Outside the pink annulus,
f restricts to the identity. On the annulus, f restricts to a homeomorphism. Since
f |∂(Space) = id , f is a homeomorphism on D2. Now apply the Alexander’s trick
(Lemma 2.4) to f , and we obtain the braid induced by the half twist.

Figure 6. Appling the Alexander’s trick (Lemma 2.4) to the half
twist. Image credit of Zhong Zhang
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Theorem 2.8. The braid group Bn is isomorphic to the mapping class group of
the n-punctured disk D2

n:

Bn
∼= Mod(D2

n).

Theorem 2.8 establishes that the braid group Bn can be understood as the
mapping class group of a disk with n punctures. The proof of this theorem is quite
involved, as it requires introducing an additional geometric interpretation of braid
groups; therefore, it is omitted here (see [3] for a complete proof of this theorem).

Remark 2.9. Note that the notations for the braid group and the mapping class
group are conventionally in opposite order. For the mapping class group, the com-
position of homeomorphisms is written so that the function written on the left is
applied after the one on the right, i.e.,

(f ◦ g)(x) = f(g(x)).

In contrast, for the braid group, concatenation is read from left to right: the braid
σiσj means that σi is performed first, followed by σj .

3. Fundamental Group of an n-punctured Disk

Now that we have established the connection between braid group and the map-
ping class group of n-punctured disk, our next step is to explore how these home-
omorphisms affect the underlying geometry of the disk. To do this, we introduce
the concept of the fundamental group, a powerful algebraic invariant that captures
the ’holes’ in a topological space.

Definition 3.1. Let X be a topological space and let γ1, γ2 : [0, 1] → X be two
paths such that

γ1(1) = γ2(0).

The concatenation of γ1 and γ2, denoted γ1 ∗ γ2, is the path

(γ1 ∗ γ2)(t) =

γ1(2t), 0 ≤ t ≤ 1
2 ,

γ2(2t− 1), 1
2 ≤ t ≤ 1.

Intuitively, the concatenated path moves through the first path and then the
second path at twice the original speed.

Definition 3.2. LetX be a topological space and let x0 ∈ X be a chosen basepoint.
Consider the set of all continuous maps (loops)

γ : [0, 1] → X with γ(0) = γ(1) = x0.

Two loops γ0, γ1 are said to be homotopic relative to endpoints if there exists a
homotopy

H : [0, 1]× [0, 1] → X

such that H(s, 0) = γ0(s), H(s, 1) = γ1(s), and H(0, t) = H(1, t) = x0 for all
t ∈ [0, 1].
The fundamental group of X at the basepoint x0, denoted π1(X,x0), is the set of
equivalence classes of loops with concatenation as the group operation.
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The group operation is well-defined. Suppose [γ0] = [γ1] in π1(X,x0). Then for
any loop γ2, we have

[γ1] ∗ [γ2] = [γ1 ∗ γ2] = [γ0 ∗ γ2] = [γ0] ∗ [γ2],

so concatenation is well-defined on homotopy classes.
We can check the three group axioms and describe the group structure in more

detail. The set π1(X,x0) is a group under concatenation of loops. Closure holds
because the concatenation of two loops based at x0 is again a loop at x0. Asso-
ciativity holds up to homotopy, which suffices since elements are homotopy classes.
The identity element is represented by the constant loop e(t) = x0, and the inverse
of a loop γ is given by γ−1(t) = γ(1− t), which traverses γ in the reverse direction.

Next we give two examples of fundamental groups

Example 3.3. Consider a plane R2 and let some point x0 ∈ R2 be the basepoint.
Any loop γ : [0, 1] → R2 based at x0 can be continuously contracted to the constant
loop at x0. Hence,

π1(R2, x0) ∼= {id}.

Example 3.4. Consider a circle S1 and let some point x0 ∈ S1 be the basepoint.
A loop γ : [0, 1] → S1 based at a point x0 can be classified by its winding number,
i.e. the number of times γ winds around the circle (positive for counterclockwise,
negative for clockwise). Notice that two loops are homotopic if and only if they
have the same winding number. Therefore,

π1(S
1, x0) ∼= Z,

with group operation given by addition of integers, corresponding to concatenation
of loops (adding winding numbers).

Notice that the fundamental group π1(X,x0) measures the “holes” in a topolog-
ical space X. Any loop that does not go around a hole in the topological space is
homotopic(can be continuously contracted) to the constant loop at X0. If a loop
cannot be contracted, then there must be a hole that the loop winds around.

As seen in our two examples: the fundamental group of a plane π1(R2, x0) is
trivial since the plane has no holes and every loop can shrink to a point. The
fundamental group of a circle π1(S

1, x0) ∼= Z, because loops can wind around the
circular hole any integer number of times.

Thus, the fundamental group gives an algebraic way to “detect and count” holes
in a space.

The objective of the rest of the section is to show that the fundamental group
of n-punctured disk— our main subject of study— is equivalent to the free group.
Homotopy equivalent spaces have the same fundamental groups, so we are going to
deformation retract Dn to a wedge of circles and compute its fundamental group.

Definition 3.5. Let X be a topological space and A ⊆ X a subspace. A deforma-
tion retraction of X onto A is a continuous map

H : X × [0, 1] → X

such that for all x ∈ X and a ∈ A:

H(x, 0) = x, H(x, 1) ∈ A, H(a, t) = a for all t ∈ [0, 1].

In this case, we say that X deformation retracts onto A, denoted X ≃ A.
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Lemma 3.6. Let D2
n be the disk with n punctures. Then D2

n deformation retracts
onto a wedge of n circles:

D2
n ≃

n∨
i=1

S1
i .

Proof. Choose a basepoint x0 ∈ ∂D2. For each puncture pi, draw a simple path
from x0 to a small circle around pi, such that these paths are disjoint except at
x0. Let S

1
i be a loop around the i-th puncture based at the endpoint of the corre-

sponding path.

x0

p1 p2 pi pn

S1
i

Figure 7. An n-punctured disk with the chosen simple path S1
i

We can then continuously “slide” each point of D2
n along its path toward the

corresponding loop, collapsing the rest of the disk onto the wedge of circles. This
defines a deformation retraction

H : D2
n × [0, 1] → D2

n, H(x, 0) = x, H(x, 1) ∈
n∨

i=1

S1
i ,

which fixes the wedge of circles pointwise. □

Next, we will introduce what is a free group.

Definition 3.7. Let S be a set. A word over S is a finite sequence of elements
from the set

S ∪ S−1 = {s | s ∈ S} ∪ {s−1 | s ∈ S},
where s−1 is a formal inverse of s.
Explicitly, a word is an expression of the form

w = sϵ11 sϵ22 · · · sϵnn ,

where si ∈ S and ϵi ∈ {1,−1} for i = 1, . . . , n. A word w = s1s2 · · · sn is called
reduced if it contains no adjacent pairs of the form ss−1 or s−1s.

Definition 3.8. Let S be a set. The free group on S, denoted F (S), is the set
of all reduced words over S, with group operation given by concatenation followed
by reduction. The identity element is the empty word, and the inverse of a word
w = s1s2 · · · sn is w−1 = s−1

n · · · s−1
2 s−1

1 . All elements in S are the generators of
the free group.

A free group is called ’free’ because it has no defining relations other than the
cancellation of inverses.
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Lemma 3.9. The fundamental group of the n-punctured disk D2
n is isomorphic to

the free group Fn on n generators {a1, a2, . . . , an}.

Proof. Choose a basepoint x0 ∈ ∂D2. By Proposition 3.6, D2
n deformation retracts

onto a wedge of n circles:

D2
n ≃

n∨
i=1

S1
i ,

where each circle S1
i corresponds to a loop around the i-th puncture. Let r : D2

n →∨n
i=1 S

1
i be the deformation retraction.

A deformation retraction induces an isomorphism on fundamental groups:

r∗ : π1(D
2
n, x0) −→ π1

( n∨
i=1

S1
i , x0

)
.

The fundamental group of a wedge of n circles is free on n generators. Let ai be
the loop based at x0 that traverses the i-th circle once. Any loop in the wedge is
homotopic (relative to x0) to a finite concatenation of these loops and their inverses,
and no nontrivial reduced word in the ai and a−1

i is homotopic to the constant loop.
Hence,

π1

( n∨
i=1

S1
i , x0

)
∼= Fn = ⟨a1, a2, . . . , an⟩.

Composing these facts gives the desired isomorphism:

π1(D
2
n, x0) ∼= Fn.

□

4. Mapping Class Group Acting on Fundamental Group

In this section, we will show that a boundary-preserving homeomorphism of D2
n

induces an automorphism of its fundamental group. In other words, we will explore
how the mapping class group acts on the fundamental group of D2

n.

Lemma 4.1. Let X,Y be topological spaces, and let f : X → Y be a continuous map
that maps point x0 ∈ X to point y0 ∈ Y . Then f induces a group homomorphism:

f∗ : π1(X,x0) −→ π1(Y, y0), [γ] 7−→ [ f ◦ γ ] .

Proof. First, we show that f∗ is well-defined. Suppose γ0, γ1 : [0, 1] → X are
loops based at x0 that are homotopic relative to endpoints. Then there exists a
continuous map H : [0, 1]× [0, 1] → X such that

H(s, 0) = γ0(s), H(s, 1) = γ1(s), H(0, t) = H(1, t) = x0 for all t.

Applying f , we have

[ f ◦ γ0 ] , [ f ◦ γ1 ] ∈ π1(Y, y0),

and (f ◦H) : [0, 1]× [0, 1] → Y is a homotopy between f ◦ γ0 and f ◦ γ1. Hence f∗
is well-defined.

Next, we check that f∗ is a group homomorphism.

(1) Identity: Since f(x0) = y0, we have f∗([cx0
]) = [cy0

], where cx0
denotes the

constant loop at x0.
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(2) Compatibility: For [α] , [β] ∈ π1(X,x0),

f∗([α] ·X [β]) = f∗([αβ]) = [ f ◦ (αβ) ] = [ (f ◦ α)(f ◦ β) ]
= [ f ◦ α ] · [ f ◦ β ] = f∗([α]) ·Y f∗([β]) .

Thus f∗ is a group homomorphism. □

Corollary 4.2. Let X and Y be topological spaces, and let f : X → Y be a
homeomorphism mapping x0 ∈ X to y0 ∈ Y . Then f induces a group isomorphism

f∗ : π1 (X,x0) −→ π1 (Y, y0) , [γ] 7→ [ f ◦ γ ] .

Proof. Since f is a homeomorphism, it is continuous and has a continuous inverse
f−1 : Y → X. By Lemma 4.1, f∗ is a homomorphism.

To show injectivity, suppose

f∗([γ]) = [ f ◦ γ ] = [cy0 ] .

Applying the induced map (f−1)∗ gives

[γ] = (f−1)∗([ f ◦ γ ]) =
(
f−1

)
∗([cy0 ]) = [cx0 ] .

Thus no two distinct elements of π1(X,x0) map to the same element, so f∗ is
injective.

To show surjectivity, let [δ] ∈ π1(Y, y0). Consider the loop f−1 ◦ δ in X. Then

f∗
([
f−1 ◦ δ

])
=

[
f ◦

(
f−1 ◦ δ

) ]
= [δ] .

Hence f∗ is surjective.
Since f∗ is both a homomorphism and a bijection, it is a group isomorphism. □

Remark 4.3. The corollary above shows that a homeomorphism induces an iso-
morphism of fundamental groups. In fact, a much stronger statement is true:
homotopy equivalent spaces have isomorphic fundamental groups. The proof is not
included in this paper for the sake of brevity (see section 3 of [11] for a complete
proof).

With the group homomorphism between the mapping class group and the braid
group defined in Section 2, we can now state the following theorem.

Theorem 4.4. There is a natural action of the mapping class group of the n-
punctured disk on its fundamental group. More precisely, for any basepoint x0 ∈
∂D2, this induces a group homomorphism

Bn
∼= Mod

(
D2

n

)
−→ Aut

(
π1(D

2
n, x0)

)
,

sending the isotopy class of a homeomorphism to the induced automorphism of
π1(D

2
n, x0).

Proof. By Lemma 2.6, there exists a group homomorphism

ρ : Mod(D2
n) −→ Bn,

where Mod(D2
n) denotes isotopy classes of homeomorphisms ofD2

n fixing the bound-
ary.

Let [f ] ∈ Mod(D2
n). By definition, f : D2

n → D2
n is a homeomorphism (up to

isotopy) that fixes ∂D2
n pointwise. Choose a basepoint x0 ∈ ∂D2, so that f(x0) =

x0. By Corollary 4.2, f induces a group isomorphism

f∗ : π1(D
2
n, x0) −→ π1(D

2
n, x0), [γ] 7→ [ f ◦ γ ] ,
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so that f∗ ∈ Aut
(
π1(D

2
n, x0)

)
.

We must check that this assignment is well-defined on mapping classes, i.e.,
independent of the choice of representative f in its isotopy class. Suppose f, g ∈ [f ],
so that there exists a continuous map H : D2

n × [0, 1] −→ D2
n with

H(x, 0) = f(x), H(x, 1) = g(x), H(x, t) = x for all x ∈ ∂D2.

For any loop γ : [0, 1] → D2
n based at x0, define

F (s, t) := H(γ(s), t).

Then F is a homotopy (relative to the basepoint) between f ◦ γ and g ◦ γ, since
F (0, t) = F (1, t) = x0. Therefore

f∗([γ]) = [ f ◦ γ ] = [ g ◦ γ ] = g∗([γ]) ,

showing that the induced map on π1 depends only on the isotopy class [f ].
Composing with ρ : Mod(D2

n) → Bn, we obtain the desired, well-defined group
homomorphism:

Bn −→ Aut
(
π1

(
D2

n, x0

))
.

□

5. The Artin Representation

Definition 5.1. The Artin representation is the homomorphism

Φ : Bn → Aut(Fn)

defined on generators σi by:

xi 7→ xi+1,

xi+1 7→ x−1
i+1xixi+1,

xj 7→ xj for j ̸= i, i+ 1.
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Figure 8. Image credit of [12] Figure 1.4

Theorem 5.2. The induced action of Bn
∼= Mod(D2

n) on π1(D
2
n) agrees with the

Artin representation.

Proof. Let x0 ∈ ∂D2 be a basepoint. By Lemma 3.9, π1(D
2
n, x0) ∼= Fn, generated by

loops x1, . . . , xn around the n punctures. Consider the action of the braid generator
σi ∈ Bn, which corresponds to swapping the i-th and (i + 1)-st strands with the
i-th crossing over the (i + 1)-st. Geometrically, this induces a homeomorphism of
D2

n up to isotopy which moves the punctures along the braid strands while fixing
the boundary.
Tracing the loops around the punctures under this motion:

• The i-th loop xi is carried along the i-th strand over the (i+ 1)-st strand,
resulting in the loop being conjugated by xi as xi 7→ xixi+1x

−1
i .

• The (i+ 1)-st loop xi+1 is now based around the former i-th puncture, so
xi+1 7→ xi.

• Loops xj for j ̸= i, i+ 1 are unaffected by the braid move, so xj 7→ xj .

This exactly matches the definition of Φ(σi). Since the geometric action respects
the braid group relations, the induced map Bn → Aut(Fn) coincides with the Artin
representation. □
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