REPRESENTATION OF THE BRAID GROUP

CHENGYUE ZHANG

ABSTRACT. In this expository paper, we study the braid group B, on n
strands. First, we define B,, and show that there exists a group homomor-
phism between B, and the mapping class group of the n-punctured disk D?L.
The mapping class group then acts on the fundamental group m; (D,QL)7 which
is naturally isomorphic to the free group Fj on n generators. Thus, By can
be represented as a subgroup of Aut (F},), the automorphism group of the free
group, aligning with the Artin representation of B, that is defined in purely
algebraic terms.
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1. INTRODUCTION TO THE BRAID GROUPS

There are several geometric interpretations of the braid group, some of which we
will explore in this paper. Before defining the braid group, we first introduce the
notion of a braid. We can think of a braid as braided strings.

Definition 1.1. A braid on n strands consists of n non-intersecting strings sus-
pended between two parallel horizontal bars, such that each string runs monoton-
ically from the top bar to the bottom bar. Two braids are considered equivalent
if one can be continuously deformed into the other while keeping the endpoints of
the strings fixed.

We can represent a braid geometrically through a braid diagram.

Definition 1.2. A braid diagram is a projection of the braid onto the plane such
that no two crossings in the braid occur at the same height.

The set of braids on n strands forms a group under concatenation of braid
diagrams, called the braid group B,. The group operation is defined by stacking
one braid beneath another, producing a new braid diagram.

Date: September 4, 2025.



2 CHENGYUE ZHANG

>\ <

\

FIGURE 1. These two braids are equivalent through continuous
deformation. Image credit of [1] Figure 5.33

Definition 1.3. The braid group B, on n strands is the group whose elements are
equivalence classes of braid diagrams on n strands, with the group operation given
by concatenation, i.e. stacking one braid diagram beneath the other.

Note that the group operation is associative; the empty braid (all strands vertical,
with no crossings) serves as the identity element; and each braid has an inverse
obtained by reflecting the braid vertically.

We now describe the braid group algebraically in terms of generators and rela-
tions, as originally defined by Emil Artin in [2].

Proposition 1.4. The braid group B, on n strands is the group generated by
01,...,0,_1 with relations:

0i0; = 0;0; forli—j]>1,

0;0;410; = 044100441 fO?” 1 S ) § n — 2.

We give a sketch on how the braid group has such a representation. Intuitively,
we can interpret o; to denote a crossing in which the ¢th strand passes over the
(i + 1)st strand. Similarly, its inverse o 1 denotes the ith strand crossing under
the (i + 1)st strand. One can check that concatenating these two braid diagrams
gives rise to the empty braid. The identity element is represented by the empty
word.

Example 1.5. Consider the braid group Bs with generators o1, 09,03. Let

1 1

B =o010302 and «a=o0, aglaf.

Note that 8 and « are inverses of each other in B,. Thus, concatenating them gives
the identity braid:

Bra=pB-p" = (010302) (05 05 o) = id.

J
( IJ B = 010309
’

-l
\1 a:ag_laglal_l
N\ B-a=1id

FIGURE 2. Tllustration of inverses and the identity in Example 1.5
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Next, we illustrate the two relations. The first relation describes the fact that
distant crossings commute, while the second describes how adjacent crossings in-
teract. These two relations formally define when two braids are equivalent.

Example 1.6. Consider the braid group By. By the relations in its representation
0103 = 0301 and 010201 = 090102. Geometrically, as seen below, the braid repre-
sented by o103 can be continuously deformed into the braid represented by o307 .
Similarly, the braid represented by oi020;1 can be continuously deformed into the
braid represented by go0109.

NN — Wn

0103 0301
/ J //
AR

4 4
010201 020102

FIGURE 3. The two braid relations

2. MAPPING CLASS GROUP OF AN n-PUNCTURED DISK

So far we have viewed braid groups both geometrically and algebraically. We now
connect them with topology by introducing mapping class groups, which provide a
powerful framework for studying braids. In this section we show that there exists a
group homomorphism between B, and the mapping class group of a n-punctured
disk D%. We begin by defining the mapping class group.

Definition 2.1. Let X and Y be topological spaces. A map ¢ : X — Y is called a
homeomorphism if ¢ is a continuous bijection, and the inverse map p~!:Y — X
is also continuous. If such a map exists, we say that X and Y are homeomorphic.

Definition 2.2. Let X and Y be topological spaces, and let f,g: X — Y be two
homeomorphisms. We say that f and g are isotopic if there exists a continuous
map
F:Xx[0,1]—Y

such that

(1) F(x,0) = f(x) for all x € X,

(2) F(z,1)=g(z) for all x € X,

(3) For each t € [0,1], the map F; : X — Y defined by Fi(z) := F(x,t) is a

homeomorphism.
Such a map F is called an isotopy from f to g. Intuitively, f can be continuously

deformed into g through homeomorphisms.

Definition 2.3. The mapping class group of a topological space X, denoted Mod (X),
is the group

Mod(X) = Homeo" (X) / ~,
where Homeo™ (X) is the group of orientation-preserving homeomorphisms of X,
where two homeomorphisms are equivalent if they are isotopic. If X is a manifold



4 CHENGYUE ZHANG

with boundary, then homeomorphisms are required to fix the boundary pointwise
throughout the isotopy. The group operation is composition.

Next, we will establish that there exists a group homomorphism from B, to
the mapping class group of the n-punctured disk D?. To establish the connection,
we begin with a classical result known as Alexander’s trick, which shows that the
mapping class group of the closed disk is trivial.

Lemma 2.4. The mapping class group of the closed disk is trivial:
Mod(D?) = {id }.

Proof. Let f : D?* — D? be a homeomorphism that fixes the boundary pointwise.
We want to show that f is isotopic to the identity. For ¢ € [0,1) define a radius
r:=1—t€ (0,1]. For z € D? set

X
T - ) T S’I",
e - f() lall < r

, [ = 7.

Define H (z,1) := x for all z € D2. Intuitively, for each t we apply f to the smaller
concentric disk of radius r; and then rescale back to radius r;, leaving the outer
annulus {r; < ||z|| < 1} fixed pointwise.

FIGURE 4. Cylinder D? x [0,1] with cone inside. The unshaded
annulus corresponds to the identity, while the shaded disk shows
the shrinking action of f

We now verify the required properties for an isotopy. First we check the end
points. For t = 0 we have rog = 1, so

H(w,0)=1-f(3) = f(@),

for all x € D% Thus H (z,0) = f(z). For t = 1, we have r; = 0, so H (z,1) =z
for all x € D%. Next note that if ||z|| = 1 then for every ¢ we have ||z| > r;, hence
H (z,t) = x. Thus the isotopy fixes 9D? pointwise.

Next we check the continuity of H. On the regions {||z| < r:} and {||z|| > r:} the
map (z,t) — H(x,t) is a composition of continuous maps, hence continuous. On
the boundary ||z| = r4, the inner formula gives

H(z ) =r f(£) =r £ =,

since T% € 0D? and f fixes the boundary. Thus the two cases agree, so H is
continuous everywhere.
Next we check that for all ¢t € [0,1), the map H(:,t) is a homeomorphism. On the
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annulus {r; < ||z|| <1} we have H(x,t) = z, so it restricts to the identity. On the
inner disk { ||z|| <7} we can write

H(z,t) = 1 f(r%) ,

which is the conjugate of f by the radial rescaling x — ;=. Thus H(,t) is a
homeomorphism on the inner disk as well. Since the two definitions agree on the
boundary ||z|| = r, it follows that H(-,t) is a homeomorphism of all of D2.
Moreover, its inverse is given explicitly by

—1{y <
RTINS L2 B
Y ||y||2'f't,

which is continuous for the same reasons that H is continuous. Hence H(-,t) is a
homeomorphism for each ¢ € [0, 1).

Thus we have proved that every boundary-preserving homeomorphism of the disk
is isotopic to the identity, so Mod(D?) = {id }. O

Definition 2.5. Let (G,-) and (H,-) be two groups. A map ¢ : G — H is called
a group homomorphism if for all g1, g2 € G,

p(91-92) = ¢(g1) - ¢(g2)-
In other words, ¢ preserves the group operation. If ¢ is also bijective, it is called a

group isomorphism.
Theorem 2.6. There exists a group homomorphism
p: Mod (Di) — B,
sending each mapping class to a braid.
Proof. Let [f] € Mod (Di) be a mapping class, represented by a homeomorphism
f:D? - D?

that fixes the boundary dD? pointwise. Fill in the punctures by marked points
P1,P2,- .., Pn, and extend f to a homeomorphism f’: D? — D? of the closed disk.
f' necessarily permutes the n marked points {p1,...,pn}

By Lemma 2.4, f’ is isotopic to the identity idp=. Namely, there exists an isotopy

Fy:D?* = D? teclo,1],

such that Fy = idp2 and F; = f’ (note that we reversed the time parameter in
Lemma 2.4). Now, consider the paths traced by the marked points under this
isotopy:

~i(t) = Fi(p;), i=1,...,n.
The n paths (v1,...,7,) form a braid in B,,. Define

p([f]) = (’Yla"'vfyn) S Bn

Next we show that this map is well-defined. Suppose fo, f1 : D2 — D? are isotopic
homeomorphisms relative to the boundary. Then any extensions fJ, f{ : D? — D?
are isotopic in D2. Thus the induced braids of fj and f] are isotopic and represent
the same element in B,,:

fo frin D} = p(lfo]) = p([f1]).
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Finally, composition of mapping classes corresponds to concatenation of isotopies,
which corresponds to multiplication in B,,. Therefore, p is a group homomorphism.
O

Example 2.7. Let D? be a closed disk with three mark points P;, P, P3. Suppose
f is a half twist between P; and P, defined as follow:

FiGURE 5. Illustration of a half twist. The green and blue lines
are drawn to illustrate the effect of the half twist

Note that f(Py) = Ps, f(P2) = Pi, and f(P3;) = P5. Outside the pink annulus,
f restricts to the identity. On the annulus, f restricts to a homeomorphism. Since
flaspace) = 4d , f is a homeomorphism on D?. Now apply the Alexander’s trick
(Lemma 2.4) to f, and we obtain the braid induced by the half twist.

id t=0.

FIGURE 6. Appling the Alexander’s trick (Lemma 2.4) to the half
twist. Image credit of Zhong Zhang
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Theorem 2.8. The braid group B, is isomorphic to the mapping class group of
the n-punctured disk D2 :

B,, = Mod(D2).

Theorem 2.8 establishes that the braid group B, can be understood as the
mapping class group of a disk with n punctures. The proof of this theorem is quite
involved, as it requires introducing an additional geometric interpretation of braid
groups; therefore, it is omitted here (see [3] for a complete proof of this theorem).

Remark 2.9. Note that the notations for the braid group and the mapping class
group are conventionally in opposite order. For the mapping class group, the com-
position of homeomorphisms is written so that the function written on the left is
applied after the one on the right, i.e.,

(fog)(x) = flg(x)).

In contrast, for the braid group, concatenation is read from left to right: the braid
0;0; means that o; is performed first, followed by o;.

3. FUNDAMENTAL GROUP OF AN n-PUNCTURED DISK

Now that we have established the connection between braid group and the map-
ping class group of n-punctured disk, our next step is to explore how these home-
omorphisms affect the underlying geometry of the disk. To do this, we introduce
the concept of the fundamental group, a powerful algebraic invariant that captures
the ’holes’ in a topological space.

Definition 3.1. Let X be a topological space and let v1,72 : [0,1] — X be two
paths such that

71(1) = 72(0).
The concatenation of vy; and -, denoted 7y * 72, is the path

71(2t), 0<t<i,

(71 % 72)(t) =
Y2t —1), +<t<1

Intuitively, the concatenated path moves through the first path and then the
second path at twice the original speed.

Definition 3.2. Let X be a topological space and let g € X be a chosen basepoint.
Consider the set of all continuous maps (loops)

v:[0,1] = X with ~(0) =~(1) = xo.
Two loops 79,71 are said to be homotopic relative to endpoints if there exists a
homotopy

H:[0,1] x[0,1] = X

such that H(s,0) = ~o(s), H(s,1) = 71(s), and H(0,t) = H(1,t) = x¢ for all
te€0,1].
The fundamental group of X at the basepoint zq, denoted 71 (X, z¢), is the set of
equivalence classes of loops with concatenation as the group operation.
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The group operation is well-defined. Suppose [vo] = [y1] in 71 (X, 2g). Then for
any loop 72, we have

(1] * [7e] = [71 % 72] = [v0 * 2] = [o] * [12],

so concatenation is well-defined on homotopy classes.

We can check the three group axioms and describe the group structure in more
detail. The set 71(X,zo) is a group under concatenation of loops. Closure holds
because the concatenation of two loops based at x( is again a loop at xg. Asso-
ciativity holds up to homotopy, which suffices since elements are homotopy classes.
The identity element is represented by the constant loop e(t) = zg, and the inverse
of a loop v is given by v~ 1(t) = v(1 — t), which traverses v in the reverse direction.

Next we give two examples of fundamental groups

Example 3.3. Consider a plane R? and let some point xyp € R? be the basepoint.
Any loop 7 : [0,1] — R? based at x¢ can be continuously contracted to the constant
loop at xy. Hence,

1 (RQ, LL'()) = {ld}

Example 3.4. Consider a circle S' and let some point zg € S be the basepoint.
A loop 7 : [0,1] — S* based at a point x can be classified by its winding number,
i.e. the number of times v winds around the circle (positive for counterclockwise,
negative for clockwise). Notice that two loops are homotopic if and only if they
have the same winding number. Therefore,

7Tl(Sla‘rO) = Za

with group operation given by addition of integers, corresponding to concatenation
of loops (adding winding numbers).

Notice that the fundamental group m (X, o) measures the “holes” in a topolog-
ical space X. Any loop that does not go around a hole in the topological space is
homotopic(can be continuously contracted) to the constant loop at Xy. If a loop
cannot be contracted, then there must be a hole that the loop winds around.

As seen in our two examples: the fundamental group of a plane 7 (R? zg) is
trivial since the plane has no holes and every loop can shrink to a point. The
fundamental group of a circle 71 (St, zo) = Z, because loops can wind around the
circular hole any integer number of times.

Thus, the fundamental group gives an algebraic way to “detect and count” holes
in a space.

The objective of the rest of the section is to show that the fundamental group
of n-punctured disk— our main subject of study— is equivalent to the free group.
Homotopy equivalent spaces have the same fundamental groups, so we are going to
deformation retract D,, to a wedge of circles and compute its fundamental group.

Definition 3.5. Let X be a topological space and A C X a subspace. A deforma-
tion retraction of X onto A is a continuous map

H:Xx[0,1]—=X
such that for all z € X and a € A:
H(z,0) =z, H(zx,1)€ A, H(a,t)=aforallte]|0,1].

In this case, we say that X deformation retracts onto A, denoted X ~ A.
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Lemma 3.6. Let D2 be the disk with n punctures. Then D2 deformation retracts
onto a wedge of n circles:

n
2 o 1
D} ~ \/ S}
=1

Proof. Choose a basepoint o € dD?. For each puncture p;, draw a simple path
from zg to a small circle around p;, such that these paths are disjoint except at
xo. Let S} be a loop around the i-th puncture based at the endpoint of the corre-
sponding path.

FIGURE 7. An n-punctured disk with the chosen simple path S}

We can then continuously “slide” each point of D2 along its path toward the
corresponding loop, collapsing the rest of the disk onto the wedge of circles. This
defines a deformation retraction

H:D?x[0,1]— D2, H(z,0)==z, Hz1)e\/S]
=1

which fixes the wedge of circles pointwise. O

Next, we will introduce what is a free group.

Definition 3.7. Let S be a set. A word over S is a finite sequence of elements
from the set

SuSt={s|seStu{st|seS}
where s is a formal inverse of s.
Explicitly, a word is an expression of the form

1

o€l o€2 €En
W = S1 Sq "'Sn",

where s; € S and ¢; € {1,—1} fori = 1,...,n. A word w = s182-- -8, is called

reduced if it contains no adjacent pairs of the form ss~! or s !s.

Definition 3.8. Let S be a set. The free group on S, denoted F(S), is the set
of all reduced words over S, with group operation given by concatenation followed
by reduction. The identity element is the empty word, and the inverse of a word

W= 81898y s wl =51 32_131_1. All elements in S are the generators of
the free group.

A free group is called ’free’ because it has no defining relations other than the
cancellation of inverses.
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Lemma 3.9. The fundamental group of the n-punctured disk D2 is isomorphic to
the free group F,, on n generators {ay,az,...,an}.

Proof. Choose a basepoint xog € dD?. By Proposition 3.6, D? deformation retracts
onto a wedge of n circles:

n

2 1

Dn - \/Sz7
i=1

where each circle S} corresponds to a loop around the i-th puncture. Let 7 : D2 —
Vi, S} be the deformation retraction.
A deformation retraction induces an isomorphism on fundamental groups:

n
e s (D2, 1) — ™ ( \/ S’il,xo).
i=1
The fundamental group of a wedge of n circles is free on n generators. Let a; be
the loop based at zy that traverses the i-th circle once. Any loop in the wedge is
homotopic (relative to xg) to a finite concatenation of these loops and their inverses,
and no nontrivial reduced word in the a; and a; ! is homotopic to the constant loop.
Hence,

n
1
7'('1(\/52-,1'0) = Fn = <a1,a2,...7an>.
i=1

Composing these facts gives the desired isomorphism:

™1 (Di,xo) = Fn.

4. MAPPING CLASS GROUP ACTING ON FUNDAMENTAL GROUP

In this section, we will show that a boundary-preserving homeomorphism of D2
induces an automorphism of its fundamental group. In other words, we will explore
how the mapping class group acts on the fundamental group of D2.

Lemma 4.1. Let XY be topological spaces, and let f : X — Y be a continuous map
that maps point xo € X to point yo € Y. Then f induces a group homomorphism:

fe (X, 20) — ™1 (Y, 90), [+ [fov].

Proof. First, we show that f. is well-defined. Suppose 79,71 : [0,1] — X are
loops based at xy that are homotopic relative to endpoints. Then there exists a
continuous map H : [0,1] x [0,1] — X such that

H(s,0) =~(s), H(s,1)=mv(s), H(0,t)=H(1,t) =z for all ¢.

Applying f, we have
[fov], [fomn]em(Y,yo),
and (fo H) :[0,1] x [0,1] — Y is a homotopy between f o~y and fo~;. Hence f,
is well-defined.
Next, we check that f, is a group homomorphism.

(1) Identity: Since f(xo) = yo, we have f,([cz,]) = [¢y, ), Where g, denotes the
constant loop at xzg.
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(2) Compeatibility: For [a], [3] € m1 (X, zo),
fo(led x [B]) = fe([aB]) = [fo(aB)] = [(foa)(fop)]
=[foal-[foB]=fla]) v f([B])-

Thus f. is a group homomorphism. O

Corollary 4.2. Let X and Y be topological spaces, and let f : X — Y be a
homeomorphism mapping ro € X toyg € Y. Then f induces a group isomorphism

form(X,z0) — m(Yiyo), [l [feor]

Proof. Since f is a homeomorphism, it is continuous and has a continuous inverse
f~1:Y — X. By Lemma 4.1, f, is a homomorphism.
To show injectivity, suppose

f(0]) = [f oyl =ley] -
Applying the induced map (f~1). gives

M= (D fov]) = (F71), (ey)) = [eao] -

Thus no two distinct elements of 71 (X, zp) map to the same element, so f, is
injective.
To show surjectivity, let [6] € 71 (Y, yo). Consider the loop f~! o4 in X. Then

F([f o) = [fo(fed)] =1d].
Hence f, is surjective.
Since f, is both a homomorphism and a bijection, it is a group isomorphism. [

Remark 4.3. The corollary above shows that a homeomorphism induces an iso-
morphism of fundamental groups. In fact, a much stronger statement is true:
homotopy equivalent spaces have isomorphic fundamental groups. The proof is not
included in this paper for the sake of brevity (see section 3 of [11] for a complete
proof).

With the group homomorphism between the mapping class group and the braid
group defined in Section 2, we can now state the following theorem.

Theorem 4.4. There is a natural action of the mapping class group of the n-
punctured disk on its fundamental group. More precisely, for any basepoint xy €
0D?, this induces a group homomorphism

B,, = Mod (D2) — Aut(mi (D}, z0)),
sending the isotopy class of a homeomorphism to the induced automorphism of
st (D?L, 1’0) .
Proof. By Lemma 2.6, there exists a group homomorphism
p: Mod(D?) — B,

where Mod(D?) denotes isotopy classes of homeomorphisms of D? fixing the bound-
ary.

Let [f] € Mod(D?2). By definition, f : D2 — D? is a homeomorphism (up to
isotopy) that fixes D2 pointwise. Choose a basepoint 2o € dD?, so that f(xg) =
zg. By Corollary 4.2, f induces a group isomorphism

fe i mi(D5, o) — m (D}, x0), Y= [for],
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so that f. € Aut (m1(D2,0)).

We must check that this assignment is well-defined on mapping classes, i.e.,
independent of the choice of representative f in its isotopy class. Suppose f, g € [f],
so that there exists a continuous map H : D2 x [0,1] — D? with

H(x,0) = f(z), H(z,1)=g(z), H(x,t)=xfor all z € 9D
For any loop 7 : [0,1] — D? based at zg, define
F(s,1) = H(y(5), 1)

Then F' is a homotopy (relative to the basepoint) between f o+ and g o+, since
F(0,t) = F(1,t) = 2p. Therefore

L) =[fovl=[gov]=9.(1"]),

showing that the induced map on 7; depends only on the isotopy class [f].
Composing with p : Mod(D?) — B,,, we obtain the desired, well-defined group
homomorphism:

B, — Aut (7T1 (DZ,{E())) .

5. THE ARTIN REPRESENTATION

Definition 5.1. The Artin representation is the homomorphism
®: B, — Aut(F,)

defined on generators o; by:

T = Tit1,
—1
Tit1 = T 1 TiTi41,
xj—=x; forj#id,1+1
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FIGURE 8. Image credit of [12] Figure 1.4

Theorem 5.2. The induced action of B, = Mod(D?) on w1(D?) agrees with the
Artin representation.

Proof. Let xg € D? be a basepoint. By Lemma 3.9, 71 (D2, 2¢) & F,,, generated by
loops z1, ..., x, around the n punctures. Consider the action of the braid generator
0; € By, which corresponds to swapping the i-th and (i + 1)-st strands with the
i-th crossing over the (i + 1)-st. Geometrically, this induces a homeomorphism of
D? up to isotopy which moves the punctures along the braid strands while fixing
the boundary.

Tracing the loops around the punctures under this motion:

e The i-th loop x; is carried along the i-th strand over the (i + 1)-st strand,
resulting in the loop being conjugated by x; as x; — xi$i+1mi_1.

e The (i + 1)-st loop z;4+1 is now based around the former i-th puncture, so
Tir1 = Ty

e Loops x; for j # 4,7 + 1 are unaffected by the braid move, so z; — ;.

This exactly matches the definition of ®(o;). Since the geometric action respects
the braid group relations, the induced map B,, — Aut(F),) coincides with the Artin
representation. O
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