EXTENSION AND THE 0-1 LAW ON THE COUNTABLE
RANDOM GRAPH

ZERLINA YAU

ABSTRACT. The countable random graph is characterized by the extension
property, which allows for the construction of partial isomorphisms. This
property can be used to demonstrate various other features of random graphs,
including uniqueness and a high degree of regularity. We then use the extension
property to prove the 0-1 law for random graphs, which connects the infinite
random graph to its finite counterparts.
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1. INTRODUCTION

A graph is a structure consisting of a set of vertices joined by edges. If we let the
vertex set be countably infinite, and select edges independently with probability
%, then we obtain the countable random graph. Despite its entirely probabilistic
construction, the random graph is in fact unique up to isomorphism, as was proven
by Erdos and Rényi in 1959. As a consequence, the random graph is highly stable
under certain finite changes, such that any such modification produces a graph
isomorphic to the original. This result relies on a defining property of random
graphs, dubbed the extension property. This is what enables us to demonstrate
the “sameness” of all infinite random graphs. If we take the extension property as
a sequence of finite statements, we can additionally draw conclusions about finite
random graphs — as it turns out, random graphs adhere to a 0-1 law. This is a
theorem from first-order logic which states that sentences are either almost always
true, or almost always false in finite structures. For graphs in particular, whether
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a sentence is likely to be true on a finite graph corresponds to its truth value on
the infinite graph, with the probability approaching 0 or 1 as the vertex set grows
large. There are multiple ways to prove this result — our discussion will go over
proofs using the compactness theorem and the Ehrenfeucht-Fraissé game.

2. Basic NOTIONS OF GRAPHS

Before speaking of the Erdés-Rényi model in specific, we will go over some defi-
nitions for general graphs.

Definition 2.1. A graph is a structure G(V, E) equipped with a vertex set V,
an edge set F, and a relation ~. The edge set F is given by some subset of all
unordered pairs of vertices, E C {{v,w} | v,w € Vv # w}.

For vertices v,w € V, we define the adjacency relation ~ as v ~ w if {v,w} € E.
If v ~ w, we say that v and w are neighbors.

Definition 2.2. Let G(V, E) and H(W, F) be two graphs, and let f : V — W.
We say f is an isomorphism if f is a bijection, and f preserves adjacency, i.e. if
v,v" € V, then v ~ v if and only if f(v) ~ f(v')

Note that if f : V — W is an isomorphism, then its inverse f =1 : W — V exists
and is also an isomorphism. Thus, we simply say that G and H are isomorphic,
denoted as G = H.

3. SOME BACKGROUND ON PROBABILITY

As its name suggests, the random graph is a probabilistically-constructed object.
As such, Erdés and Rényi’s theorem is proven using a probabilistic construction as
well, which will require some knowledge of probability theory. In today’s discussion,
we consider probability theory as an extension of measure theory. For further
reading, see chapters 2 and 3 of Richard Bass’s Real Analysis For Graduate Students

[1].
Definition 3.1. Let X be a set. A o-algebra A is a collection of subsets of X
satisfying the following properties:

(1) P e Aand X € A;

(2) For A C X, denote its complement A¢ := X \ A. If A € A, then A° € A
(closure under complement);

(3) If Ay, Ay, - -+ is a countable sequence of sets in A, then [ J;=, A; € A (closure
under countable union).

The ordered pair (X,.A) is called a measurable space. A set A C X is measurable
itAe A

Note that an immediate implication of the above definition is that a countable
intersection of sets in A is also in A, as (i, 4; = (Ujeq A9)°.

Definition 3.2. Let X be a set and A a o-algebra over X. A measure on (X, .A)
is a function p : A — [0, 00| satisfying the the following properties:

(1) (@) =0;
(2) If Ay, Ay, - - is a countable sequence of pairwise disjoint sets in A, where for
i#j, AN A; =0, then p(U;2; Ai) = > oy 11(A;) (countable additivity).

The ordered triple (X, A, ) is called a measure space.
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The following two facts will be helpful for later.

Fact 3.3 (Monotonicity). Let (X, A, ) be a measure space. If A;, Ay € A with
Az C Ay, then pu(Az) < (A1),

Fact 3.4 (Union Bound). Let (X, A, 1) be a measure space and let Ay, Ag,--- be

measurable sets. Then
oo

Pl J 4] < ZIP’[Ai].

i=1

Fact 3.3 results from noticing that A; = AsU(A;\ A2), so by countable additivity
and non-negativity of a measure,

(A1) = p(Az) + p(Ar \ Az) > p(As).

Proof of Fact 3.4 can be found in chapter 3 of [1].

As it turns out, the notion of measure lends itself rather nicely to defining prob-
ability. We consider a sample space §2, which we can think of as the set of all final
outcomes. Specifically, we look at certain subsets of the sample space, which we
call events. In particular, we want to be able to speak about cases when an event
does not occur (closure under complement), or when combinations of events occur
(closure under countable union). We can then assign events probabilities between
0 and 1 using a probability function P which satisfies countable additivity. Impor-
tantly, we specify P[Q2] = 1 so that the probabilities of an event and its complement
add up to 1.

Definition 3.5. A probability space is a measure space ({2, S, P) such that P[Q2] = 1.
If (Q,S,P) is a probability space and S C Q with S € S, then we call S an event.
(Note that P[S] denotes the (probabilistic) measure of event S.)

Example 3.6. Suppose we want to model the outcomes of a 6-sided die roll. We
can consider the sample space of all possible faces, Q = {1,2,3,4,5,6}, and want to
assign probabilities such that each face has a probability of %. Then, our o-algebra

S is the set of all subsets of 2, and the probability function P is given by P[S] = |—§|.

We'll also want to speak about event independence. This typically refers to
events which are explicitly uncorrelated, such as the outcomes of two dice rolls. In
order to calculate the probabilities of two or more independent events, we simply
multiply the probabilities together. In probability theory, we don’t always have a
notion of whether events “should” be correlated, so independence is characterized
solely by this multiplication rule. Thus, we have the following definition:

Definition 3.7. Let S, T C 2 be events. We say that S and T are independent if
P[S NT] =P[S]P[T].

Example 3.8. Consider the probability space of two independent coin flips, where
the sample space is given by Q = {(H,H),(H,T),(T,H),(T,T)}. We define the
event that coin ¢ comes up heads as S; = {(v1,v2) € Q | v; = H}, with the corre-
sponding probability function given by P[S;] = % By independence, the probability
that both coins were heads is P[S; N So] = P[S1]P[S,] = 1.
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4. THE ERDOs-RENYI RANDOM GRAPH

In this section, we discuss Paul Erdés and Alfréd Rényi’s finding, that there is
a single model of the countable random graph which is unique up to isomorphism.
In general, a countable random graph is constructed by fixing a countably infinite
vertex set V, from which edges are selected independently with probability % We
will define our probability space using this notion.

Our sample space ) will be the set of all graphs on the vertex set V =N =
{1,2,3,---}. Note that although the general notion of the random graph doesn’t
specify that the vertex set be N, all of the calculations in this section can be repli-
cated on arbitrary countably infinite vertex sets, so fixing V' merely helps to simplify
our sample space. Define

S = {G(V,E) € Q| {v,w} € E}

as the event that v and w are neighbors. Since we want to consider the probabilities
of edge events, the set of events will be the smallest o-algebra containing each
Sy,w- For any two distinct vertices v and w, we define our probability measure by
PlSy.w] = %, and specify that each S, ., is independent — that is, if we have S, .,
and Sy as defined above such that {v,w} # {v/,w'}, then

HD[S'u,w N S’U’,w’] = P[Sv,w]P[Sv/,w/]~

Theorem 4.1 (Erd6s-Rényi). There exists a unique graph Q such that a random
graph G is isomorphic to QQ with probability 1.

Note that this theorem does not preclude the ezistence of non-@Q countable graphs
— the null and complete graphs are the most obvious examples. Additionally, it is
not obvious that “uniqueness up to isomorphism” is even the type of property whose
probability we can compute — especially without a model of @ already on hand.
Thus, our proof will rely heavily on the extension property, which turns out to be a
sufficient condition for demonstrating isomorphism. An outline of the proof below
is given in Peter Cameron’s “Random Graph Notes” [2], although the approach
given here will be a bit more technical.

Definition 4.2. Let G(V,E) be a graph. G has the extension property if for
any finite disjoint subsets X and Y of the vertex set V, there exists some vertex
z€ V\(XUY) such that z ~ x for all z € X and z £ y for all y € Y. We will say
for brevity that z extends X and Y.

Lemma 4.3. A countable random graph has the extension property with probability
1.

Proof. Let G(V, E) be a countable random graph. Fix X and Y as finite, disjoint
subsets of V, and consider an arbitrary vertex z € V' \ (X UY’). According to the
probability space defined above, denote

Sxvz =[] Sean [ 55
rzeX yey

as the event that z ~ z for all x € X and z ¢ y for all y € Y. By event
independence, we then see that:

P[Sx.y..] = [[ PlSe.:] - ] Plsy..] = 27 ¥I71V1.

rzeX yey
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Let Sx,y = U.ev\ (xuy) Sx.v.z be the event that there exists some z extending X
and Y. From set theory, we have

Skv= (1 Skve
2EV\(XUY)
Let ¢ be the probability that a given vertex z does not extend X and Y, q =
P[S%y..]. From above, we see that ¢ = 1 — 2= IXI=IY " meaning that we have
0 < g <1 for any sizes of X and Y (so long as X UY # (). Thus, if z1,--- , 2
are distinct vertices not contained in X and Y, the probability that none of them
extend X and Y is ¢*. Since 21, -+, 2, € V \ (X UY), we have

ﬂ Sg(,Y,z - Sg(,Y,zl n---nN S%,Y,zk'
ZEV\(X,Y)

By monotonicity, this gives us

P[ m S?(,Y,z] < P[Sg(,Y,zl m'”ﬁsg(,Y,zk]
zeV\(X,Y)

for any choice of k and vertices 21,- -+, z;. Note that as k — 00, P[S%y.,, NN
S%.v.z] = ¢" = 0, and so the probability P[S% ] that X and Y are not extendable
is always 0.

Let S be the event that G satisfies the extension property (i.e. every choice of
X,Y is extendable), S = ﬂx,y Sx,y. Equivalently, we have S¢ = UX’Y Sy By
the union bound, we see that

P[S] < > P[Sk.v-

From above, we know that P[S% y] = 0 for any choice of X and Y, so P[S¢] =
> oxy PlS%yl=0and P[S] =1. O

Lemma 4.4. Any two countable graphs satisfying the extension property are iso-
morphic.

Proof. Suppose G(V, E) and H(W, F) are two graphs satisfying the extension prop-
erty. As one might deduce from the name, we can use this property to “ex-
tend” a bijective map to an additional vertex while preserving adjacencies. By
assumption, the vertex sets V and W are countable, so we can enumerate them as
V ={v1,ve, -} and W = {wy,ws, -+ }. We can inductively construct a sequence
of functions, each of which restricts to an isomorphism. Beginning with fy = 0,
suppose f,_1 has already been constructed. We wish to extend it to an additional
vertex to construct f,. Both vertex sets can be completely accounted for using a
back-and-forth method.

If n is odd, let v,, be the lowest-indexed vertex in V' which is not in the domain
of f,—1. Denoting this domain as dom(f,,—1), let X = {v; € dom(f,—1) | vi ~ v}
and Y = dom(f,—1) \ X. By assumption, dom(f,—_1), and consequently X and Y
are finite. We can then use the extension property on H to find the lowest-indexed
wy, € W extending the images f,—1(X) and f,—1(Y), and assign wi, = fp,(vm).

If n is even, let w,, be the lowest-indexed vertex in W which is not in the image
of fn—1, which we will call Im(f,—1). Let X = {w; € Im(fn—1) | w; ~ wp,} and
Y =Im(f,—1)\X. By the extension property on G, we can find the lowest-indexed
v, € V extending the preimages f,*,(X) and f, ' (Y), and assign w,, = fn(vs).
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Now, let f be the union of the sequence of partial maps; by construction dom(f) =
V and Im(f) = W. The above steps tell us that f preserves all adjacencies, so f is
the required isomorphism. O

Theorem 4.1 immediately follows from Lemma 4.3 and Lemma 4.4, thus con-
cluding the proof. Since we have shown the random graph to be unique, from now
on we will refer to the random graph as @, and may assume the extension property
on @ by default.

4.1. A Deterministic Construction of (). Although notion of the random graph
describes a probabilistically-generated structure, the uniqueness of @) allows us to
model it deterministically as well. That is, any graph satisfying the extension
property, regardless of construction, is a copy of the random graph ). One such
construction is that of the graph D on the vertex set Ny = {0,1,2,---}, where
adjacencies are determined by a number’s binary expansion.

Definition 4.5. Let n € N. The binary expansion of n is given by
n=24+ap_12""1 ... 42,
where k € Ny and a; € {0,1}. Additionally, the binary expansion of 0 is 0.

An implication of this definition is that every number in Ny can be uniquely
expressed by its binary expansion, and no two numbers share a binary expansion.

Given the vertex set Ny, we construct D by adding adjacencies as follows. Start-
ing with the null graph on {0}, suppose we have established all adjacencies (and
non-adjacencies) within the set {0, - ,n—1}. We then add the adjacencies between
this set and n according to its binary expansion, n = 2F + a,_12F71 + ... 4 q(20.
Taking ar, = 1, we say that n ~ m if a,,, = 1, and n # m if a,, = 0.

To check for the extension property, fix finite, disjoint sets X, Y C Ng; we want
to show that there is some z extending them. Let & = max(X UY) + 1, and
enumerate X in ascending order as {1, - , 2, }. Then,

z =284 (2% 4 ... 4 27)

extends X and Y. Note that this k& ensures that we're picking a z greater than
all elements of X and Y, z > 2™ for all n € X UY. In addition to ensuring that
z € Ng\ (X UY), this also guarantees that z is not a neighbor of any y € Y, as all
adjacencies within {0,---,z} DY are already determined.

5. SOME COROLLARIES TO ERDOS-RENYI

As shown in Section 4, the defining feature of the random graph is that it satisfies
the extension property. The following proposition is a seemingly-stronger version
of the extension property, which in fact follows directly from the property itself.

Proposition 5.1. Let X and Y be be finite disjoint sets of vertices on the random
graph Q(V, E). Then the set

Z={zeV\(XUY)|z~zx foralzecX;zy foralyeY}

is infinite, and the induced subgraph on this set (i.e. the graph taking only the
vertices in Z and their corresponding edges) is isomorphic to Q.
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Proof. Fix finite, disjoint vertex subsets X and Y, and suppose for the sake of
contradiction that Z is finite. By the extension property, we can find some vertex
z" extending X U Z and Y — that is, some 2z’ € V \ (X UY U Z) such that 2’ ~ z
forall z € X UZ and 2’ « y for all y € Y. We see that 2’ extends X and Y, so
2’ € Z, but by the statement of the extension property we’ve already specified that
2 ¢ Z, so Z must be infinite.

To show that the induced subgraph on Z is isomorphic to @, it is sufficient to
demonstrate the extension property. Let X', Y’ be finite disjoint subsets of Z. By
the extension property on @, there exists some 2z’ € V\ (X UX)U (YUY’
extending X U X’ and Y UY’. We see that 2/ € Z and 2’ extends X’ and Y’, thus
proving our claim. O

A consequence of the above proposition is that the random graph resists certain
types of finite changes.

Theorem 5.2 (Indestructibility). The result of any of the following operations on
Q(V, E) is isomorphic to Q:

(a) Deleting a finite number of vertices;

(b) Adding or deleting a finite number of edges;

(¢) Switching with respect to a finite number of vertices, i.e. for a finite vertex
subset W, all edges involving some v € W are changed to non-edges and vice
VErsa.

Proof. In all cases, it is sufficient to show that the extension property still holds.
Denote the graph resulting from these operations as Q'(V', E’).

(a) Let W be the set of deleted vertices, such that the vertex set of Q" is V' = V\W.
If X and Y are finite, disjoint subsets of V', Proposition 5.1 tells us that
since the set Z of vertices extending X and Y is infinite, we can find some
z€Z\ AC W extending X and Y.

(b) Let F be the set of ordered pairs corresponding to edges added to or deleted
from E, F = (E\ E')U(E'\ E). Since F is finite, it must be the case that
the vertex set W = {v | {v,w} € F} is also finite, allowing us to to avoid any
modified edges using the same method as in (a).

(c) Let W be the set of switched vertices, and consider finite disjoint vertex sets
X,Y Cc V'. Applying the extension property on @ to (X \ W)U (Y N W) and
(Y \ W)U (X NW) immediately gives us the extension property on Q'

O

Note that there are certain finite changes that do destroy the isomorphism. For
example, isolating a finite number of vertices causes the extension property to fail.

Another trait of Q is partition regularity, the notion that any finite partition
of a set (or in this case, a graph) results in the original set. In the case of the
random graph, this property is equivalent to the statement that any partition of a
graph satisfying the extension property generates at least one part also satisfying
the extension property.

Theorem 5.3 (Partition Regularity). If the vertex set of @ is partitioned into
finitely many parts, then the the induced subgraph on one of these parts is isomor-
phic to Q.
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Proof. Suppose for the sake of contradiction that we can partition the vertex set as
V=ViU---UV,, all parts pairwise disjoint, where the extension property fails on
the induced subgraph on each V;,i = 1,--- ,n. This would mean that for each V;,
there exist finite disjoint sets X;,Y; C V; which are not extendable. Consider the
sets X =X;U---UX,and Y =Y, U---UY,, finite and disjoint by assumption.
If we take any z € V', z must be in one of the parts V;. Then z does not extend X;
and Y;, and thus cannot extend X and Y, so the extension property fails on . [

Additionally, partition regularity is (almost) unique to Q:

Theorem 5.4. The only partition-reqular countable graphs (i.e. graphs with the
property from Theorem 5.3) are the null graph, the complete graph, and the random
graph Q.

Proof. Suppose G(V, E) is partition-regular, and is not null or complete. First,
we can note that G cannot have any isolated vertices — for if they existed, we
could partition them out and the part with no isolated vertices would have to be
isomorphic to G. The same argument would also show that G has no vertices
connected to all others.

Now, suppose that G is not isomorphic to ). Then we can find sets X and
Y for which extension fails; pick X and Y such that their union is minimal. Let
n = | XUY|. By above, G has no isolated vertices or vertices connected to all others,
son > 1 (as a single vertex could always be extended). This lets us partition X UY
into two nonempty sets A and B. Now, let V] consist of A and all vertices in V' \ B
which don’t extend X N A and Y N A, and let V5 = V' \ V. By assumption, all
vertices in V5 are either in B or extend X N A and Y N A. Since extension fails for
X and Y on G, all v € V5 fail to extend X N B and Y N B. Because both A and B
are nonempty, both (X UY)N A and (X UY) N B are smaller than X UY, so the
induced subgraphs on both Vi and V5 fail the extension property for sets smaller
than X and Y. X and Y were assumed to be the smallest sets failing the extension
property on G, so neither subgraph is isomorphic to G — thus, a contradiction. [

As we observed in the previous section, if two graphs have the extension property,
we can construct an isomorphism between the two through a sequence of partial
maps. It turns out that if only one of the graphs satisfies the extension property,
we can still embed the graph that doesn’t satisfy extension onto the one that does.
That is, any finite or countable graph can be observed as a subgraph of Q.

Theorem 5.5 (Universality). Fvery finite or countable graph can be embedded as
an induced subgraph of Q.

Proof. Denote the random graph as Q(V, E), and let G(W, E) be a finite or count-
able graph. We can enumerate the vertex sets of @ and G as V = {vy, v, -} and
W = {wy,wa, - - - } respectively. Similar to the method in Lemma 4.4, we can con-
struct a sequence of partial embeddings, starting from fy = @). Having constructed
fn—1, take the lowest-indexed w,,, € W\dom(f,,—1) and assign as f,, (wy) the lowest-
indexed vy, € V \ Im(f,,—1) such that vy ~ f,—1(w;) if and only if w,, ~ w;, for
w; € dom(f,—1). The union of these partial maps is our desired embedding. 0

6. THE 0-1 Law FOR RANDOM GRAPHS

It happens that the extension property also gives us information about finite
random graphs through the statement of the 0-1 law. In general, a 0-1 law is a
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statement that sentences in some formal language are either almost always true
or almost always false on some class of finite structures. The 0-1 law for random
graphs is concerned with whether sentences from first-order logic are true on finite
random graphs. Specifically, the probability that a sentence is true is a function
of the number of vertices in a graph — as the vertex set grows, this probability
approaches either 0 or 1. Refining this statement gives us the following theorem:

Theorem 6.1 (0-1 Law for Random Graphs). Let ¢ be a sentence from first-

order logic. Denote p,(v) as the probability that i is true on a random graph

with n vertices. If ¥ is true on the infinite random graph, then lim p,(y) = 1.
n—oo

Conversely, if ) is true on the infinite random graph, then lim p,(¢) = 0.
n—oo

In order to make sense of this theorem, we need to learn some notions of first-
order logic. A more comprehensive discussion of these concepts is given in chapter
1 of Marker’s Model Theory: An Introduction [3].

To begin, we need an underlying structure, which we call a language.

Definition 6.2. A language L(F,R,C) is given by a set of function symbols F, a
set of relation symbols R, and a set of constant symbols C. Each function symbol
f € F and relation symbol R € R specifies a number of arguments ny or ng
respectively.

For our discussion today, we will be working with the language of graphs, which
contains only a single binary relation ~. Thus, we will focus on relational languages,
i.e. those with no function symbols.

Definition 6.3. An L-structure or model M is given by a nonempty set M which
we call the universe of M, functions f™ : M™ — M corresponding to each f € F,
sets RM C Mm™® corresponding to each relation symbol R € R, and elements
c¢M € M corresponding to each constant symbol ¢ € C. We call fM, RM, and ¢M
the interpretations of the symbols in L.

Essentially, an L-structure is a specific example of the “class” of objects catego-
rized by the language £. For the language of graphs G, the set of G-structures is
the simply set of structures equipped with a binary relation. This includes the set
of all graphs (where this relation is irreflexive and symmetric), but also includes
other structures with such a relation.

Definition 6.4. An L-term (or simply, term) t is either a constant ¢ € C, a variable
z;fori=1,2,---, or a function of constants and variables, t = f(t1,--- ,t,,), where
f € F and each t; is a term. Note that terms are finitely complex — that is, a term
can only have finitely many subterms.

If M is an L-structure and t is a term involving variables z;,,--- ,xz;,,, we
can interpret tM as an m-ary function. Denote the list of arguments as @ =
(ai,, -+ ,a;,) € M™. In relational languages, we can simply take tM(a) = M

or t*(@) = v; based on the construction of . For a more detailed explanation of
how to interpret L-terms, see [3].

Definition 6.5. An atomic L-formula ¢g associates constants and variable symbols
either by equality, ¢g = (t1 = t2), or by relation symbol, ¢g = R(t1,- - ,t,,) where
each ¢; is a term and R € R.

A L-formula ¢ is a boolean combination of preexisting formulas, created by com-
bining formulas using the “or” symbol V or the “and” symbol A, or by appending
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the negation — or quantifiers 3z or V. (We additionally use ¥ — 0 to abbreviate
-1V 0, and ¢ < 6 for (v — )A(6 — 1).) Thus, a formula ¢ is one of the following:

e ¢ is an atomic formula;

e ¢ = —) for a formula 1;

e o =Y N0 or ¢ =1 V0 for formulas ) and 6,

e ¢ = Jx;1p or ¢ = Va;4) for a variable x; and a formula ).

Also, note again that this definition implies finite complexity, i.e. a formula has
finitely many subformulas.

Example 6.6. The set of graphs is described by the sentences
Va(-x ~ax) and VaVy(z ~y) = (y ~ z),
i.e. the relation ~ is irreflexive and symmetric.

Remark 6.7. We say a variable x; is free in a formula ¢ if it is not inside a
quantifier dx; or Vx;; otherwise x; is bound. A formula ¢ is a sentence if it has no
free variables.

Definition 6.8. For a formula ¢ with m free variables, an L-structure M, and
a list of arguments @ = (as,, - ,a;,,) € M™, we use M |= ¢(a) to denote when
¢(a) is true on M. (Equivalently, we can say M satisfies ¢(a).) This is inductively
defined on the structure of ¢:

If¢=(t1=t2), then M ':d)( )lft
It ¢= R(tla’ o 7tnR)a then M ': ¢(
If 6 = ~), then M = 6(a) if M - 1(a);

If g =4y A0, then M |= ¢(a) if M = ¢ (a) and M = 0(a);
If ¢ =1 V0, then M = ¢(a) if M = ¢(a) or M [ 6(a);

If ¢ = Jz;0p, then M = ¢(a) if M | ¢(a,b) for some b € M;
If ¢ = Va;0p, then M = ¢(a) it M |=1(@,bd) for all b€ M.

If ¢ has no free variables, we may simply write M = ¢.

(@) = 13" (@);
a) if (1{"(@), -, )3 (@) € RM;

'Y'NR

Definition 6.9. A theory T is a set of L-formulas. We say that a structure M is
a model of T and write M |ET if M |= ¢ for all ¢ € T. T is satisfiable if it has a
model; otherwise, T' is inconsistent.

Having defined what it means for a sentence v to be true on a model M, we may
now define our probability measure for finite graphs. We obtain a finite random
graph G by fixing a vertex set and selecting edges independently with probability %
Fix n € N. Considering the sample space as the set of all graphs on {1,2--- ,n}, we
assign each graph an equal likelihood to “appear”. Thus, the probability of picking
a graph where a formula 1 is true is

HG(V.E) | G E ¥)
2(%) '

We will discuss two methods of proving the 0-1 law — one using the compact-
ness theorem for first-order logic, and the other utilizing the Ehrenfeucht—Fraissé
game, a back-and-forth technique for determining elementary equivalence. For ei-
ther method, it is sufficient to consider the extension property as a theory consisting
of a sequence of analogous and increasingly-stronger sentences, ® = {¢1, ¢2,--- }.

pn(d}) =
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Define
n n n
Gp =Va1, - Tn, Y1, Y32 /\ —(zi = yi) = /\Zwiﬂi/\ /\_‘(ZNyi)'
i,j=1 i=1 i=1

Essentially, ¢, asserts that the extension property holds for sets X and Y of size
n.

Remark 6.10. At first glance, ® seems weaker than the statement of the extension
property from Section 4, which does not specify that X and Y be the same size.
If X and Y are different sizes, we can simply add elements to the smaller set — for
if the larger sets are extendable, X and Y clearly are as well. That is to say, if a
graph satisfies ¢,,, all sets of size up to n are extendable; so a graph modeling ®
necessarily satisfies the extension property. We can thus treat ® and the extension
property as equivalent conditions.

7. THE COMPACTNESS THEOREM

In first-order logic, compactness is the notion that if every finite subset of a
theory is satisfiable, the theory itself must also be satisfiable. This section’s proof
of the 0-1 law utilizes the compactness theorem as well as the Lowenheim-Skolem
theorem, which allows us to restrict our purview to countable models. For this
section, we reference chapter 2 of Marker’s Model Theory: An Introduction [3].

Theorem 7.1 (Compactness). A theory T is satisfiable if and only if T is finitely
satisfiable, i.e. every finite subset of T is satisfiable.

Theorem 7.2 (Léwenheim-Skolem). Let T be a countable theory. If T is satisfiable,
then T has a countable model.

Both of these proofs are rather involved; they can be found in chapter 2 of [3].
In order to tie compactness to the theory ® from the previous section, we need the
following proposition.

Proposition 7.3. For a theory T and a sentence ¢, ¢ is true in every model of T
if and only if T U {—¢} is inconsistent.

Proof. Looking to Definition 6.8, the proof in either direction follows from the
implication that for any model M, exactly one of M E ¢ and M |= —¢ can be
true. If T F ¢ then any model of T (and by extension of ¢) cannot satisfy —¢;
conversely if T'U {—¢} has no model then any model of T must satisfy ¢. O

Even when a formula ¢ is not an element of a theory T, we’d still like to have
a notion of when T' “naturally leads to” ¢. We will write T ¢ to denote when a
formula ¢ is true in every model of a theory T'.

Corollary 7.4. Let T be a countable theory, and suppose we have a formula ¢ such
that for every countable model M of T, we have M |= ¢. Then there exists a finite
subset F C T such that F' = ¢.

Proof. Suppose for the sake of contradiction that for all finite F* C T, F I ¢. By
Proposition 7.3, this is equivalent to saying that each F'U{—¢} is satisfiable. Thus,
T U {—¢} is satisfiable, and so by Lowenheim-Skolem, T'U {—¢} has a countable
model. If M is such a model, then we have M =T and M £ ¢, contradicting the
initial assumption. [
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With these, we may finally prove the 0-1 law.

Proof of Theorem 6.1 using compactness. The proof of this fact is very similar in
form to Lemma 4.3. As shown in Section 4, @ is the only countable graph satisfying
the extension property, and is thus the only graph satisfying ®. Then, for a sentence
¥ with Q = 1, we can apply Corollary 7.4 to find a finite subset F' C ® with F I 4.
Observe that as shown in Remark 6.10, each ¢, € ® is a stronger version of the
sentences earlier in the sequence, {¢r} F ¢, for m < k. Then, if ¢y, is the highest-
indexed element of F', we have {¢x} - F, and so {¢} - 1. By how we defined p,,,
we see that p,(ér) < pn(¥). Thus, it is sufficient to show that nli—{r;opn(¢k) =1

Assuming G is a graph with n > 2k + 1 vertices, fix z1, -+, 2k, y1, - , Yk, and
let z be a vertex distinct from all of these. Since edges are selected independently
with probability %, we have

k k
DPn (/\zwxi/\/\ﬁzwgﬁ) =272k,
i=1 i=1

Accordingly, the probability that z fails to extend a1, -+ , Xk, y1, -, Yk iS

k k
q = Pn (“(/\ZNJZiA/\—!ZNyi>> —1-—92k

=1 i=1

By edge independence, the probability that

k k
G:ﬁ3z</\z~xi/\/\ﬁz~yi>

i=1 i=1

is ¢"72*. Observe that —¢y, is the union of —3z (/\f=1 z o~ A /\f=1 —z o~ yl) over

all choices of 1, -+ ,xk,y1, -+ ,yr. Let N be the number of pairs of disjoint subsets
of size k, i.e. the number of ways to pick x1, -+, 2k, y1,+ ,yr. Using the upper
bound N < (2)2 < n?* we can apply the union bound to see that

p7z(_‘¢k) S Nqn72k < n2kqn72k'

Since 0 < ¢ < 1, computing the limit gives us
lim p,(—¢r) = lim n*¢"~2* = 0.
n—oo n—oo

By the first part of the proof, this gives us our desired result of lim p,(¢) = 1.

n— oo

Conversely, if @ = -, then lim p,(—) =1, s0 lim p,(¢») = 0. O
n— oo n— oo

8. EHRENFEUCHT-FRAISSE GAMES

As we saw in the previous section, the proof of the 0-1 law follows rather nicely
from compactness. However, there is no indication of how quickly the probability
of a given sentence 1 stabilizes — although the proof utilizing compactness does
use some ¢, as a lower bound on the likelihood of ¢, we are given no indication
as to what this critical ¢,, could be. The Ehrenfeucht—Fraissé game fixes this by
associating ¢ with some specific ¢,, corresponding to its quantifier rank (which
we wll define promptly). For further reference, see Jouko Véaéninen’s Models and
Games [4].
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Definition 8.1. Let ¢ be an L-formula. We define its quantifier rank QR(¢) in
the following way:
If ¢ is atomic, then QR(¢) = 0;
If ¢ = ¢, then QR(¢) = QR(¢);
If ¢ = A6 or =V 6, then QR(¢) = max{QR(1)), QR(6)}};
o If ¢ = Ju;9p or ¢ = Vu;1p, then QR(¢) = QR()) + 1.
Note that by this definition, the quantifier rank of a formula is only increased by
(as the name suggests) attaching quantifiers.

Example 8.2. The sentence indicating that any two vertices are connected by a
path of length < 2 is given by

VavVy(x ~y)VIz(z ~x Az ~y)
and has quantifier rank 3.

Definition 8.3. We say that two structures M and N are elementarily equivalent
up to rank n if they satisfy the same formulas of quantifier rank < n, and denote
this as M =, M. If M and N satisfy the same formulas of any rank, we simply
call them elementarily equivalent and write M = N.

The Ehrenfeucht—Fraissé game is played by two players (whom we will call Player
I and Player IT) on two graphs for a predetermined number of rounds. For the sake of
simplicity, we consider the graphs to be disjoint. We denote the Ehrenfeucht—Fraissé
game played on graphs G(V, E) and H(W, F) with n rounds as EF, (G, H). Player
I’s goal is to demonstrate a difference between the two graphs, while Player IT wants
to show that they are the same (up to isomorphism).

Supposing that we’ve just finished round k — 1, we enumerate the vertices played
in G as vy, -+ ,vx—1 and those played in H as wq, -+ ,wi—1. Round k plays out in
the following way: At the beginning of the round, Player I plays a vertex on one of
the two graphs — we label this vertex vy, if it’s played on G and wy, if on H. To this,
Player IT must respond with a vertex on the other graph, again labeled vy, if played
on G and wy if on H. We call vertices vy and wy which are played in the same
round corresponding vertices. Also, we’ll denote the vertices played in the rounds

up to round k as the ordered k-ples Vi, = (v1, -+ ,v) and Wy, = (wq,- -+ ,wy), and
refer to the state of play as position (Vi, Wy).

At the end of round n, we observe the played vertices V,, = (v1,---,v,) and
W, = (w1, -+ ,wy,) and check for two conditions:

(1) v; = vj; if and only if w; = wj;

(2) v; ~wvj if and only if w; ~ wj.
If both conditions are satisfied, Player II wins; otherwise, Player I wins. In essence,
this process seeks to construct n partial isomorphisms between G and H, stopping
either when the current map cannot be extended or upon successfully constructing
n maps.

We can characterize a given Ehrenfeucht-Fraissé game by the strategies each
player follows. A strategy is a function 7 prescribing a player’s next move based on
what vertices have been played so far. A strategy 7 is a winning strategy if, for any
sequence of vertices chosen by the opponent, a player can win by following 7.

Example 8.4. Suppose G(V, E) and H(W, F) are both graphs with 4 vertices. G
is a 4-cycle, while H is a path of length 4. Player II has a winning strategy on
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EF>(G, H). Suppose round 1 has concluded, and Player I plays vo € V. Then,
Player II picks wy € W such that wy ~ ws if and only if v; ~ vy. (The same goes
for if, instead, Player I plays ws € W.)

On the other side, Player I has a winning strategy on EF5(G, H). In the first
two rounds, Player I can play w; and ws on opposite ends of graph H. In order to
avoid losing immediately, Player II would have to play opposite corners of graph
G. Then, Player I can play either of the unplayed vertices of H — suppose he plays
ws € W such that ws ~ wy and ws ¢ we. Any choice of vz € V '\ {v1,v2} results in
v3 ~ v1 and vz ~ vs.

The following proposition will be helpful for proving our main result. A proof is
given in chapter 4 of [4].

Proposition 8.5. For a given n € N and set of variables x1,--- ,x,, there are
finitely many formulas of the language of graphs of quantifier rank < n with free
variables x1,--- , T, up to logical equivalence.

Theorem 8.6 (Ehrenfeucht—Fraissé). Let G and H be graphs. The following are
equivalent:

(1) G and H satisfy the same formulas up to quantifier rank n;
(2) Player II has a winning strategy on EF, (G, H).

Proof. (1 = 2) Suppose G and H satisfy the same formulas up to quantifier rank
n. We claim that there exists a strategy for Player II such that if k¥ < n, then after
round k, G and H satisfy the same formulas of quantifier rank < n—k. In particular,
if QR(¢) < n —k, then G = ¢(v) whenever H |= ¢(w), where T and W are lists of
arguments containing corresponding vertices. At the beginning of the game, Vj =
Wo = 0, so our claim is true by assumption. Suppose we are about to begin round
k, with the game’s current position being (Vi_1, Wi_1). Without loss of generality,
suppose Player I plays vertex a = vy on G. (The case where Player I plays on H
is symmetrical.) Let 7; denote a list of arguments consisting of previously played
variables on G. By Proposition 8.5, we may enumerate the formulas of quantifier
rank < n — k describing previously played variables as 11 (01, ), , ¥ (T, ).
We then observe that
¢ = /\ Yi(vi, ) A /\ =i (Vs )

0<i<m 0<i<m

GEYi(a) GHvi(a)
is a formula of quantifier rank < n — k, so 3x¢ has quantifier rank < n — k. Since a
acts as a witness to ¢ on G, we have G |= Jz¢; elementary equivalence then gives
us H = 3x¢ as well. Let b € W be a witness to 3z¢ on H; we can thus let Player
IT play wy = b, proving the inductive hypothesis.

(2 = 1) Suppose Player II has a winning strategy on EF, (G, H). We make a
stronger claim for k& < n: If Player II has a winning strategy with (V,,_g, Wi, —x)
having already been placed, then for all formulas ¢ of quantifier rank < k, G |= ¢ if
and only if H = ¢. Again, note that in particular, G |= ¢(v) whenever H |= ¢(w),
for lists of arguments v and w containing corresponding vertices.

Suppose the claim is true up to k — 1. To check for k, suppose EF, (G, H) is in
round n — k, and Player IT has a winning strategy on (V,,—g, Wy—x). If ¢ is atomic,
then the claim is demonstrated by the fact that Player II is currently in a winning
position. Otherwise, suppose ¢ is a formula of quantifier rank k.
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If ¢ = Jz), then 9 is a formula of quantifier rank £ — 1. Suppose without loss of
generality that G |= Jx(z), and let Player I play a = v, € V such that G = ¢(a).
Since we've established that Player II has a winning strategy given (V,,_p, W, ),
she can play b = wy € W accordingly. Now, we are in round n — k + 1, and Player
IT is still in a winning position; thus, we may apply the inductive hypothesis to .
Since G = 9(a), we also have H |= 9 (b), as a and b are corresponding vertices.
Since b is a witness to 3z, we must have had H | ¢ in round n — k.

If ¢ is any of =, A 0,1 V 6, or Yz, the claim follows from the case for Jz.
In particular, the first three cases are directly given by whether the claim holds on
the subformula(s), while V1) is logically equivalent to —=Jz—1). ]

Proposition 8.7. Let G and H be graphs. If both G and H satisfy ¢, then Player
II has a winning strategy on EF, (G, H).

Proof. Suppose without loss of generality that E'F,, (G, H) is in position (Vi_1, Wi_1)
and Player I has just played vi, € V. As we've observed, a graph satisfying ¢, in
fact satisfies the extension property for sets X and Y up to size n. On graph H,
we can let X = {w; | v; ~ v} and Y = {w; | v; # v }; Player II can then select as
wy, some vertex extending these. (I

Proof of Theorem 6.1 using the Ehrenfeucht—Fraissé game. Let 1 be a sentence with
quantifier rank k with @ = v. If G is a graph satisfying ¢, we know by Proposi-
tion 8.7 that Player II wins on EFy(G, Q). By Theorem 8.6, this is equivalent to
the assertion that G = @, so G |= 1. Because 1 is true in every model of ¢y, we
thus get {¢x} F 1. From the proof of the 0-1 law using compactness, we thus have

Jim pn(¢x) = lim pp(¢) = 1.
O
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