SOME SPECTRAL BOUNDS ON GRAPH INVARIANTS

JACK WHELAN

ABSTRACT. We investigate relationships between graph structure and the spec-
tra of standard graph matrices (the adjacency matrix A and the Laplacian
£L). Building on classical matrix-analytic techniques, we derive a collection of
spectral inequalities that connect eigenvalue extrema and sums to combina-
torial quantities such as clique number, co-clique number, and bounds on the
Cheeger constant. Our arguments are presented with an emphasis on explicit,
approachable proofs, making the techniques accessible to readers with varied
backgrounds.
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Graphs are combinatorial objects, but translating them to matrices exposes a lin-

ear—algebraic toolkit that is easier to work with and scales efficiently. The adjacency
matrix A, degree matrix D, and Laplacian, £ = I —D~Y/2AD~1/2 preserve the un-
derlying structure while enabling standard calculations: powers of A count walks,
quadratic forms (z' Az, 7 Lz) aggregate adjacency and variation, and eigenval-
ues summarize global behavior through Rayleigh quotients and orthogonality. We
begin by fixing notation and a few elementary facts, then build intuition on ex-
plicit spectra for basic families. Building on this, we connect the second eigenvalue
to the cheeger constant, and the adjacency spectra yields bounds on the clique

and co-clique numbers via Motzkin—Straus, an argument that builds on a previous
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bound given by Herbert Wilf. Throughout, the simplifying identity on d-regular
graphs, L =1 — %A, allows adjacency and normalized—Laplacian statements to be
translated without loss.

2. PRELIMINARIES

This section fixes notation on graphs and the matrix objects we use and collects
a few elementary facts that will be used repeatedly. Namely, we will define the
concept of a graph, as well as construct relevant matrices.

2.1. Fundamental Objects.

Definition 2.1. A graph is a tuple, G = (V, E)). We say that the size of a graph is,
n = |V, and refer to elements of V' as vertices. Elements of E are un-orded pairs of
distinct vertices called edges. For ease of reference, the vertex set is often thought
of as the collection of the first n natural numbers. Two basic associated objects are
the degree, defined on individual vertices as d(v) = [{u € V' | {u,v} € E}|, and the
volume, defined on subsets S C V as vol(S) = > o d(v). We say that a graph is
k-regular, if each vertex has degree k.

veS

Some special graphs are given shorthand representations due to their frequent
use. The complete graph, K,, has an edge set containing each possible pair of
distinct vertices, the path graph, P,, is the graph where {i,i+1} € E for i < n, and
the cycle graph, C,, which is constructed from P, by adding an additional edge
connecting vertex 1 to vertex n.

Though graphs are useful mathematical objects, when their size increases, their
natural structure is somewhat cumbersome. This fact motivates the construction of
a nicer object which lends itself more naturally to analysis — matrix representations.
These translate the combinatorial structure of vertices and edges into linear alge-
braic form. As will be discussed in further detail later on, powerful tools from spec-
tral theory become available: eigenvalues provide compact numerical summaries of
connectivity and expansion, while eigenvectors reveal hidden geometry and cluster-
ing.

Definition 2.2. Given a graph G, we define the adjacency matriz entry-wise as:

Ay — {1 if {i,j} e F

0 otherwise

Even before considering the spectra, the adjacency matrix itself encodes connec-
tivity. In particular, its powers count walks (sequences of edges) between vertices:

Proposition 2.3. The (i,7) entry of A* is exactly the number of walks of length
k from vertexr i to vertex j.

Proof. By induction on k. For k = 0 we have (A%);; =1 for i = j and (4%);; =0
otherwise, which counts length-0 walks. For k = 1 we have (A);;, which trivially
counts walks of length 1.

Assume the claim holds for k. Then by the definition of matrix multiplication,

(A = (AR)ir Ay

T
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By the induction hypothesis (A*);, is the number of walks of length k from i to r,
and each such walk extends to j in exactly A,; ways. Summing over 7 counts all
walks of length k& + 1 from ¢ to j, so the identity holds for k£ + 1. O

Translating a graph into its adjacency matrix does not throw information away—it
reorganizes it. The matrix captures the same object as the graph: who is con-
nected to whom and how local neighborhoods fit together. Basic graph actions
have clean matrix counterparts too, so constructions in the graph world become
modular updates in the matrix world. Even repeated matrix multiplication mirrors
combinatorial growth by counting possible step-by-step moves through the network.

This faithfulness matters. It means we can study a graph without leaving its
structure behind, while gaining access to the organizing power of linear algebra:
clear data layouts, scalable computations, and principled ways to summarize com-
plex connectivity. The spectral viewpoint developed next builds on this foundation,
using the matrix not just as a record of edges, but as a compact lens for comparing,
classifying, and reasoning about graphs.

In many graphs, especially those with uneven degrees, it is helpful to study a
matrix that reflects not just adjacency but also how connections scale with vertex
degree. The Laplacian serves this role.

Definition 2.4. Given a graph G, we first define the matrix,

d(i) ifi=j
Lij =< -1 if {Z,]} ek
0 otherwise

Additionally, let D be the matrix with value D;; = 0 for i # j, and D;; = d(i) for
i=j.
The Laplacian matriz is defined as D_%LD_%, I—D 2AD 3or explicitly as

1 if i =
. 1 . .o

Ly =3~ Vaway el
0 otherwise

Note that in some literature, the matrix L is referred to as the Combinatorial
Laplacian, and L is referred to as the Normalized Laplacian. For the purposes of
this paper, we will strictly refer to £ as the Laplacian. We conclude this subsection
having fixed the matrix objects that encode a graph’s structure: the adjacency
matrix A and the Laplacian £. With notation set, we next develop the linear-
algebraic tools needed to extract spectral information from these matrices.

2.2. Fundamental Properties. We now record some of the fundamental alge-
braic properties which will aid our spectral analysis. Firstly, the spectral theorem
for real symmetric matrices, which supplies the linear-algebraic structure used re-
peatedly below. In concrete terms, the theorem guarantees that any real symmetric
matrix admits an orthonormal basis of eigenvectors and hence can be diagonalized
by an orthogonal change of coordinates.

Theorem 2.5. Let A be a real symmetric matriz. Then A has n real eigenval-
ues, and there exists a real orthonormal eigenbasis of A. Furthermore, A can be
represented as

A=UEUT,
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where U is an orthogonal matriz, and E is a real valued diagonal matriz. The
multiset of non-zero values contained in E is called the spectra of A.

As each of the graph matrices that we introduced are clearly real-symmetric, this
guarantees that each graph admits a multi-set of n real eigenvalues. As a standard
convention, we will refer to the eigenvalues of £ using the Greek letter A, indexed
in increasing order from 1 to n, and the eigenvalues of A using the Greek letter p
indexed in the same way. A proof of Theorem 2.5 can be found in section 7B of [2].

We now introduce the Rayleigh Quotient, which, in general, measures the de-
gree to which a matrix augments a vector. For the Laplacian, the Rayleigh quotient
measures the extent to which the values of a vertex weight vector, f remain consis-
tent across well-connected regions of the graph, with smaller values indicating that
f places most of its weight on well connected subsets.

Definition 2.6. Given a real symmetric matrix, M, the Rayleigh Quotient, of the
matrix is a function Rys : R™ \ {0} — R, such that
2T Max

RM(Z'): .Z‘Tx .

Because the Rayleigh quotient evaluates to an eigenvalue whenever x is an eigen-
vector, it follows that minimizing or maximizing the quotient over all directions
must produce the extreme eigenvalues of a symmetric matrix. Moreover, if the
search is restricted to vectors orthogonal to the eigenspaces already identified, the
next eigenvalues emerge in order. This principle is made precise in the Courant—
Fischer theorem, which characterizes the smallest, largest, and successive eigen-
values as extremal values of the Rayleigh quotient subject to such orthogonality
constraints.

Theorem 2.7 (Courant—Fischer). Let M be an n xn symmetric matriz with eigen-

values Ay < o < ... < A\, and corresponding eigenvectors vy, ...,v,. Then,
T T
A = min 27 Mz = min ) Ao = min 27 Mz = min 7
llz]j=1 a0 xlx llz]i=1 a0 Tz
zlvy xlvy
T
' Mx
A\ = max z! Mz = max T
%=1 2#0 Tz
T
. r Mx .
A = min -, for1<i<n
T£0 r'x

IJ_’Ul,...,’Ui_l

A proof of the Courant Fischer eigenvalue characterization can be found in lec-
ture 2 of [4]. Specializing Theorem 2.7 to the Laplacian shows that its eigenvalues
are obtained by minimizing the associated Rayleigh quotient over orthogonality-
constrained vectors. Writing this quotient in terms of the original Laplacian and
the degree matrix makes explicit that the relevant quantity is the total squared
difference of a function across edges, normalized by its degree-weighted mass. The
following holds taking f = Dzg:

2
Re(z) 2L  2TD LD 2z frLf D tuwyer (f(w) = f(v))
E = fr— = fr—
oTx 2T (D3 f)TD3 f D vev d(v)f(v)?

Thus, A, is the direction in which the total squared difference across edges

is largest. Viewed as an embedding of vertices on the real line, the eigenvector,
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Uy, therefore maximizes the aggregate squared edge-length under the unit-norm
constraint. This gives a useful extremal picture complementary to the usual “min-
imization” viewpoint: while the eigenvector corresponding to Ao minimizes edge-
variation subject to orthogonality and so is suited to partitioning, the top eigen-
vector stretches adjacent vertices apart as much as possible and hence highlights
extremes and antipodal structure in the graph. This fact lends itself naturally to
the optimal visualization of certain graphs. For explicit computation and expo-
sition please see lecture 1 of [8]. In proofs one can exploit this maximization to
construct cuts or test functions that witness large combinatorial separations or to
reason about graph diameter-like behavior in algebraic terms.

3. COMPUTATION AND INTUITION

In the previous section we established the variational framework and min—max
principles that link eigenvalues to combinatorial features of graphs. We now il-
lustrate these ideas by computing the spectra of several classical graph families.
Working through these examples not only demonstrates the mechanics of spectral
calculations but also develops intuition for how graph structure is reflected in eigen-
values and eigenvectors. This intuition will serve as a guide in the remainder of the
paper, where more general bounds and applications rely on recognizing the same
patterns that appear transparently in these well-understood cases.

Remark 3.1. Spectral derivations are simplest for highly symmetric or d-regular
graphs, since D = dI reduces L to I — %A, so diagonalizing A immediately yields
the spectra of £. As graphs depart from regularity, D is no longer a scalar and

the edge weights ————— vary, breaking uniform recurrences and many symmetry-
ge weights —=-—ws vary g y sy y

based arguments. Closed-form spectra then become rare.
First, let’s consider the (n — 1)-regular complete graph, K.

Proposition 3.2 (K, Spectra). The spectrum of K, is 0 with multiplicity 1, and
—29 with multiplicity n — 1.

Proof. Since K, is (n — 1)-regular we have D = (n — 1)I and hence

1
L=I-D'2AD Y2 =1 - ——A
n—1
Note that A satisfies A1 = (n — 1)1 and Av = —v for every v with v-1 = 0.
Thus A has eigenvalues n — 1 with multiplicity 1 and —1 with multiplicity n — 1.
Consequently D~Y/2AD~1/2 = ﬁA has eigenvalues 1 and ——1=, and subtracting

n—17

from I yields the claimed spectrum for L. [

Then we consider the cycle on n vertices, C,,, which is slightly more complicated.

Proposition 3.3 (C,, Spectra). The spectrum of C,, can be expressed as follows:
/\kzl—cos<w>, k € [n].

The multiplicity of such eigenvalues is 1 exactly at k =1 (and at k = § + 1 when
n is even) and is 2 otherwise, with each such eigenvalue occurring at the paired
indices k and n — k + 2.
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Proof. Here D = 2I,s0o L =1 —1A. For each k € [n] define, for u € {0,...,n—1},

2®) (u) = sin(m), y ) () = COS(M).

n n

The elementary identities

n

P —-1)+2®(u+1)= 2(:05(277(]6_1))gc(k)(u)7

y O (u—1)+yP(u+1) = 2cos<2w(ifl)>y(k)(u)
imply, for every vertex u,
[L2®](u) = 2 (u) — %(x(k)(u —1) 4+ 2% (u + 1) = (1 — cos W)x(k)(u),

and the same holds for y*). Thus A\, = 1 — cos(2n(k — 1)/n). The multiplicity
statement follows from cos(27(k — 1)/n) = cos(2w(n — k + 1)/n), so that k and
n — k + 2 are paired, with singletons at k¥ =1 and, when n iseven, k = 5 +1 [

Finally, following the pattern stated in Remark 3.1, we see that P,, as the least
regular of the three graphs we consider, yields the most difficult explicit computa-
tion.

Proposition 3.4 (P, Spectra). The spectrum of P, can be expressed as follows:
k—1)7
A =1-— cos(%), k € [n]
Fach has multiplicity of 1.
Proof. Let Lz = Az and set y = D~Y2z. Then D~Y2AD 2z = (1 — Nz is

equivalent to
Ay = KDy, k=1-—A\.
Writing coordinates gives
Y2 = Ky1,  Yi-1 T Yip1 =26y (2<i<n—1),  yp-1 = KYn.

The interior recurrence y; 41 —2ky; +y;_1 = 0 has characteristic equation 72 — 2xr+
1=0. With k = cost € [—1, 1] we obtain the real solutions

y; = Ccos((i — 1)t) + Dsin((i — 1)¢).

The left boundary yo = ky; forces Dsint = 0. For sint # 0 we take D = 0, hence
y; = C cos((i — 1)t). The right boundary y,_1 = Ky, becomes

cos((n — 2)t) = cost cos((n —1)t) <= sin((n —1)t)sint = 0.

Excluding sint = 0 (the endpoints ¢t = 0,7 correspond to the two boundary eigen-
values), we get (n — 1)t = mzm for m = 1,...,n — 1. Reindex by k = m + 1 to
obtain

tk:%7 Kl = COS tk, )\kzl—fszl—cos(%) k=1,...,n.
These n distinct values yield n independent eigenvectors z(*) = D/24(*) 5o each
Ak has multiplicity 1. [
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We computed explicit spectra of the Laplacian for three canonical families, K,
C,, and P,, and saw how symmetry streamlines the algebra: in the d-regular cases
(K, and C,,) the identity L = I — éA reduces the task to diagonalizing A, while the
less regular path P, requires a boundary—value recurrence that still yields closed
forms and a simple spectrum. The cycle’s pairing k with n — k + 2 explains its
multiplicities (with singletons at & = 1 and, when n is even, k = § + 1), illustrating
how graph symmetry shapes eigenvalue structure. We also note that adjacency
spectra are often simpler and more intuitive to compute.

4. A SPECTRAL BOUND ON THE CHEEGER CONSTANT

The concept of Cheeger Constant, while fundamental to our discrete analysis,
originates from Jeff Cheeger’s pioneering work in differential geometry on Rie-
mannian manifolds. Cheeger originally defined what is now known as the Cheeger
constant, (in some literature it is referred to as the conductance or isoperimet-
ric constant) of a manifold as the infimum over all smooth hypersurfaces of the
ratio of the hypersurface’s area to the minimum volume of the regions it sepa-
rates. This geometric quantity measures how difficult it is to partition a manifold
into large pieces with relatively small boundary, capturing the manifold’s “bot-
tleneck” properties in a continuous setting. For more precise discussion, see [10].
The discrete graph-theoretic version we study here—where edge cuts replace hy-
persurfaces, vertex degrees replace volume elements, and set cardinalities replace
continuous measures—preserves the essential geometric intuition while making the
concept tractable for combinatorial analysis. This discretization has proven remark-
ably fruitful, as the spectral techniques that work in the smooth setting translate
directly to the discrete case with the graph Laplacian.

4.1. Relevant Definitions. We begin by introducing the necessary machinery to
approach and define the Cheeger Constant of a graph.

Definition 4.1. Given a graph G = (V, E), we define the boundary of S C V to
be 85 = {{u,v} € E|u € S,v € V\ S}, where V '\ S denotes the complement of
S. Note that 95 =9 (V'\ S).

Definition 4.2. Given a graph G = (V, E) and a nonempty proper subset, S C V,
the Cheeger Constant of the vertex set S is defined as

05|
min{vol(S),vol(V \ S)}

p(S) =
Similarly, the Cheeger Constant of the graph G is defined as

(G) = min o(5).

Example 4.3. In the complete graph, K,,, each vertex has degree n—1, so vol(V') =

n(n —1). Then, any S of size K < § admits a boundary of size k(n — k) and a

volume of k(n —1). Thus ¢(S) = QEZ:IS, which is minimized by choosing k = | 5 |,

yielding: ¢(K,) = %
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4.2. The Bound.

Theorem 4.4. For any graph G, the graph’s Cheeger Constant can be bounded as
follows:

2209 < o(0) < VIN()

Proof. First, fix a proper subset, S C V satisfying ¢(G) =
Then define a function f : V' — R such that

1 .
ﬂm—{mwn pves
T Vol(V\S) ifvgs

Clearly, f satisfies the Courant-Fischer orthogonality condition of being orthogonal
to D1, as

S d(0)£(v) = vol(S) (voll(S)> Fvol(V \ S) (‘W) 0.

veV

10|
min{vol(S),vol(V\S)} "

Note that the expression f(u) — f(v) takes nonzero value, ﬁ(s) + W\B\S)? only
when {u,v} € 3S. Thus, we compute the numerator of the Rayleigh Quotient

S (fw) - F)* = o5 (Voll(s) N vol(é\5)> '

{uv}eE

Then, we compute the denominator, utilizing the definition of volume.

1 2 1 2 1 1
Z d(v) f(v)?* = vol(S) <V01(5)> +vol(VAS) <v01(V \ S)> - vol(S)Jrvol(V \S)

veV

Finally, substituting our simplifications and applying the Courant-Fischer char-
acterization of Ay, we have

2
1 1
\ < 0S| (vol(S) + vol(V\S)) <y X
2= min{vol(S), vol(V \ S)}

1 T 1 = 2¢(G> .
vol(S) vol(V\S)

Thus, we have

Concerning the upper bound, first let g : V' — R realize the Courant-Fischer
characterization of Ay, and order the vertices V = {vq,...,v,} such that

g(v1) > g(v2) > ... > g(vn).
For each i € [n], let S; = {v1,...,v;}, and note that by definition of ¢©(G), we have
|0S;| > ¢(G) min{vol(S;), vol(S;)}.
Choose r such that vol(S,) < 1vol(V) < vol(S,41), and define
h(v) = g(v) = g(vr41),  p(v) = max{h(v),0}.
Note that the Rayleigh Quotient, R(p), must be less than or equal to Ag, as

> ) —p)* < Y (g(u) — g(v)?

{uv}eE {uv}eE
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and
Y d@)(p)* < Y d(v)(gw))?
veV veV

By the Cauchy-Schwarz inequality, we have

Y (p(w) = p(v)? Yo @ +p@)’ | = D W -p)?)?

{uv}eE {u,v}eFl {uv}eE

Then, as p > 0, each term (p(u) + p(v))? < 2(p?(u) + p?(v)). Summing over all
edges, and noting that each vertex v is included in exactly d(v) edges gives

9 1 (Z{u,v}GEp(u) - p(’U))2
Y. (b)) —p)? =5 ey d) ()2

{uv}eE
The function p inherits an ordering from g, so we have p(vy) > ... > p(v,) > 0 and
p(vr41) = ... = p(vy) = 0. Thus the numerator of R(p) telescopes, and for each S,
the only nonzero contributions are from {u,v} € 95; and are exactly

p(u) — p(v) = p(vi)?* = p(vig1)?

Hence, grouping by the cut each edge crosses, we have

S () — p())? = 3 ((00)? — plers1)?) 95
{uv}erE i=1

By construction, we have |35;| > ¢(G) min{vol(S;), vol(S;)}. Additionally, i < r
implies that vol(S) < vol(S;) and i > r implies that p(v;)? — p(viy1)? = 0, which
means that

T

Z (p(u) = p(v))* > ¢(G) Z (p(v:i)* = p(vig1)?) vol(Ss).

{u,v}eE i=1

Furthermore, from vol(S;) — vol(S;—1) = d(v;), we know that

T T

Z (p(vi)2 — p(vzﬂ vol Zp v;)? (vol(S;) — vol(S;_1)) = Z d(vi)p(v;)?

i=1 i=1
Then, as p vanishes after index r, we know that this final sum is equal to the
denominator of R(p). Thus, combining these inequalities, we have

160 Yy AW _ G
Y. (b)) —p()? > 5 S AR 2 > d()(p(v))

{uv}eRE veV

This shows that R(p) > “’(gf. From before, we know that R(p) < A2, which

implies that Ay > %2 or equivalently,

©(G) < V2
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Thus, we have the bound % < ¢(G) < v/2X2. These inequalities are valuable
because computing A, of the Laplacian is a polynomial-time numerical task, whereas
minimizing Cheeger Constant directly is combinatorially hard in general; hence
spectral quantities serve as efficient proxies for detecting bottlenecks in networks.
Concretely, the lower bound guarantees that a nontrivial second laplacian eigenvalue
rules out very sparse cuts. Together these statements explain why eigenvalue-based
algorithms are both theoretically justified and practically effective for tasks such as
clustering and estimating mixing times of random walks.

Having examined how Laplacian eigenvalues control expansion, we now turn to
another classical application of spectral methods: relating adjacency-matrix eigen-
values to purely combinatorial invariants such as the clique number. The techniques
differ in detail, as we now work with the quadratic form of the adjacency matrix
on the probability simplex rather than the Laplacian Rayleigh quotient, but the
guiding idea is the same: translate a combinatorial extreme into a matrix quadratic
form and use spectral information to obtain bounds.

5. SPECTRAL BOUNDS ON CLIQUE AND CO-CLIQUE NUMBERS

In this section we work with the adjacency matrix A to bound the clique number
w(@) and the co-clique number o (G). The basic object is the quadratic form x T Az.
For a subset S C V = {1,...,n}, let 15 € {0,1}"™ be its indicator vector, with
(1g); = 1if i € S and 0 otherwise. Additionally, we write 1 = 1y for the all-ones
vector. Then l:grA 15 equals twice the number of edges in the subgraph induced by
S. In one of the bounds below, we restrict x to the standard simplex by requiring
x; > 0and ), x; = 1,50 that the quadratic form represents a weighted average over
vertex pairs rather than a raw edge count.

First, the Motzkin-Straus theorem identifies the exact maximum of 27 Az under
that normalization and expresses it directly in terms of w(G); evaluating z7 Ax
along an eigenvector direction of A then yields a lower bound for w(G). Second,
for the co-clique number, a simple re-centering of A enforces nonnegativity on
the subspace orthogonal to 1; in the k-regular case this gives the classical ratio
bound for a(G). On d-regular graphs the relation £ = I — 1A carries these adja-
cency—based statements to the normalized—Laplacian framework developed earlier
without changing their combinatorial interpretation.

Definition 5.1. The Cliqgue number of a graph G, denoted w(G) is defined as
the size of the largest completely connected subset of the vertices. Similarly, the
co-Cligue number, denoted «(G), is defined as the size of the largest subset of the
vertices such that no two constituent vertices share an edge

5.1. Clique Number.

Theorem 5.2 (Motzkin—Straus, 1965). Define the classical probability simplez,
A={zeR" |z >0Vi, inzl},

and let A be the adjacency matriz for some graph G. Then

1
A
ngeaicx Ar =1 w(@Q)
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View the simplex as the set of probability assignments on the vertices. Each
assignment induces an “edge hit rate”, the chance that two independent vertex
selections constitute an edge. Any probability placed outside a fully connected
block inevitably creates non-edge pairs and lowers this rate. Even within a clique,
a skewed assignment wastes potential pairs by oversampling some vertices and
undersampling others. The rate is maximized by putting all mass on a clique and
spreading it evenly there. Among all cliques, the largest one gives the best rate, so
the optimizer is the uniform point on a maximum clique and zero elsewhere; the
continuous search thus rediscovers the combinatorial object. A complete proof can
be found in [6]. Wilf uses this theorem to produce a lower bound for the clique
number.

The leading eigenvector points toward the most cohesive part of the graph. Af-
ter normalizing it to a distribution, its average adjacency cannot be too small.
Translating that average into a clique size yields a quick lower bound: when a sin-
gle direction explains a lot of the connectivity, a reasonably large clique must be
present.

Theorem 5.3 (Wilf, 1985). Let S be the sum of the entries of the normalized
smallest eigenvector of G. Additionally let A be the corresponding adjacency matriz
with eigenvalues

then,

Hn
w(G@) > ———
( ) — ,LLn o SQ
Proof. Let u be the normalized principle eigenvector of the adjacency matrix, and

define
u
r=
S
As all entries of u are non-negative by the Perron-Frobenius Theorem ([9, p. 65]),
and both }_, #; = 4, >, u; = 1 hold, the vector z is contained in A.

Evaluating the adjacency matrix quadratic form at x, we see that
T4 (T uy 1 7 _ Ko M
e =(5) Alg) =g (W0 = Gulu=g

Then as x € A we know that this value cannot exceed the Motzkin-Straus maxi-
mum. Thus we know that

Hn 1
Mmoo -
Sz - w(G)’
or equivalently
tn
G)> ——
W( ) o Hn — 52

O

To treat the co-Clique number (@) it is convenient to recenter A so that the
resulting matrix is nonnegative on the subspace orthogonal to 1. In the k-regular
case this leads to the classical ratio bound, which we now state and prove.
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5.2. Co-Clique Number. The co-clique number asks how large a vertex set can be
while carrying no internal edges. Instead of a combinatorial search over all subsets,
we use a spectral surrogate that penalizes any tendency to place probability mass on
adjacent vertices: pick a graph—dependent linear operator whose quadratic form is
nonnegative on natural fluctuations, so it cannot “see” an edge in those directions.
Any independent set then determines a principal block that must inherit this non-
negativity. Testing that block with a simple vector (e.g., the uniform vector on the
set) converts “no internal edges” into a short inequality governed by global spectral
parameters.

Theorem 5.4. Let G be a simple k-regular graph on n vertices with adjacency
matriz A, having eigenvalues,

1 S pe << iy
If p1 < 0 then the co-cligue number o(G) satisfies

Proof. Set J =117, and define

M=A—pl— J.

k—
n

Since A1 = k1 and J1 = nl we have
1

M(\;ﬁ) :(k—ul—(k—ul))ﬁ:o.

If v L 1 then Jv = 0 and hence Mv = (A — uyI)v, so the eigenvalues of M on 1+
are p; — 1 > 0. Thus all eigenvalues of M are nonnegative.

Let S C V(G) be an independent set of size a = |S| and order the vertices so the
first « coordinates correspond to S. The principal o X o submatrix of A indexed
by S is the zero matrix, so the corresponding principal submatrix of M is

k —
Mg = 7#1]04 - i

Jas

where I, and J, are the a X « identity and all-ones matrices. Since all eigenvalues
of M are nonnegative, the same is true for Mg. The eigenvalues of J, are «, with
eigenvector 1,, and 0, with multiplicity o — 1, hence the eigenvalues of Mg are —py
with multiplicity o — 1 and

k—
—H1— «Q
on the 1,-direction. Positivity of Mg forces the last quantity to be nonnegative, so
k—
—p1 — H1 a > 0.
n
Rearranging yields
—H1
a < n.
k—

O

This section shows that adjacency spectra provide a direct and interpretable
route to extremal subgraph parameters. Motzkin—Straus expresses the clique num-
ber as a clean maximization over A, Wilf’s inequality follows by evaluating that
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maximization at an eigen-direction associated with the largest adjacency eigen-
value, and a mild spectral recentering of A gives the co-clique bound in the regular
case. Because L =1 — éA on d-regular graphs, these adjacency-based statements
immediately inform the normalized—Laplacian viewpoint developed earlier, and to-
gether they offer a coherent framework connecting linear—algebraic structure with
combinatorial complexity.

6. CONCLUSION AND FUTURE WORK

In this paper we established a set of spectral inequalities tying eigenvalue infor-
mation of A and L to classical combinatorial graph parameters. The presentation
prioritizes concise, modular arguments and, wherever possible, explicit, approach-
able proofs that reduce reliance on heavy machinery. This formulation makes it
straightforward to extend the arguments to related matrices or to strengthen indi-
vidual estimates when additional graph structure is available.

Spectral tests are computationally inexpensive and often provide useful connec-
tivity information when exact combinatorial computations are out of reach. A
particularly attractive avenue for future research is the development of spectral
bounds for Ramsey numbers. Because eigenvalue computations scale far better
than exhaustive combinatorial enumeration, spectral bounds are especially promis-
ing as a source of usable heuristics for otherwise intractable instances. Pursuing
this line appears likely to produce practically useful insights and new theoretical
bounds for Ramsey-type problems.
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