
LOCAL FIELDS AND p-ADIC NUMBERS
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Abstract. This paper will use p-adic numbers as a motivation to develop

more general results, including investigating Hensel’s Lemmas and Ostrowski’s

Theorem, among others. In doing so, it will attempt to provide a solid foun-
dation for more in-depth algebraic number theory. To avoid overly tedious

exposition, this paper will assume basic familiarity with abstract algebra and

analysis, at the level of introductory undergraduate courses.
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1. Introduction

I started off the REU program very ambitious, attempting to read Prof. Ngô Bảu
Châu’s lecture notes on representation of p-adic reductive groups. Then swiftly,
very swiftly, I faced a big problem – I did not even understand the first sentence.
Trying to comprehend what was going on, I quickly found myself entangled with
a much more foundational topic (local fields) that slowly turned out to be very
important in algebraic number theory.

This paper will attempt to organize what I have studied in the last two and a
half months; it will move toward the final goal of classifying local fields, using the
p-adic numbers as a key motivation throughout the process; to avoid being a con-
glomeration of random but important facts, it will also leave out some important
things that I have picked up along the way, including facts about discrete valuation
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rings, dedekind domains and a bit of ramification theory. I recommend to read [9]
if you are interested.

As this paper ultimately intends to be an introduction for someone beginning in
algebraic number theory, it will attempt to be rather self–contained (such as re-
minding key definitions along the way). For the same purpose, it will use p–adic
number examples as a motivation for the more abstract concepts involved. That
being said, to avoid being overly tedious, basic familiarity with abstract algebra
and analysis will be assumed.

Finally, enjoy! Hope you learn a bit more about p–adic numbers and local fields
(or at least find the topic interesting).

2. Basic Ring and Field Theory

There are a few basic definitions that any study of local fields will require. For the
sake of reminding the reader, I will briefly overview relevant background material.
For more detail, see [4] or [6].

Definition 2.1. Let R be a ring. A subset I ⊂ R is a left ideal if
(i) I is an abelian subgroup of R
(ii) ra ∈ I for all a ∈ I, r ∈ R

A right ideal is defined analogously.
A subset is an ideal if it is both a left and a right ideal.
An ideal is principal if it is generated by 1 element.
An ideal I ⊂ R is maximal if for every other ideal J ⊃ I, then J = R.
An ideal is prime if for all a, b ∈ R, ab ∈ I implies either a ∈ I or b ∈ I.

The following definition is equally fundamental and important.

Definition 2.2. Let R be a ring. A left R−module or a left module over R is a
set M together with

(i) a binary operation + on M under which M is an abelian group
(ii) an action of R on M (that is, a map R×M → M) denoted by rm, for all

r ∈ R and for all m ∈ M which satisfies
(a) (r + s)m = rm+ sm for all r, s ∈ R and m ∈ M
(b) (rs)m = r(sm) for all r, s ∈ R and m ∈ M
(c) r(m+ n) = rm+ rn for all r ∈ R and m,n ∈ M
(d) 1m = m where 1 ∈ R is the identity and m ∈ M

Note that all ideals I ⊂ R can be viewed as R−modules. Recall also the following
definitions.

Definition 2.3. A field F is a commutative division ring, i.e. multiplication on
F is commutative and all a ̸= 0 ∈ F have inverses.

R and C are common examples of fields that we are familiar with.

Definition 2.4. A ring R is an integral domain if it is commutative, has a
multiplicative identity and has no zero divisors i.e. ab = 0 implies either a = 0 or
b = 0. An integral domain R is a principal ideal domain (PID) if every ideal is
principal.
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Definition 2.5. Let R be a ring and M be a module. M is Noetherian if every
submodule is finitely generated. Equivalently, M is Noetherian if every ascending
chain of submodules of M ,

M1 ⊂ M2 ⊂ M3 ⊂ . . .

eventually stabilizes (see pg. 413, [6]). Note that an ideal I ⊂ R can always be
considered as an R−module.

It is important the the reader is comfortable with these definitions (and the corre-
sponding related material), as they will be treated as background knowledge in the
following exposition.

3. Valued Fields

3.1. Absolute Values and Valuations. Given any arbitrary field F , we can
assign certain non-negative values in R to elements of F . The following definitions
formalize this idea.

Definition 3.1. Let K be a field. An absolute value on K is a function | · | :
K → R≥0 such that

(i) |x| ≥ 0 ∀x ∈ K with equality iff x = 0
(ii) |xy| = |x| · |y| for all x, y ∈ K
(iii) |x+ y| ≤ |x|+ |y| for all x, y ∈ K

An absolute value is trivial if |x| = 1 for all non-zero x ∈ K. Moreover, it follows
from the definition above and the property of fields that |1| = 1, | − 1| = 1 and
|−x| = |x| ∀x ∈ K. This definition of absolute value should feel familiar. Criteria
(iii) in particular is the common and useful △-inequality. We can change the
△−inequality into a much stronger inequality to obtain interesting results.

Definition 3.2. An absolute value is called non-archimedean if

|x+ y| ≤ max {|x|, |y|}

for all x, y ∈ K. Otherwise, it is called archimedean.

Example 3.3. Given any

x = pn · a
b
∈ Q×

with a, b ∈ Z not divisible by p, the absolute value defined by |x|p = p−n is non-
archimedean. The usual absolute value on Q, which we may sometimes denote as
|·|∞ in this exposition, is archimedean.

Suppose | · | is non-archimedean and suppose |x| < |y|. Then

|y| = |y + x− x| ≤ max {|x+ y|, |x|}

In particular, |y| > |x| implies |y| ≤ |x + y|. By definition of a non-archimedean
absolute value, we also have |x+y| ≤ max {|x|, |y|} = |y|. It follows that |x+y| = |y|.

Lemma 3.4. Let (K, | · |) be a non-archimedian valued field. If (xn) is a sequence
in K such that |xn − xn+1| → 0 as n → ∞ then (xn) is Cauchy.
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Proof. Fix ϵ > 0. Find N such that n > N =⇒ |xn − xn+1| < ϵ. Then, for any
n,m > N , we have

|xn − xm| = |xn − xn+1 + xn+1 − xn+2 + . . .+ xm−1 − xm|
≤ max

i∈[n,m−1]
{|xi − xi+1|} < ϵ

□

Lemma 3.4 simplifies the verification of whether or not a sequence is Cauchy and
provides us with a luxury we do not have with Cauchy sequences in R. The following
examples hopefully provide more insight into what fields with non-archimedean
absolute values look like.

Example 3.5. Recall from Example 3.3 the absolute value | · |p. Let us verify that
this absolute value is non-archimedean. Take a1 = pk1 · b1

c1
, a2 = pk2 · b2

c2
. We know

that |a1|p = p−k1 , |a2|p = p−k2 . WLOG, k1 ≤ k2. Then,

a1 + a2 = pk1 ·
(
b1c2 + pk2−k1b2c1

c1c2

)
In particular, p ∤ c1, c2 implies |a1 + a2|p ≤ p−k1 = |a|p.

Exercise 3.6. Which of the following sequences in Q are Cauchy sequences with
respect to the given absolute value? Prove your answer.

1. (n) w.r.t. |·|3
2.
(
1
n

)
w.r.t. |·|5

3. (5 · 7n) w.r.t. |·|5
There is another rather standard method of thinking about values.

Definition 3.7. A valuation of a field K is a function v : K× → R such that
∀x, y ∈ K

(i) v(xy) = v(x) + v(y)
(ii) v(x+ y) ≥ min(v(x), v(y))

Observe that in the definition we do not evaluate on 0. Conventionally, however,
we set v(0) = ∞. To provide more intuition, consider the following example.

Example 3.8. Define v : Q× → R,

v(x) = v
(
pk · a

b

)
= k

for x = pk · a
b where p ∤ a, b. Here, we can think of the function v as simply

extracting the power of p contained within a rational number.

It turns out these two definition are actually equivalent. More rigorously, for each
absolute value defined on a field K, we can induce a valuation by v : K× →
R, v(x) = − log |x|. Similarly, for each valuation defined on K×, we can induce an
absolute value by fixing some α > 1, setting |0| = 0 and letting |x| = α−v(x).

Exercise 3.9. Verify that the above definitions satisfy the axioms for absolute
values and valuations.
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3.2. Topology of the Valued Field. Unless otherwise specified, K will represent
an arbitrary field for this subsection. From undergraduate analysis class, we know
that any absolute value induces a topology on a field – that is, basic open sets are
of the form B(x, r) = {y ∈ K | |x− y| < r}.

Definition 3.10. Let | · |, | · |′ be absolute values on K. | · |, | · |′ are equivalent if
the induced topologies are the same.

The following proposition simplifies the verification of absolute value equivalence.

Proposition 3.11. Let | · |, | · |′ be non-trivial absolute values on K. The following
are equivalent:

(i) | · |, | · |′ are equivalent
(ii) |x| < 1 iff |x|′ < 1 ∀x ∈ K
(iii) ∃c ∈ R>0 s.t. |x|c = |x|′ ∀x ∈ K

Proof. (i) =⇒ (ii) Observe that |x| < 1 iff xn → 0 w.r.t. | · |. It suffices to show
that xn → 0 w.r.t | · |′ (the other direction is analogous). Fix ϵ > 0. The ball

D(0, ϵ) = {x | |x|′ < ϵ}
is open by assumption, so we can find some ϵ′ ≤ ϵ such that

B(0, ϵ′) = {x | |x| < ϵ′} ⊂ D(0, ϵ)

Find N such that n > N =⇒ xn ⊂ Dϵ(0). Then the same N satisfies n > N =⇒
xn ∈ B(0, ϵ′) ⊂ B(0, ϵ).

(ii) =⇒ (iii) Let a ∈ K× such that |a| > 1. We want to show that log |x|
log |x|′ is

fixed. It suffices to show that for any x ∈ K, we have
log |x|
log |a|

=
log |x|′

log |a|′

Let m
n ∈ Q such that log |x|

log |a| <
m
n . Then, it follows that |a|mn = |x| ⇐⇒ |a|m =

|x|n ⇐⇒
∣∣ xn

am

∣∣ < 1. By (ii), it follows that
∣∣ xn

am

∣∣′ < 1. By the same chain of
equivalences, log |x|′

log |a|′ <
m
n . This holds for any rational number larger than log |x|

log |a| , so

in fact log |x|′
log |a|′ ≤

log |x|
log |a| . The other direction holds analogously.

(iii) =⇒ (i) Clear since |x|c is cts for any c ∈ R > 0. □

This proposition establishes that equivalent absolute values on a field are powers
of each other. This is a crucial property that will become very useful later in the
classification of absolute values on Q. Reverting back to non-Archimedean absolute
values, we find interesting results from the unconventional way these absolute values
are defined.

Lemma 3.12. Let x ∈ (K, | · |) where | · | is non-Archimedean and r ∈ R>0. Define

B(x, r) = {y ∈ K | |y − x| < r}
B(x, r) = {y ∈ K | |y − x| ≤ r}

Then we have:
(i) If z ∈ B(x, r), then B(z, r) = B(x, r).
(ii) If z ∈ B(x, r), then B(z, r) = B(x, r).
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(iii) B(x, r) is closed.
(iv) B(x, r) is open.

Proof.
(i) Let y, z ∈ B(x, r). We want to show y ∈ B(z, r). Observe

|y − z| ≤ max {|y − x|, |x− z|} ≤ r

(ii) is analogous.
(iii) Take y ∈ B(x, r)c. The case |y − x| > r is handled by the △−ineq. For
|y − x| = r, pick r′ < r. Then for all z ∈ B(y, r′) we have

|x− y| = r ≤ max {|z − x|, |z − y|}

but |z − y| < r′ < r and hence |z − x| ≥ r. Therefore, z ∈ B(x, r)c.
(iv) follows analogously. □

Observe that we write B(x, r) instead of B(x, r). Unlike working in R, B(x, r) is
not the closure of B(x, r). The latter is already closed.

Example 3.13. The p-adic numbers provide some intuition for these results. Take

x1 = pn1 · a1
b1

, x2 = pn2 · a2
b2

, x3 = pn3 · a3
b3

and suppose that x2, x3 ∈ B(x1, r). Then v(x1 − x2), v(x1 − x3) > − log(r). In
other words, both x1−x2, x1−x3 have a power of p greater than − log(r). It follows
that their difference x2 − x3 also has a power of p greater than − log(r).

Moreover, I will point out that (iii), (iv) imply that all open and closed balls are in
fact clopen. Note that because of this reason, we actually have B(0, 1) = B(0, 1) ̸=
B(0, 1). With this in mind, let us make the following key definitions.

Definition 3.14. Let (K, | · |) be a non-Archimedean valued field. Let

OK = B(0, 1) = {x ∈ K | |x| ≤ 1} = {x ∈ K | v(x) ≥ 0}

m = B(0, 1) = {x ∈ K | |x| < 1} = {x ∈ K | v(x) > 0}

OK is called the valuation ring of K. It it left to the reader to verify that OK

is a subring of K and that m is the unique maximal ideal of OK (hint: consider
units).

Definition 3.15. A valuation v on K is discrete if v(K×) ∼= Z. If π ∈ K× is such
that v(π) > 0 and v(π) generates v(K×), then π is called a uniformizer.

Note that such a π always exists, since the definition requires v(K×) isomorphic to
Z. As a result, we have the following Lemma.

Lemma 3.16. If v is a discrete valuation on K with uniformizer π, then ∀x ∈ K×,
∃ unique n ∈ Z, v ∈ O×K such that x = πnu.

Proof.
(Existence) Pick n = v(x), u = x

πn and observe that v(u) = 0.
(Uniqueness) Suppose x = πn1u1 = πn2u2. We have the following chain of impli-
cations. Since u1, u2 ∈ O×K , then u−11 , u−12 ∈ OK by definition. Moreover,

0 = v(1) = v(xx−1) = v(x) + v(x−1) =⇒ v(x−1) = −v(x)
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Applied to u1 we see v(u1) ≥ 0 and −v(u1) = v(u−11 ) ≥ 0. Hence, v(u1) = 0. The
same is true for v(u2). In particular, this implies n1 = v(πn1u1) = v(πn2u2) = n2.
Then we have πn1u1 = πn1u2 which implies u1 = u2 by inverting π. □

We end off this section with a proposition that characterizes discretely valued fields.

Proposition 3.17. Let (K, v) be a valued field. The following are equivalent.
(i) v is discrete
(ii) OK is a principal ideal domain (PID)
(iii) OK is Noetherian
(iv) m is principal

Proof.
(i) =⇒ (ii) OK is an integral domain since it is a subring of K. Take ideal I s.t.
0 ̸= I ⊂ OK . Let x ∈ I with v(x) minimal (this is possible since v(OK) ∼= N∪{0}).
xOK ⊂ I since I is an ideal. Now, take any y ∈ I. We know v(y) ≥ v(x) and hence
v(x−1y) = −v(x) + v(y) ≥ 0 =⇒ x−1y ∈ OK . It follows that y = xx−1y ∈ xOK

and hence I ⊂ OK . This proves I = xOK and hence OK is a PID.

(ii) =⇒ (iii) by definition.

(iii) =⇒ (iv) m is finitely generated by hypothesis. Suppose m = (x1, . . . , xn).
Let mini {v(xi)} = v(xj). Then observe that x−1j xi ∈ OK by the same argument
of (i) =⇒ (ii). It follows that xi ∈ xjOK . This holds for all i so in fact m is
generated by (xj). That is, m is principal.

(iv) =⇒ (i) Let m = πOK and v(π) = c. If x ∈ m then v(x) ≥ c =⇒
v(K×) ∩ (0, c) = ∅ =⇒ v(K×) = cZ. □

4. p-adic numbers

In the previous section, p-adic numbers were used to motivate and provide intuition
for many abstract definitions. They will continue to be provide intuition for further
topics such as local fields, and so a more rigorous and substantial excursion to the
basics of p-adic numbers will prove to be helpful.

Definition 4.1. Let | · |p be the absolute value defined on Q in Example 3.2. The
p-adic numbers, or Qp, is the completion of Q with respect to | · |p.

When K = Qp, we say OK = Zp. Zp is also known as the p-adic integers. Let
a, b ∈ Z. Then a

b ∈ Zp for p ∤ b. Moreover, a
b·pn /∈ Zp for n > 0. Can we say

more? The following lemmas and definitions will help us break down Zp and Qp

even more.

Lemma 4.2. Let (an) be a sequence in Qp.
∑∞

n=0 an converges iff limn→∞ an = 0.

Proof. (⇒) is trivial (same proof as R). (⇐) Apply Lemma 3.4. □

Exercise 4.3. Prove: any series in the form
∑∞

n=n0
anp

n with an ∈ {0, . . . , p− 1}
and n0 ∈ Z converges in Qp.

This exercise provides motivation for the following definition.
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Definition 4.4. A p-adic expansion of a ̸= 0 ∈ Qp is

a =

∞∑
n=n0

anp
n

where n0 ∈ Z, an0
̸= 0 and an ∈ {0, . . . , p− 1} ∀n ≥ n0. We call an the coefficients

of the expansion.

For the special case of a = 0, a conventional approach is to allow an0 = 0. In
this case, any expansion starting at any integer z ∈ Z with all coefficients equal to
0 can be viewed as a p-adic expansion of 0. Note that in the case of 0, we do not
have v(0) = n0 since n0 can be completely arbitrary (recall that we set v(0) = ∞).

Example 4.5. Write out the 2-adic expansion of −1. Let −1 =
∑∞

n=n0
an2

n. We
know that n0 = 0 since v(−1) = 0. Moreover,

1 + (−1) ≡ 0 (mod 2) =⇒ 1 + a02
0 ≡ 0 (mod 2) =⇒ a0 = 1

1 + (−1) ≡ 0 (mod 2) =⇒ 1 + 20 + a12
1 ≡ 0 (mod 2) =⇒ a1 = 1

...

1 + (−1) ≡ 0 (mod 2) =⇒ 1 +

n−1∑
k=0

2k + an2
n ≡ 0 (mod 2) =⇒ an = 1

and therefore −1 =
∑∞

n=0 2
n.

Observe how −1 has an infinite but periodic expansion. In fact, the following
property holds.

Theorem 4.6. A p-adic number has an eventually periodic p-adic expansion iff it
is rational.

Proof. See [8], pg. 1-2 or [2], pg. 3-5. □

Try the following exercises to familiarize with p-adic expansions and arithmetic.

Exercise 4.7. Compute:
(i) The 5-adic expansion of 7

2

(ii) 653517 + 321427
(iii) (1222)3 · (1111)3

Note that if a ∈ N, then the p-adic expansion of a is the same as the base p
representation of a. Moreover, it turns out that every p-adic number has a unique
p-adic expansion (see [5], pg. 82-83). Observe that any non-zero x ∈ Zp if and only
if the p−adic expansion of x has n0 ≥ 0. It will be left as an exercise to the reader
to check that Zp is the completion of

{
a
b , a, b ∈ Z | p ∤ b

}
.

Theorem 4.8. Let K = Qp, the p-adic field. Then k = OK/m = Fp where
Fp := Z/pZ.

Proof. Any x ∈ m must have v(x) ≥ 1 and so v(xp−1) ≥ 0. This implies x ∈ pZp.
We also know that m is an ideal so in fact m = pZp. Since OK = Zp, we have
k = Zp/pZp. Therefore, it simply suffices to show that Zp/pZp

∼= Z/pZ.



LOCAL FIELDS AND p-ADIC NUMBERS 9

Take any x ∈ Zp. We know that any such x can be written as
∑∞

n=0 anp
n. Define

π(x) : Zp → Z/pZ by

π(x) = π

( ∞∑
n=0

anp
n

)
= a0

π is a surjective ring homomorphism (verifying this is a matter of addition and
multiplication practice in Qp). The kernel of π is pZp. By the First Ring Isomor-
phism Theorem (see pg. 243, [4] if unfamiliar), we have Zp/pZp

∼= Z/pZ = Fp as
desired. □

Proposition 4.9. In Qp, any open ball is closed (and vice versa). Therefore, Qp

is totally disconnected and Zp is clopen.

Proof. Follows from Lemma 3.12. □

Theorem 4.10. Zp is compact.

Proof. Take (an) ∈ Zp. We can write an =
∑

k=0 a
n
kp

n. Find b0 ∈ {0, . . . , p− 1}
such that there are infinitely many n ∈ N with an0 = b0. Let (a1n) be the subse-
quence of (an) where each a1n0 = b0. Find b1 ∈ {0, . . . , p− 1} such that there are
infinitely many n ∈ N with a1n1 = b1. Let (a2n) be the subsequence of (a1n) where
each a2n1 = b1.

Repeat to construct (akn), bk for each k ∈ N. Now, take the subsequence (ann)
of (an) – that is, the first element is a11, the second a22, etc. We have (ann) →∑∞

k=0 bkp
k. □

Corollary 4.11. Qp is locally compact.

Proof. ∀x ∈ Qp, take the neighborhood x+ Zp. □

I will end this section by commenting that Qp in fact has some very intriguing
“geometric" properties. For example, one can show that any three points in Qp

form an isosceles triangle. Moreover, if this isosceles triangle is not equilateral,
then its base (i.e. the side with a different length from the others) is the shortest
side. For proof and more results, see [7].

5. Complete Valued Fields

Where R is the completion of Q with respect to | · |∞, we saw in the previous section
that Qp is the completion of Q with respect to |·|p. There are in fact many more
properties of Qp or – more generally – complete valued fields that are worthy of
interest.

5.1. Hensel’s Lemma. Let us recall an important definition from ring theory.

Definition 5.1. Let R be a ring. The polynomial ring R[x] is the set of polynomials
with coefficients in R. More formally, ∀f(x) ∈ R[x], we have

f(x) = a0 + a1 · x+ a2 · x2 + . . .+ an · xn

In addition, for this f(x) we define its “formal derivative" f ′(x) as

f ′(x) = a1 + 2a2x+ . . .+ nanx
n−1
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Lemma 5.2. (Hensel’s Lemma) Let (K, | · |) be a complete discretely valued field.
Let f(x) ∈ OK [x] and assume ∃a ∈ OK such that |f(a)| < |f ′(a)|2. Then ∃ unique
t ∈ OK such that f(t) = 0 and |t− a| < |f ′(a)|.

Proof. (Existence) ∃ uniformizer π ∈ OK [x]. Let r = v(f ′(a)). We will use this
to construct a Cauchy sequence that convergers to our desired t. Specifically, we
construct a sequence (tn) in OK such that (i) f(tn) ≡ 0 (mod πn+2r) and (ii)
tn ≡ tn+1 (mod πr+n). Property (ii) will be used to show that the sequence is
Cauchy. Property (i) will be needed to ensure that, at the limit t, we have f(t) = 0
and |t− a| < |f ′(a)|. The following exposition recounts the specifics.

We proceed by induction. Take t1 = a. Observe that f ′(a) = πru. By assumption,
we have

|f(a)| < |f ′(a)|2 =⇒ v(f(a)) > 2v(f ′(a)) = 2r

In particular, v(f(a)) ≥ 2r + 1. It follows that f(t1) = f(a) ≡ 0 (mod π1+2r),
proving (i).

Suppose we have t1, . . . , tn satisfying (i) and (ii). Define

tn+1 = tn − f(tn)

f ′(tn)

We now check that tn+1 satisfies (i) and (ii). By (ii), tn ≡ t1 (mod πr+1). Ob-
serve that the equivalence is preserved under applying f ′. That is, f ′(tn) ≡ f ′(t1)
(mod πr+1). In particular, we know that v(f ′(t1)) = r so

v(f ′(tn)) = r ⇐⇒ f ′(tn) = πr · u for some u ∈ O×K

Moreover, f(tn) ≡ 0 (mod πn+2r) by (ii) =⇒ f(tn) = πk · v for some k ≥ n+ 2r
and v ∈ O×K . Then,

f(tn)

f ′(tn)
= πk−r · v

u

Since k − r ≥ n+ r and v
u ∈ O×K , this means that f(tn)

f ′(tn)
≡ 0 (mod πn+r). In other

words, modulo πn+r, adding or subtracting f(tn)
f ′(tn)

does not a make a difference.
Hence,

tn+1 = tn − f(tn)

f ′(tn)
≡ tn (mod πn+r)

proving that tn+1 satisfies (i).

We will now show (ii). Note that for any polynomial f(x) and any c ∈ R we
can write

f(x+ c) = a0 + a1(x+ c) + a2(x+ c)2 + . . .+ an(x+ c)n

= a0 + a1x+ . . .+ anx
n

+ c
(
a1 + 2a2x+ 3a3x

2 + . . .+ nanx
n−1)

+ c2g(x)

= f(x) + f ′(x) · c+ g(x) · c2

for some polynomial g(x). Therefore,

f(tn+1) = f(tn + c) = f ′(tn) · c+ g(tn) · c2
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where c = − f(tn)
f ′(tn)

. Since f(tn)
f ′(tn)

≡ 0 (mod πn+r), we have c2 ≡ 0 (mod π2n+2r).
For n ≥ 1, this translates to c2 ≡ 0 (mod πn+2r+1). Moreover, observe that by
definition

f(tn) + f ′(tn) · c = 0

It follows that f(tn+1) ≡ 0 (mod πn+2r+1) proving (ii).

(ii) =⇒ (tn) Cauchy. Let t ∈ OK such that tn → t. By (i), f(t) = limn→ f(tn) = 0
(polynomials are cts). (ii) also implies that

a ≡ tn (mod πr+1)

for all n so a ≡ t (mod πr+1) at the limit. In particular, this means that v(t−a) ≥
r + 1 > v(f ′(a)) and hence

|t− a| < |f ′(a)|
This concludes the proof of the existence of t.

(Uniqueness) Suppose t′ also satisfies f(t′) = 0 and |t′− a| < |f ′(a)|. Let δ = t′− t.
Then |δ| = |t′ − t| < |f ′(a)|. Also,

0 = f(t′) = f(t+ δ) = f(t) + f ′(t) · δ + g(t) · δ2

=⇒ |f ′(t) · δ| = | − f ′(t) · δ| = |g(t) · δ2| ≤ |δ|2

where the last inequality follows from the fact that g(x) ∈ OK . But a ≡ x
(mod π1+r) =⇒ f(a) ≡ f(x) ̸≡ 0 (mod π1+r) =⇒ |f ′(x)| = |f ′(a)|. Thus,
if δ ̸= 0 then |f ′(a)| ≤ |δ| which is a contradiction. □

Hensel’s Lemma tells us that whenever we have a “close enough” solution to a
polynomial, we can lift it into a unique solution “nearby”. The following corollary
demonstrates an application of Hensel’s Lemma.

Corollary 5.3.

Q×p /(Q×p )2 ∼=

{
(Z/2Z)2 if p > 2

(Z/2Z)3 if p = 2

Proof. Every non-zero p-adic number x ∈ Q×p can be uniquely written as

x = pn · u with n ∈ Z, u ∈ Z×p

=⇒ Q×p ∼= Z×p × Z
Consequently, Q×p /(Q×p )2 ∼= (Z×p × Z)/(Z×p × Z)2 ∼= Z×p /(Z×p )2 × (Z/2Z). Thus, it
suffices to consider Z×p /(Z×p )2.

Case 1: p > 2
Consider b ∈ Z×p and b̄ ≡ b (mod p) ∈ F×p . I claim that b ∈ (Z×p )2 iff b̄ ∈ (F×p )2.

(⇒) Suppose b̄ ̸∈ (F×p )2. Then x2 − b̄ has no roots in F×p . Suppose for the sake
of contradiction that ∃y ∈ Z×p such that y2 = b. Then y2 ≡ b (mod p) or ȳ2 = b̄
(mod p) which is a contradiction.

(⇐) Suppose b̄ ∈ (F×p )2. Then, ∃y ∈ F×p such that y2 ≡ b̄ (mod p) =⇒ |y2−b̄| ≤ 1
p .



12 HANLEI WEN

Let f(x) = 2x− b. We have |f ′(y)| = |2y| = 1 so we can apply Hensel’s Lemma to
find a s.t. a2 = b. Then

|b| = 1 =⇒ |a| = 1 =⇒ a ∈ Z×p =⇒ b ∈ (Z×p )2

With this, observe that Z×p /(Z×p )2 ∼= F×p /(F×p )2 (homomorphism with a trivial
kernel). Moreover, observe that F×p /(F×p )2 ∼= Z/2Z (hint: (Fp)

2 = ⟨g2⟩ has degree
p−1
2 ). It follows that

Q×p /(Q×p )2 ∼= (Z/2Z)2

Case 2: p = 2
Let b ∈ Z×p and f(x) = x2 − b. Let b ≡ 1 (mod 8). |f(1)|2 ≤ 2−3 < 2−2 =

|f ′(1)|2 =⇒ f has a unique root a with a ≡ b (mod 4) by Hensel’s Lemma.
Moreover, let b ∈ (Z×p )2 and suppose there exists a ∈ Z×p such that a2 = b. It
follows that a ≡ 1 (mod 2), or a = 1 + 2x for some x ∈ Zp. Then,

b ≡ 1 + 4x+ 4x2 (mod 8)

But for all x ∈ Zp, we know that 4(x)(x + 1) ≡ 0 (mod 8) and so b ≡ 1 (mod 8).
It follows that b ∈ (Z×p )2 iff b ≡ 1 (mod 8). Therefore,

Z×p /(Z×p )2 ∼= (Z/8Z)× ∼= (Z/2Z)2

which implies Q×p /(Q×p )2 ≡ (Z/2Z)3. □

This corollary shows that there are a finite number of quadratic extensions of Qp

(in fact, a very small number).

Lemma 5.4. (Hensel’s Lemma Version 2) Let (K, | · |) be a complete discretely
valued field and let f ∈ OK [x]. Let f̄ = f (mod m). If there is a factorization
f̄ = ḡh̄ with ḡ, h̄ ∈ k[x] coprime, then there is a factorization f(x) = g(x)h(x) with
g, h ∈ OK [x], g = ḡ (mod m), h = h̄ (mod m) and deg g = deg ḡ.

Proof. The idea of the proof is to inductively construct gn, hn so that

f = gnhn + πnr r ∈ OK [x]

Start off by taking arbitrary lifts g1, h1 of ḡ, h̄ with deg ḡ = deg g,deg h̄ = deg h.
Since ḡ, h̄ are coprime, find a, b ∈ OK [x] such that ag1 + bh1 ≡ 1 (mod m). Note
that we have

f = g1h1 + πr1

Moreover, ag1 + bh1 = 1− πr so in fact

f = g1h1 + πr1(ag1 + bh1) + π2r1r

Suppose that deg r1b ≤ deg ḡ. Observe now that we can factorize to get

f = (g1 + πr1b)(h1 + πr1a) + π2(r1r − r21ab)

Letting g2 = g1 + πr1b, h2 = h1 + πr1a, r2 = r1r − r21ab, we have f = g2h2 + π2r2
where g2 ≡ g1 (mod π), h2 ≡ h1 (mod π) and deg g2 = deg ḡ.

Now, in the case of deg r1b > deg ḡ, we cannot factorize since then deg g2 > deg ḡ.
To handle this case, write

r1b = qg0 + p =⇒ f = g1h1 + π((r1a+ qh1)g1 + p1) = g1h1 + π(a′g1 + b′h1)

Now, we have deg b′ < deg ḡ and so we can proceed as above. Now, given

f = g2h2 + π2r2
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observe that g2, h2 are still coprime (mod π). It follows that we can repeat induc-
tively to construct a sequence gn, hn with

f ≡ gnhn (mod πn)

gn+1 ≡ gn (mod πn)

hn+1 ≡ hn (mod πn)

and deg gn = deg ḡ. Moreover, observe that the bound deg hn ≤ deg f − deg gn
holds (after dropping out terms in hn with coefficients in πnOK). It follows that
(gn), (hn) converge, let

g = lim
n→∞

gn, h = lim
n→∞

hn

and we obtain the functions that satisfy the statement of the Lemma. □

This version of Hensel’s Lemma tells us that if we can factorize a polynomial with
coefficients in k, the residue field, then we can also factorize any corresponding
polynomial with coefficients in OK , the valuation ring.

Example 5.5. Is x2 + 19x + 11 irreducible (in OQ7
[x])? No. We know k7 = F7

and therefore,
x2 + 19x+ 11 ≡ x2 + 5x+ 4 (mod F7)

Since x2 + 5x + 4 = (x + 4)(x + 1), by Version 2 of Hensel’s Lemma, this implies
that x2 + 19x+ 11 is factorizable.

Hensel’s Lemma Version 2 gives us a very useful corollary.

Corollary 5.6. Let f(x) = anx
n + . . .+ a0 ∈ K[x] where K is a discretely valued

field with a0, an ̸= 0. If f is irreducible, then |ai| ≤ max {|a0|, |an|} for all i.

Proof. Rescale so that maxi |ai| = 1 =⇒ f(x) ∈ OK [x]. We want to show that
either |a0| = 1 or |an| = 1. Suppose not. Let r be minimal such that |ar| = 1.
Then,

f(x) ≡ xr(ar + . . .+ anx
n−r) (mod π)

By Hensel’s Lemma Version 2, we can lift this factorization to a non-trivial factor-
ization over OK , contradicting irreducibility. □

5.2. Teichmüller Lifts.

Definition 5.7. Let R be a ring. The characteristic of R, charR, is the smallest
positive n such that na = 0 ∀a ∈ R. If such an n does not exist, then we say
charR = 0.

Definition 5.8. A ring of characteristic p > 0 is called perfect if the Frobenius
map x 7→ xp is a bijection.

Whereas Hensel’s Lemma allows us to lift a “close enough” solution to an actual
one, the Teichmüller Lift allow us to lift an element of the residue field k = OK/m
uniquely to a element in the ring OK . Formally,

Theorem 5.9. (Teichmüller Lift Theorem) Let (K, | · |) be a complete discretely
valued field such that k = OK/m is a perfect field of characteristic p. Then there
exists a unique map [·] : k → OK such that

(i) a = [a] (mod m)
(ii) [ab] = [a][b]
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Moreover, if charK = p then this lifting [·] is a ring homomorphism. The element
[a] ∈ OK is the Teichmüller lift of a.

Before proving this Theorem, we first need the following Lemma.

Lemma 5.10. Let (K, | · |) have the same properties as Theorem 5.9. Let π ∈ OK

be a uniformizer and let x, y ∈ OK be such that x ≡ y (mod πk) for some k ≥ 1.
Then

xp ≡ yp (mod πk+1)

Proof. Let x = y + uπk with u ∈ OK . Then,

xp =

p∑
i=0

(
p

i

)
yp−i(uxk)i = yp + pπk + upπpk

Since pπk = 0 and p > 1 =⇒ pk > k + 1 it follows that xp ≡ yp (mod πk+1) as
desired. □

Proof. (of Teichmüller Lift Theorem)
Let a ∈ k. For each i ≥ 0, choose a lift yi ∈ OK of a

1

pi and define xi = y
(pi)
i . We

claim that (xi) is a Cauchy sequence and its limit x is independent of our choice of
yi.

By construction, yi ≡ a
1

pi ≡
(
a

1

pi+1

)p
≡ ypi+1 (mod π). By Lemma 5.10, we

have ypi ≡ yp
2

i+1 (mod π2). By induction, yp
r

i ≡ yp
r+1

i (mod πr+1) =⇒ xi ≡ xi+1

(mod πi+1). Then, (xi) is Cauchy. Suppose (xi) → x ∈ OK .

Now, suppose we have another (x′i), generated with a different choice of y′i. Then
(x′i) → x′ ∈ OK . Define

x′′i =

{
xi for i even
x′i for i odd

It follows that (x′′i ) is Cauchy =⇒ (x′′i ) → x, (x′′i ) → x′ =⇒ x = x′. This proves
that x is independent of choice of yi.

Define [a] = x. Then xi = yp
i

i ≡ (a
1

pi )p
i ≡ a (mod π). This holds for all i

and so x ≡ a (mod π), proving (i).

Let b ∈ k and choose ui ∈ OK a lift of b
1

pi . let zi = upi

i . Then limi→∞ zi = [b].

Now, yiui is a lift of (ab)
1

pi . Hence,

[ab] = lim
i→∞

xizi = lim
i→∞

xi lim
i→∞

zi = [a][b]

This shows (ii).

To verify that | · | is a ring homomorphism, it suffices to check [a + b] = [a] + [b].
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We know that ui + yi is a lift of a
1

pi + b
1

pi = (a+ b)
1

pi (charK = p). Therefore,

[a+ b] = lim
i→∞

(ui + yi)
pi

= lim
i→∞

upi

i + yp
i

i

= lim
i→∞

upi

i + lim
i→∞

yp
i

i

= [a] + [b]

as desired.

Finally, let us show that [·] is unique. Let ϕ : k → OK be another map. Then
∀a ∈ K,ϕ

(
a

1

pi

)
lifts a

1

pi . Therefore,

[a] = lim
i→∞

ϕ
(
a

1

pi

)pi

= ϕ(a)

□

Example 5.11. Consider the example K = Qp, [·] : Fp → Zp. Now, take any
a ∈ F×p , [a]p−1 = [ap−1] = [1] = 1. Hence, [a] is a (p − 1)th root of unity. This is
perhaps another way of verifying the fact that ap−1 ≡ 1 (mod p) (Fermat’s Little
Theorem).

There is a corollary that demonstrates the usefulness of the Teichmüller Lift The-
orem. Before stating and proving it, however, we first need a definition.

Definition 5.12. Let K be an arbitrary field. Then

K((t)) =

{ ∞∑
n=n0

knt
n | kn ∈ K,n0 ∈ Z

}

K((t)) is called the formal Laurent series with coefficients in K. We can moreover
define,

K[[t]] =

{ ∞∑
n=n0

knt
n | kn ∈ K,n0 ∈ Z, n0 ≥ 0

}
the formal power series with coefficients in K.

Observe that K((t)) is the field of fractions of K[[t]]. Moreover, for any f(x) =∑∞
n=n0

knt
n ∈ K[[t]], we can set v(f) = n0. It is left as an exercise to the reader

to check that v is in fact a valuation.

Corollary 5.13. Let (K, | · |) be a complete discretely valued field with charK =
p > 0. Assume k = Ok/m is perfect. Then K ∼= k((t)).

Proof. It suffices to show that OK
∼= k[[t]] (since extending to their field of fractions

preserves the isomorphism). Fix π ∈ OK a uniformizer, let [·] : k → OK be the
Teichmüller lift. Define ϕ : k[[t]] → OK by

ϕ

( ∞∑
i=0

ait
i

)
=

∞∑
i=0

[ai]π
i
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Then, ϕ is a ring homomorphism since [·] is. It is a bijection since the kernel is
trivial. That is, we must have

[ai] = 0 ∀i =⇒ ai = 0 =⇒
∞∑
i=0

ait
i = 0

□

5.3. Extensions. Let K/F be a field extension. Then K can be viewed as a vector
space of F . Then [K : F ] = dimF (K) (the dimension of K as a vector space over
F ). Some fairly crucial properties should be noted regarding extensions of complete
valued fields.

Definition 5.14. Let L/K be a field extension. For any x ∈ K, define the linear
transformation mx(y) = xy. Then, we define

NL/K(x) := det(mx)

Example 5.15. Consider the field extension Q(
√
2) =

{
a+ b

√
2 | a, b ∈ Q

}
. Let

x = a+ b
√
2. Then,

mx(y) =

[
a 2b
b a

]
and so NQ(

√
2)/Q = a2 − 2ab.

Theorem 5.16. Let (K, | · |) be a complete non-archimedean discrete valued field
and L/K a field extension of degree n. Then

(i) | · | extends uniquely to an absolute value | · |L on L defined by

|y|L = |NL/K(y)| 1
n

(ii) L is complete w.r.t. | · |L
Aiming to prove this Theorem, we need to first show some preliminary results.

Theorem 5.17. Let (K, | · |) be a complete non-archimedean valued field and V a
finite dimensional vector space over K. Then any two norms on V are equivalent.
In particular, V is complete with respect to any norm.

Proof. V is complete with respect to ||·||sup (since R is complete). Therefore, it
suffices to show || · || is equivalent to || · ||sup. Let e1, . . . , en be a basis. Set
D := maxi ||ei||. Then ||x|| ≤ D ||x||sup. To find the lower bound, perform induc-
tion.

For n = 1, clear. Let n > 1, set Vi = ⟨e1, . . . , ei−1, ei+1, . . . , en⟩. By induc-
tive hypothesis, Vi is complete (and hence closed). Then ei + Vi is also closed ∀i
so S =

⋃n
i=1(ei + Vi) is closed. S does not contain 0, so there exist c > 0 s.t.

B(0, c) ∩ S = ∅. Let 0 ̸= x =
∑n

i=1 xiei and suppose |xi| = ||x||sup. Then 1
xi
x ∈ S

so
∣∣∣∣∣∣ 1

xi
x
∣∣∣∣∣∣ ≥ c. That is, ||x|| ≥ c ||x||sup. □

Definition 5.18. Let K be a field. An element x ∈ K is integral over R if it
satisfies a monic polynomial with coefficients in R:

xn + an−1x
n−1 + . . .+ a0 = 0 (ai ∈ R)

R is integrally closed if it contains all elements in K that are integral over R.
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Lemma 5.19. Let (K, |·|) be a valued field. Then OK is integrally closed in K.

Proof. Take x ∈ OK . Suppose xn+an−1x
n−1+ . . .+a0 = 0. We want to show that

|x| ≤ 1. Suppose not. We know |an−1xn−1 + . . . + a0| ≤ max |aixi| ≤ |x|i < |x|n
which is a contradiction. □

Now we are ready to prove Theorem 5.16.

Proof. We first show that | · |L = |NL/K(·)| 1
n defines an absolute value on L. Prop-

erty (i) comes from the fact that we are working in a field =⇒ mx is invertible iff
x ̸= 0. Property (ii) comes from det(AB) = det(A) · det(B). Therefore, it suffices
to show |x + y|L ≤ max {|x|L, |y|L}. Let OL = {y ∈ L | |y|L ≤ 1}. We claim that
OL is the integral closure of OK in L.

Suppose y ∈ L is integral over OK . Let f(x) = xm + am−1x
m−1 . . .+ a0 ∈ K[x] be

its minimal polynomial. Moreover, the coefficients are sums and products of con-
jugates of y and so ai is integral over OK . In particular, ai ∈ OK so f(x) ∈ OK [x].
Then, |NL/K(y)| = | ± ak0 | ≤ 1 (see [3], pg. 10) which implies y ∈ OL.

Conversely, suppose y ∈ OL and let f(x) = xm + am−1x
m−1 + . . . + a0 ∈ K[x]

be its minimal polynomial over K. By Corollary 5.6, we have |am−1|, . . . , |a1| ≤
max 1, |a0| = 1 (once again, conjugates) so f ∈ OK [x] and thus y is integral over
K.

This proves the claim. In particular, we now know that OL is a subring. Now,
to prove the ultrametric inequality. WLOG assume |x|L ≤ |y|L. Then

∣∣∣xy ∣∣∣
L
≤ 1 so

x
y ∈ OL. But x

y + 1 ∈ OL so |x+ y|L ≤ |y|L.

This shows that | · |L is an absolute value. It is trivial to check that it extends
the absolute on K. If | · |L, | · |′L are norms on L then by Theorem 5.17 they are
equivalent. Thus, | · |L = | · |cL. But both agree on K so c = 1. Moreover, L is
complete with respect to | · |L also by Theorem 5.17. □

Corollary 5.20. Let L/K be a finite extension.
(i) L is discretely valued with respect to |·|L
(ii) OL is the integral closure of OK in L

Proof. (ii) is the claim in the proof of Theorem 5.16. For (i), let v be the valuation
on K and vL its extension to L. Then vL(y) =

1
nv(NL/K(y)) so vL(L

×) ⊂ 1
nv(K

×)
is also discrete. □

6. Local Fields

6.1. Properties of Local Fields. We start off, of course, with the definition of
local fields.

Definition 6.1. Let (K, | · |) be a valued field. K is a local field if it is complete
and locally compact.

A local field that we are already very familiar with is Qp (Corollary 4.11).

Proposition 6.2. Let (K, | · |) be a non-archimedean complete valued field. The
following are equivalent:
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(i) K is locally compact
(ii) OK is compact
(iii) v is discrete and k = OK/m is finite

Proof. (i) =⇒ (ii) Let U be a compact neighborhood of 0. Then ∃0 ̸= x ∈ OK

such that xOK ⊆ U . Since xOK is closed =⇒ compact. It follows that OK is
compact (since OK → xOK is a homeomorphism).
(ii) =⇒ (i) Obvious.

(ii) =⇒ (iii) Let x ∈ m and Ax ⊂ OK be a set of coset representatives for
OK/xOK . Then OK =

⋃
y∈Ax

y+xOK is a disjoint open cover. As OK is compact,
Ax is finite and so OK/xOK is finite =⇒ OK/m is finite.

Suppose v is not discrete. Let there be x = x1, x2, . . . such that v(x1) > v(x2) >
. . . > 0. Then x1OK ⊂ x2OK ⊂ x3OK ⊂ . . . ⊂ OK . This then implies OK/x1OK ⊃
OK/x2OK ⊃ OK/x3OK ⊃ . . . which is not possible since OK/x1OK is finite.

(iii) =⇒ (ii) Let (xn) be a sequence in OK and fix a uniformizer π ∈ OK .
Since πiOK/πi+1OK

∼= K, we have OK/πiOK is finite for all i.
OK/πOK is finite, so there exists a ∈ OK/πOK and a subsequence (x1n)

∞
n=1 such

that x1n ≡ a (mod π) for all n. Since OK/π2OK is finite, ∃a2 and a subsequence
(x2n) of (x1n) such that x2n ≡ a2 (mod π2). Repeat to obtain (xin)n for i = 1, 2, . . .
such that

(1) (x(i+1)n) is a subsequence of (xin)

(2) For any i,∃ai ∈ OK/πiOK such that xin ≡ ai (mod πi)OK .
Moreover, we have ai ≡ ai+1 (mod πi). Now, let yi = xii. (yi) is Cauchy and so
converges. □

What does the topology of the local field look like? To answer this question, let us
first make a definition (that I really could have introduced ages ago).

Definition 6.3. Let (An)
∞
n=1 be a sequence of rings together with homomorphisms

ϕn : An+1 → An. The inverse limit of the system (An, ϕn) is

A := lim
←n

An = {(an) ∈ Π∞n=1An | ϕn(an+1) = an ∀n ∈ N}

The profinite or inverse limit topology is the infinite product topology on the inverse
limit. That is, the basic open set is of the form{

x ∈ lim
←n

An | xi = ai for 1 ≤ i ≤ n
}

where we specify the first n ∈ N coordinates.

In a non-archimedean field (K, | · |), we in fact have

OK
∼= lim
←n

OK/πnOK

under the map OK → lim←n OK/πnOK defined by

x 7→ (x mod π, x mod π2, x mod π3 . . .)

It will be left to the reader to verify that this is indeed a homomorphism.

Proposition 6.4. Let K be a non-archimedean local field. Under the isomorphism
OK

∼= lim←n OK/πnOK the topology on OK coincides with the profinite topology.
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Proof. The usual topology on OK has basic open sets of the form a+πnOK . Check
that this corresponds to the basic open sets of the profinite topology. □

Lemma 6.5. Let K be a non-archimedean local field and L/K a field extension.
Then L is a local field.

Proof. From Theorem 5.16 and Corollary 5.20, we know that L is complete and
discretely valued. By Proposition 6.2, it suffices to show kL = OL/mL is finite. Let
e1, . . . , en be a basis for L as a K-vector space. Then by Theorem 5.17, || · ||sup is
equivalent to | · |L. So there exists r > 0 such that

OL ⊆
{
x ∈ L | ||x||sup < r

}
Take a ∈ K such that |a| ≥ r. Then,

OL ⊆ ⊕n
i=1aeiOK

From Proposition 3.17, we know that OK is Noetherian. Therefore, every submod-
ule of a finitely generated OK–module is finitely generated =⇒ OL is finitely gen-
erated. Suppose OL = (a1, . . . , an). Then kL = (a1 (mod mL), . . . , an (mod mL))
is finitely generated over OK (and in fact over k – check this). But k is finite by
Proposition 6.2 and a finite dimensional vector space over a finite field is finite
=⇒ kL is finite. □

Although quite technical, this Lemma is powerful in that it tells us that extending
a local field retains the “local” property.

6.2. Classification of Local Fields. The next few theorems will attempt to clas-
sify local fields. Let us start with a definition.

Definition 6.6. A non-archimedean valued field (K, | · |) has equal characteristic
if charK = chark. Otherwise, it is called mixed characteristic.

Theorem 6.7. Let K be a non-archimedean local field of equal characteristic p > 0.
Then K ∼= Fpn((t)).

Proof. The statement of this Theorem shouts – Teichmüller lift! In particular, we
want to apply Corollary 5.13. Therefore, we need to show that k is perfect.

WLOG, let k = Fpn (recall from Algebra that all finite fields are of this form).
Recall the definition of the Frobenius map

Frobp : Fpn → Fpn , x 7→ xp

and that it satisfies the following properties.

(i) Frobp(x+ y) = Frobp(x) + Frobp(y)
(ii) Frobp(xy) = Frobp(x) · Frobp(y)
(iii) Frobp(1) = 1

(ii) and (iii) are trivial. (i) becomes obvious once we recall that F has characteristic
p. Combined, this implies Frobp is a ring homomorphism. Observe that xp =
0 =⇒ x = 0 (properties of field). Thus, Frobp is injective. Fpn finite, =⇒ Frobp
is bijective =⇒ Fpn perfect. □
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Although the proof is rather simple (immediately obvious in fact if one knows
that finite fields are perfect), it tells us that all local fields of equal characteristic
have this rather simple and straightforward form! Let us continue our project of
classifying local fields.

Theorem 6.8. (Ostroski’s Theorem) Any non-trivial absolute value on Q is equiv-
alent to either |·|∞ or |·|p.

This is quite an impactful theorem that tells us there are actually only 2 “ways" of
completing Q. Either we complete via the usual absolute value and get R, or we
apply a p–adic absolute value and get Qp. To prove Theorem 6.8, let us first prove
a lemma.

Lemma 6.9. An absolute value on K is non-archimedean iff it is bounded on Z.

Proof.
(⇒) The following facts imply this.

(i) |1| = 1, |0| = 0
(ii) |n| = | 1 + . . .+ 1︸ ︷︷ ︸

n repetitions

| ≤ |1|

(iii) | − n| = |n|
(⇐) Suppose |n| ≤ B for n ∈ Z. Let x, y ∈ K such that |x| ≤ |y|. Then

|x+ y|m =

∣∣∣∣∣
m∑
i=0

(
m

i

)
xiym−i

∣∣∣∣∣ ≤
m∑
i=0

∣∣∣∣(mi
)
xiym−i

∣∣∣∣
≤ (m+ 1)B|y|m

Then |x+ y| ≤ [(m+ 1)B]
1
m |y|. This hold for all m, so |x+ y| ≤ |y|. □

Proof. (of Ostrowski’s Theorem)
Case 1: | · | is archimedean. We fix an integer b > 1 such that |b| > 1 by Lemma 6.9.
Let a > 1 be an integer and write bn in base a. That is,

bn = cmam + cm−1a
m−1 + . . .+ c1x+ c0

where 0 ≤ ci < a and cm ̸= 0. Let B = max0≤c≤a |c|. Then,
|b|n ≤ (m+ 1) ·B ·max {|a|m, 1}

Observe that m ≤ n loga b so |b| ≤ [(n loga b + 1)B] 1n max
{
|a|loga b, 1

}
=⇒ |b| ≤

max
{
|a|loga b,1

}
. Then |a| > 1 and |b| ≤ |a|loga b. We can then switch the roles of

a, b to get |a| ≤ |b|logb a. This gives

log |a|
log a

=
log |b|
log b

:= λ

Then |a| = aλ∀a ∈ Z>1 =⇒ |x| = |x|λ∞∀x ∈ Q. This is precisely the statement for
| · |, | · |∞ equivalent (Proposition 3.11).

Case 2: | · | is non-archimedean. Then we have |n| ≤ 1 for all n ∈ Z as given
by Lemma 6.9. As | · | is non-trivial, there exist n ∈ Z>0 such that |n| < 1. Then
there is a prime factor p of n such that |p| < 1. Suppose there exists another prime
q ̸= p with |q| < 1. Then

vp+ sq = 1
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for some r, s ∈ Z. Then
1 = |1| = |vp+ sq| ≤ max |vp|, |sq| < 1

by ultrametric inequality. This is a contradiction. Then α := |p| < 1 and |q| = 1
for all primes q ̸= p. Then, for any pn a

b ∈ Q, we have
∣∣pn a

b

∣∣ = α−n. In other words,
this uniquely determines | · |. Moreover,∣∣∣pn · a

b

∣∣∣ = α−n =
(
2−n

)logα 2
=
∣∣∣pn · a

b

∣∣∣logα 2

p

□

We can now use Ostrowski’s Theorem to further classify local fields – in particular,
local fields of mixed characteristic.

Theorem 6.10. Let (K, | · |) be a non-archimedean local field of mixed character-
istic. Then K is a finite extension of Qp for some p.

Proof. Suppose charK = p, chark = q where p ̸= q and p > 0. Observe that
charOK = charK = p. Consider the natural homomorphism

ϕ : OK → k

Now, we have p · 1K = 0 =⇒ π(p · 1K) = p · 1k = 0. In other words, chark divides
p. Therefore, chark = p which is a contradiction. It follows that charK = 0.

Then Q ⊆ K. Ok/m is finite, so there must be some n ∈ Z such that n ∈ m.
Then |n| < 1 =⇒ | · | is non-trivial. By Theorem 6.8, | · | is equivalent to | · |p for
some p. K complete =⇒ Qp ⊆ K. Let π ∈ OK be a uniformizer, v a normalized
valuation on K and set v(p) = e. Then we have

OK/pOK
∼= OK/πeOK

Note that OK/πeOK must be finite by Proposition 6.2. Let x1, . . . , xn be a set of
coset representatives for a basis of OK/pOK as a Fp–vector space. Then{

n∑
i=0

aixi | ai ∈ {0, . . . , p− 1}

}
is a set of coset representatives for OK/pOK . Let y ∈ OK . We then get

y =

∞∑
i=0

 n∑
j=1

aijxj

 pi =

n∑
j=1

( ∞∑
i=0

aijp
i

)
xj

Note that we are able to exchange summations due to the nice property given by
Lemma 3.4. Note also that

∑∞
i=0 aip

i converges in Zp so the xj give a generating
set of OK over Zp.

Now, we know that p = v · πe for some v ∈ Ok, e ≥ 1. Hence, π−1 = v · πe−1 · p−1
with e− 1 ≥ 0. Therefore, for any x ∈ K we have

(i) x = uπm for m > 0, in which case x ∈ Ok and so is generated by the xj ’s
over Zp (and hence Qp).

(ii) x = uπ−m for m > 0. Then, x = u(v · πe−1 · p−1)m = uvmπm(e−1)p−m.
Now, uvmπm(e−1) ∈ Ok so x =

∑n
i=0

ai

pmxi =⇒ x is generated by the xj ’s
over Qp.
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This proves K is finite over Qp. □

We end with the classification of archimedean local fields, which is surprisingly
simple.

Theorem 6.11. Let (K, | · |) be an archimedean local field. Then K ∼= R or K ∼= C.

Proof. Since archimedean, |·| is non-trivial. Apply Ostrowski’s Theorem to conclude
that R ⊆ K. Suppose K ̸= R. K must be a finite extension of R (since K is locally
compact). It is a classic result from Galois Theory that all finite extensions of R
are either R itself or isomorphic to C (you do not have irreducible polynomials with
degree ≥ 3). □
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