AN OVERVIEW OF QUASIRANDOM GRAPH SEQUENCES

LEAH VASHEVKO

ABSTRACT. In their 1989 paper Quasi-Random Graphs, Chung, Graham, and
Wilson introduced the notion of quasirandom graph sequences: deterministic
sequences that nevertheless exhibit many of the same properties as random
graphs. Remarkably, these properties are equivalent, so verifying one guaran-
tees all properties of a quasirandom sequence. This paper examines several of
these properties and provides proofs of their equivalence.
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1. INTRODUCTION

Consider the random graph G(n,p), which denotes the graph with n vertices
and each edge is included independently with probability p. As n grows, certain
quantities associated with G(n,p) converge to their expected values.

These quantities may include the number of edges, the average degree, the av-
erage codegree of two vertices, the number of cycles of a given length, the number
of induced subgraph occurrences of a fixed graph of size s < n, the eigenvalues of
the adjacency matrix, and many others.

Chung, Graham, and Wilson [1] introduced the notion of quasirandom graph
sequences. A graph sequence is called quasirandom if it satisfies any one of a
collection of equivalent properties. Remarkably, verifying one of these properties
guarantees all the others.
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By possessing these properties, quasirandom graph sequences “look like” random
graph sequences as the number of vertices grows, even though the graphs may be
completely deterministic.

This paper discusses a portion of their primary results, presents revised versions
of their proofs with commentary, and discusses an example of a quasirandom graph
sequence.

2. ASYMPTOTIC NOTATION

Since the theorem discussed in this paper applies to sequences of graphs, the
statements about properties of quasirandom graph sequences are true as n grows
large. These properties are described with the o(a(n)) notation, where a(n) is some
function of n.

The notation f(n) = o(1) means that f(n) — 0 as n — oco. More generally,

when f(n) = o(a(n)), igzg — 0 asn — oo.
It is common to write f(n) = (1 + o(1))g(n). This means that f(n) is asymp-
totically equal to g(n), so % — 1 asn — oo.

Therefore, if f(n) = o(n?) for some j, f(n) = o(n*) for all k < j.

3. PROPERTIES OF QUASIRANDOM GRAPH SEQUENCES

We will consider the following properties that a sequence of graphs may or may
not satisfy.

In particular, this paper focuses on four key properties of quasirandom graph
sequences which are asymptotically equivalent for sequences with edge density %

While quasirandom graphs may have any edge density, we restrict attention to
sequences with edge density %, i.e. resembling G(n, %)

Let G = (G(n))n>1 denote a sequence of graphs, where G(n) has n vertices.
Property 3.1 (Induced Subgraph Count). Fix M (s) to be some s-vertex graph.
We define N*(M (s)) to be the number of times a labelled copy of M(s) occurs as
an induced subgraph of G(n). Then, this count satisfies

N*(M(s)) = (14 o(1))n*2"().

Property 3.2 (Edge Count and 4-Cycle Count). Let M be some graph. We
define N (M) to be the number of times a labelled copy of M occurs as a subgraph
(non-induced) of G. Therefore, N(C4) is the number of 4-cycles in G.
We also define E(G(n)) to be the number of edges in G(n). Then, we have the
following counts.
2 n

B(G) > (1+0(1)) " and N(C) < (1 +o(1) (5)4 .

Property 3.3 (Codegree Discrepancy). For vertices v,v’, let codeg(v,v’) de-
note |N(v) N N(v')], the number of common neighbors of v and v’. Then the sum
of deviations from the expected codegree satisfies

Z ’codeg(v,v') - g = o(n?).

Property 3.4 (Agreement Discrepancy). For vertices v,v’, define
s(v,v") = {w € V(G(n)) | a(w, v) = a(w,v")}],
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where a(w,v) = 1 if w and v are adjacent, and 0 otherwise. Thus, s(v,v") counts
the number of vertices that are either adjacent to both v and v’ or to neither.

In G(n, ), the expected value of s(v,v’) is 2.

This property asserts that the sum of deviations of s(v,v’) from its expected
value in a random graph is asymptotically small:

Z ‘s(v, V') — %‘ = o(n®).

v,v’

Now, we reach the central theorem of this paper.

Theorem 3.5 (Equivalence of Quasirandom Properties). Let G = (G(n))n>1
be a sequence of n-vertex graphs with edge density 1/2, and let the properties 3.1-3.4
be as defined above. Then, the following are equivalent:

(1) G satisfies the Induced Subgraph Count property (Property 3.1),

(2) G satisfies the Edge Count and 4-Cycle Count property (Property 3.2),
(8) G satisfies the Codegree Discrepancy property (Property 3.3),

(4) G satisfies the Agreement Discrepancy property (Property 3.4).

In other words, if G satisfies any one of these properties, it satisfies all of them and
is quasirandom.

4. EXPECTED OCCURRENCE IN RANDOM GRAPH SEQUENCES

In each of the above properties, a quantity of the quasirandom graph sequence is
asymptotically equivalent to the expected value of that quantity in a random graph
sequence. This is what it means for a quasirandom graph sequence to “look like”
a random graph sequence.

To verify this, we will calculate the expected values of each quantity on the
random graph sequence G = (G(n, §))n>1.

4.1. Induced Subgraph Count. Let M be a graph on s vertices. We want to
find the expected value of N*(M) for the random graph G = G(n, 3).

Since we are counting labelled induced subgraphs, the number of choices of s
labelled vertices is (%) - s!.

Since N*(M) counts induced subgraphs, the adjacency for each pair of vertices
must match M. The number of vertex pairs is (;) Each of the possible edges
matches the adjacency of M with probability % Therefore, the probability that M

is an induced subgraph on a set of s points is 9-(3).
Therefore, the expected value

B () = (7)ot 20
=nn—1)...(n—s+1)- 9~ (5)
= (1+o(1)n*-27(),

Notice that this is exactly the value that quasirandom graph sequences asymp-
totically approach.



4 LEAH VASHEVKO

4.2. Edge and 4-Cycle Count. First, we will find the expected edge count of
G = G(n, %) The total number of pairs of vertices of G is (g) and the probability
that a pair is connected is % Thus

E(E(G)) = (”) % _nn=-1) %
n2

2 2
= (1 +o(1)
TL2
= (1+o(1)2.

4

Next, we will find the expected number of labelled 4-cycles N(Cy).

There are (Z) - 4! ways to choose 4 labelled vertices. Then, since we are not
counting induced 4-cycles, only the 4 outer edges need to be properly connected.
Therefore, a choice of 4 vertices contains a 4-cycle with probability 2~4. Thus,

E(N(Cy)) = (Z) 41974
= (1+o(1))n*-27*

= (o) ().

Notice that this calculation gives asymptotic estimates for the edge and 4-cycle
count, but the statement in Property 3.2 is weaker, requiring only asymptotic upper
and lower bounds.

4.3. Codegree. Let v,v" € V(G). Any vertex w # v,v’ is adjacent to v and v’
with probability i. There are n — 2 other vertices on G, so
n—2

E(codeg(v,v")) = 1 1+ 0(1))%.

This is the value to which the actual codegree of vertices is compared in Prop-
erty 3.3.

4.4. Agreement. Let v,v" € V(G). Any vertex w # v,v" is adjacent to v and v’
with probability %. The probability that w is adjacent to neither v nor v’ is also
%7 since adjacency to each vertex is independent with probability % Therefore, w
counts toward s(v,v’) with probability %

There are n — 2 other vertices on G, so

E(S(u ’U/)) =

”;2 = (1L+o(1)%.

This is the value to which the actual s-value of vertices is compared in Property 3.4.

5. PROOFS OF EQUIVALENCE

In this section, we will prove Theorem 3.5, which states that the quasirandom
properties are asymptotically equivalent. Our strategy is to show a cycle of impli-
cations between the four properties—that each property implies the next—which
will prove that all the properties are equivalent.
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5.1. Induced Subgraph Count Implies Edge and 4-Cycle Count.

Proposition 5.1. If a graph sequence satisfies the Induced Subgraph Count prop-
erty (Property 3.1), then it satisfies the Edge Count and 4-Cycle Count property
(Property 3.2).

Proof. Assume that Property 3.1 is true for all s < n. We will show that the
edge and 4-cycle counts follow from the induced subgraph counts. This follows by
applying Property 3.1 to carefully chosen subgraphs.

Edge count. An edge can be viewed as a 2-vertex graph, so we let M be the
2-vertex graph with an edge as below.

M= 1—2
Then, by Property 3.1, we have that
N*(M) = (1 + o(1))n?2=() = (1 + o(1))n2 - 271
However, since N*(M) counts an induced subgraph for each ordering of the vertices,

it double counts all edges. Therefore, we have
N*(M) n?
B(G() =~ = (1+ o(1)) -
4-cycle count. Since the 4-cycle count N(Cy) does not require that the 4-cycles
be induced, there are four ways that a 4-cycle can appear in an induced subgraph

on 4 vertices, which are shown in Figure 1 below.

4——3 4——3
-] | -]/
1—2 1—2
4—3 4—3
- I\| or-|X]
1—2 1—2

FIGURE 1. All four variants of Cy.

Then, we can count the occurrences of each graph. For each graph, we have the
following count by Property 3.1.
N*(C{f) = N*(CF) = N*(CF) = N*(CP) = (14 o(1))n"2~ ()
= (1+o(1))n*27°.
Then, N(Cy) is the sum of the counts of each type of induced subgraph.

N(Cy) = N*(C{) + N*(CB) + N*(C$) + N*(CP) =4 (1 +0(1))n*27¢
= (1+o(1))n*27*

= (1o (%)’
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d

As noted above, this implication gives equalities for the edge and 4-cycle count,
which is stronger than Property 3.2 requires.

5.2. Edge and 4-Cycle Count Implies Codegree Discrepancy.

Proposition 5.2. If a graph sequence satisfies the Edge Count and 4-Cycle Count
property (Property 3.2), then it satisfies the Codegree Discrepancy property (Prop-
erty 3.3).

Proving this proposition requires using the Cauchy-Schwarz inequality to bound
the sum of the codegree discrepancies using the technique shown below.

Fact 5.1 (Cauchy-Schwarz Inequality). For any real numbers ay,...,a, and

bi,... by,
n 2 n n
(2e0) () (£7)
i=1 i=1 i=1

This proof (and the following ones) rely heavily on the Cauchy—Schwarz inequal-
ity. Two immediate consequences will be useful. Setting b; = 1 yields

n 2 n
(5.3) <Z ai> < nZaf.

Equivalently, we can rewrite this as

(5.4) Za? > % (Z ai> .

Remark 5.5 (Technique for bounding discrepancy sums.). In the following
two proofs, we repeatedly use the Cauchy—Schwarz inequality to bound discrepancy

sums of the form
> lax) - C]|

where a(x) is some quantity associated with a vertex, pair of vertices, or other
combinatorial object, and C' is its expected value in a random graph.

Lemma 5.6. For any collection of values a(x) with expected value C,

(5.7) Z la(z) - C| < VN Za(w)Q - 22 Ca(r) + Z C?

x

where N is the number of terms in the sum.

Proof. Rather than estimating the absolute differences directly, we bound the dis-
crepancy by considering the first and second moments of the quantity «(z), namely

Z a(z) and Z az)?

T
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The sum of values E a(z) shows the average value of the quantity, while the
x

sum of squares Z a(w)2 captures the variance of the quantity.

xr
Applying the Cauchy-Schwarz inequality (5.3) to the square of the discrepancy
sum,

2
lz (@) = C|| <N la(z) - O

where N is the number of terms in the sum. So taking the square root gives

> lalx) —Cl < W[ZI@(%)CQ

2

1
2

=N lZa(x)Q - ZZCa(:U) —&—ZCQ

x

Substituting the values of the first and second moments gives a bound for the
discrepancy sum. ]

Now, we establish the facts necessary to prove the proposition. To find an
estimate for the first and second moments of codegree, we find the number of
homomorphisms from C4 into G, which is closely related to the number of 4-cycles.
The following lemmas establish this connection.

Lemma 5.8. The number of non-ingective labelled homomorphisms from Cy to

G is o(n?).

Proof. Homomorphisms allow for non-injective maps where two opposite vertices
coincide, as shown in Figure 2.

1/ \3 2,4 2
U\ S

1,3

4

)

FIGURE 2. Three possible homomorphic images of Cjy.

Since the non-injective maps have at most three vertices, the number of them is at
most of degree 3 (since the number of ways to choose 3 vertices is of degree 3) and
is therefore captured by a o(n*) term. O

Lemma 5.9. The number of labelled homomorphisms from Cy to G equals

hom(Cy,G) = Z codeg(u, v)?.
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Proof. We count a homomorphism by choosing two vertices to be opposite vertices
in the cycle. Then, we must choose two other vertices adjacent to both v and v. The
number of such common neighbors is precisely codeg(u,v), and because we count

labelled homomorphisms, each pair u,v contributes codeg(u,v)? homomorphisms.
|

Lemma 5.10. The first and second moments of codegree satisfy the asymptotic
estimates

3

;codeg(um) =(1+ 0(1))% and Zcodeg(u7v)2 = (14 0(1)) (g)4.

u,v

Proof. First, we assume the bound on edge count and 4-cycle count from Prop-
erty 3.2.

Then, we notice that the bound on N(Cy) also bounds hom(Cy,G), where
hom(Cy, G) is the number of subgraphs homomorphic to the 4-cycle. Note that
hom(Cy4, G) includes injective maps (Cy itself), and noninjective maps. By Lemma 5.8,
the count of noninjective maps is o(n*). Therefore,

hom(Cy, G) = N(Cy) + o(n) < (1 + (1) (3)4 .

Then, we use Lemma 5.9 to count homomorphisms through codegree and by
Cauchy-Schwarz (5.4) we have that

2
Zcodeg U, v) ni (Zcodeg U,V > ,

as there are n? terms in the sum.
The sum of codegrees can be reindexed as the sum of the squares of degrees, as
shown below

Zcodeg(u,v) = Zdeg(w 2

Instead of fixing vertices u and v and counting their common neighbors, we sum
over all vertices w and count the number of pairs of vertices adjacent to both, which
is deg(w)? ordered pairs.

The sum of degrees on G is twice the edge count of G, since each edge is double
counted:

> deg(w) = 2E(G(n)).
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Bringing everything together, we have the following inequalities:

(14 0(1)) (%) > hom(Cy, G Zcodeg U, v)

2 2
521 % Zcodeg(u,v)) = % <Z deg(v)2>
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= (1+o(1) (2)".

Rearranging, we have the estimates for first and second moments of codegree. [

Now, we can combine these facts to prove Proposition 5.2.

Proof. We apply Lemma 5.6 to bound the codegree discrepancy sum and substitute
the bounds from Lemma 5.10:

Z’codeguv _Z <n[Zcodeguv —chodeguv +Z 1

1
2
u,v

”1 n4 n nS n2 2
519 {(1%(1))24 — o) + nQ}

4 24
o[ - v - 5]
- :;g#;jo(l) - G- e + Z]
=n :Zjo(l) - Z:o(l)] %

=n [o(n‘l)]% =n-o(n?) = o(n®).

The n* terms cancel, leaving o(n?) in the brackets, which gives the desired bound
on codegree discrepancy.

O
5.3. Codegree Discrepancy Implies Agreement Discrepancy.

Proposition 5.11. If a graph sequence satisfies the Codegree Discrepancy property
(Property 3.3), then it also satisfies the Agreement Discrepancy property (Prop-
erty 3.4).
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We prove this proposition in two steps. First, we use the adjacency matrix of
the graph to determine that a small codegree discrepancy implies that the edge
count of the graph matches the expected count from Property 3.2. This allows us
to use Lemma 5.6 to bound the degree discrepancy from the expected value. Then,
we are able to use the codegree discrepancy and degree discrepancy to bound the
agreement discrepancy.

Remark 5.12. For a graph G on n vertices, the adjacency matrix
A= [a(u,v)}

has a(u,v) = 1 if v and v are adjacent, and 0 otherwise. This matrix is symmetric,
which means it has an orthonormal basis of eigenvectors with real eigenvalues.
The powers of A have combinatorial meaning:

uU,v

e (A?),, counts the number of common neighbors of u and v, i.e. codeg(u,v).
e More generally, Tr(A*) counts the number of closed walks of length k.

Thus, the eigenvalues of A encode codegree and edge distribution information.

We use Aq, ..., \, to denote the eigenvalues of the adjacency matrix A. The
eigenvalues are ordered such that A\ > Ay > ... > A,,.

Lemma 5.13. If Z‘codeg(u,v) - %’ = o(n®), then the eigenvalues of A satisfy

u,v

A= (14 0(1))3, A2y .y dn = o(n).

Proof. Let v = (17 1,..., 1)T, the ones vector.

Since A is symmetric, the spectral theorem guarantees an orthonormal basis of
eigenvectors, and the Rayleigh quotient shows that the maximum factor by which
A can stretch a vector is its largest eigenvalue A;. Therefore, we have that A;|v| >
|Av|, and therefore

Mv[2 > |Av]? = (Av, Av) = (A%v, V)
by the linearity of the inner product.
Then, we substitute v and codegree for A? (by Remark 5.12), giving
1
(Av,Av)=(1 .. 1) [codeg(u, v)]

u,v 1
n3
= Zcodeg(u, v)=(1+ o(l))z.

2
Since ||v||? = n, we have A} > (1 + "(1””? 50

n
Now, we can estimate the sum of all of the eigenvalues to find a bound on the

remaining ones. We take the sum of the fourth powers of the eigenvalues, since this
can be expressed as a sum of codegree.
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Since the trace of the adjacency matrix is equal to the sum of the eigenvalues, we
deconstruct the trace of the fourth power into a matrix multiplication and substitute
the codegree per Remark 5.12:

zx* Tr(AY) = Tr(A% - A4?)
= Z A2 . A2)uu = Z Z(AZ)HU(AQ)U“
=3 (472, "= Y codeg(u, v)”

Combinatorically, the discrepancy of the codegree (codeg(u,v) — %) can be at

most %n, so we can loosely bound
USY: ny_ 3y _ (4
uz;(codeg(u,v) - Z) < nuz;(codeg(u,v) - Z) =mno(n’) = o(n*).

We can use this bound and the codegree discrepancy to estimate the eigenvalues:

Z M= Z codeg(u,v)?
= Z ( (codeg(u,v) — 4))

= UZ (71’6 + 2%(codeg(u,v) - g) + (codeg(u,v) — Z)2>

— 2 <’f;> + go(n?’) +o(n%)

ni
= (1 +0(1) 5y
The first eigenvalue is large enough that it accounts for the entirety of the sum
of fourth powers of eigenvalues, which gives a bound on the remaining eigenvalues.
Since the fourth power of the first eigenvalue \; already accounts for the entire
value of this sum, the remaining eigenvalues thus must be small:

)\2, )\3, veny )\n = O(Tl)

Claim 5.14. The edge count can be expressed as half the inner product of the ones
vector v and the adjacency matriz A applied to v:
1
E(G(n)) = §<V,AV>.

This is because the inner product counts the number of 1 entries in the adjacency
matrix, since v is the ones vector, which is the sum of degrees of G. The edge count
is half of the sum of the degrees.

While the Codegree Discrepancy assumption does not directly allow us to apply
the adjacency matrix to a vector, we can diagonalize the matrix and estimate the
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eigenvectors. Then, we can perform the inner product and obtain an estimate for
the edge count.

Lemma 5.15. Under the same assumption of Codegree Discrepancy (Property 3.3),

n2
E(G(n))=(1+o0(1))—.

4
Proof. Since the adjacency matrix is symmetric, it is diagonalizable:
A1
A=U Ut
An

We want to estimate the eigenvectors to find U, which allows us to perform the
inner product in Claim 5.14.

Let {e;} be the orthonormal basis of eigenvectors of A such that Ae; = \;e;. We

define
1
u = %V = Ei a;€i.

We want to estimate the coefficients a;. Since A? is the matrix of codegrees, we
can rewrite it as

n n

o g
A’=|: . | 4FE

n n

T g

where F is an error matrix and we know from the codegree assumption that
Z | B = o(n?).
u,v

Then, we apply A? to the vector u, giving

2 2

A%u = %u—i—Eu = %u—i—w where w = Fu.

Next, we can bound the error vector w.

1
w|* = |Bul* = ~ [Ev[*
n

= %Z (Z ‘codeg(u,v) — ZDZ
Z Z‘codeguv —ZZ
= Z ’codeg(u,v) - 7‘2

= o(n*).

cs1

Applying A2 to u gives,

2 2
A%u = E Afa;e;.
i
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Then, by the definition of w, we expand w in the same eigenbasis:
2

n

K3
Squaring both sides, we can estimate the sum with the bound on w? found above:
n2\>
5o (0-5) a = il = ot
i

Then, we separate the first eigenvalue from the sum and substitute the value from
Lemma 5.13 to have

2”222 2”222 2”222
Z )‘i_Z a; = Al_Z a1+z )\i_z a;

i

From this sum, we see that as, ...,a, = o(1), and thus a1 =1+ o(1).

Finally, we are able to use the bounds on the coefficients to calculate the edge
count.
By Claim 5.14,

E(G(n)) = %Zdeg(u) = %(v,Av} = g<u,Au>.

We substitute the decomposition of u, which gives the desired edge count:

B(G(n) = {3 aier. ) Mases)

- g ((1 +o(1)) [(1 + 0(1))2} o(1) + ;O(n) . 0<1)>
— L+ o)™

Now, we can use the edge count to calculate the degree discrepancy.

Claim 5.16. We have the following estimate for the sum of codegrees

n? n?
Zcodeg(u,v) =7 +o(n?) =1+ o(l))z.
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Proof. Assuming Property 3.3, we can remove the absolute value by the triangle

inequality to have
n

Z [codeg(u,v) - Z} = o(n%).
Rearranging gives the desired count:

n3 n3
> codeg(u, v) = "+ o(n®) = (1+o(1)) -

Lemma 5.17. The degree discrepancy is bounded by o(n?):
3 ’deg(x) - g\ — o(n?).

Proof. By the edge count found above in Lemma 5.15 and that the sum of degrees
is twice the edge count, we have the first moment of degree as:
2

Zdeg (1 +o(1))7;

Then, by the codegree count from Claim 5.16 and reindexing it in terms of
degree, we have the second moment of degree as:
3

Zdeg (1 —I—o(l))z

Then, using the discrepancy sum technique from Lemma 5.6, we substitute the
first and second moment to get:

> ‘deg(x) - g = \/ﬁ\/z deg(z)2 —n Y deg(z) + nZz

_\F\/ )—n((l—i—o(l))f)—i—f

= vny/o(n3) = o(n

We now have all the information to count agreement discrepancy.
Claim 5.18. The s(u,v) can be expressed in terms of degree and codegree as:
s(u,v) =n — deg(u) — deg(v) + 2 codeg(u, v).
Proof. As shown in the table below, s(u,v) is the sum of the bolded terms.

adjacent to v not adjacent to v

adjacent to u codeg(u, v) deg(u) — codeg(u,v)

not adjacent to u | deg(v) — codeg(u,v) | n — deg(u) — deg(v) + codeg(u, v)

]

Finally, we can prove Proposition 5.11.
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Proof. Rearranging the terms from Claim 5.18, we have that
s(u,v) — g = —(deg(u) - %) - (deg(v) — g) + 2(codeg(u,v) — g)
Hence by the triangle inequality,
|s(u,v) = 2| < |deg(u) — Z| + |deg(v) — 2| + 2|codeg(u,v) — 2|.

Now, we sum this inequality over all pairs of vertices:

Z| u,v) 2\<Z|deg ”+Z|deg ) — 2] +2 3 |codeg(u, v) — 2|

_nZ‘deg §‘+nZ’deg x)—%’+22’codeg(u,v)—%|
u,v
=2nZ‘deg |+22‘codegu v 4’

Then, we substitute the bounds on degree discrepancy (Lemma 5.17) and codegree
discrepancy (Property 3.3), which shows that:

Z| (u,v) — 2| < 2n-o(n Y +2-0(n®) = o(n®) + o(n®)

= o(n?).

5.4. Agreement Discrepancy Implies Induced Subgraph Count.

Proposition 5.19. If a graph sequence satisfies the Agreement Discrepancy prop-
erty (Property 3.4), then it satisfies the Induced Subgraph Count property (Prop-
erty 3.1).

We will prove this by induction on the number of vertices in the induced sub-
graph.

Definition 5.20. For some value p, we define the notation p(y = p(p — 1)(p —
2)(p—3)...(p—r+1).

Proposition 5.21. Lett € N and fix M (t) to be a graph with vertices {vy, va, ..., vt }.
Then for r <t, M,(t) is the induced subgraph of M(t) formed by vertices vy, ..., vr.
Then, the count of M,.(t) as an induced subgraph of G is

N*(My(t)) = (1 4 o(1))ngm 2~ G).

We will prove Proposition 5.21 by induction on r, which will prove Proposi-
tion 5.19.
For r = 1, the base case, the induced subgraph count is

1
N*(My () = (1 + o(1))n2~ ) = n.
This is because 1-vertex graph appears n times in G(n) since there are n vertices

in G(n).

Now, we prove the inductive step.
Let @ = (a1,02,...,a,) be a list of r vertices of the larger graph G(n). Let
€ = (€1, €2, ..., €,) where €1, ..., ¢, € {0,1}.
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Definition 5.22. We define, for a fixed copy « of M, (¢) and a given list ¢, the
extension function:

fl,e)={veV |védaand a(v,a;) =¢; forall 1 <j <r}

In other words, f(q,¢€) is the number of vertices in G which are adjacent or not
to each vertex in « as prescribed by e.

Assume that Proposition 5.21 is true for some r. Then, we have

N*(M,41(t)) = Z f(a, €) where €; = a(vy41, ).
a a copy of M, (t)

Now, we can consider f(q,€) as a random variable over the space of all sets «w and
€, of which there are n(,)2" possibilities. Therefore, we can calculate the expected
value of f.

Claim 5.23. The average extension count s
n—r

B(f) = "o

Proof. By the definition of expected value, we sum over all possible values and
divide by the number of possibilities:

1 1
E(f) = g 2@ =1 %:Z:f@“)'

e

First, we see that the sum Z f(a, €) is simply the number of all vertices not in

«, which there are n — r of. Then, the number of ways to choose r vertices for « is
n(. Therefore, we have the following expected value.

1 n—r
n(r)2r N (r) (77, - T) - or

O

The expected value of f(«, €) gives the first moment, but we also want to calculate
the second moment to understand the variance.

Definition 5.24. We define the quantity

Sp =" fla,e)(f(a,e) = 1).
Claim 5.25. S, can equivalently be expressed in terms of the agreement function

as
Sy = Z 5(u, v) ().
uFv

Proof. S, can be interpreted as the sum, over all o and ¢, of the number of ways
to choose two distinct vertices which are adjacent to each vertex of a according to
€. Since we sum over all possible ¢, this is equivalent to counting, for each «, the
number of pairs of vertices that are adjacent or not adjacent to each vertex in « in
the same way.

Equivalently, we can view .S, as the sum over all pairs of vertices u,v of the
number of choices of a for which each vertex in o has the same adjacency relation
to both w and v. In this form, the value of S, depends on s(u,v). g
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Lemma 5.26. We have the following estimate for the S, quantity:
S, = (1+4+o(1))n 227",
Proof. Let 0y, = s(u,v) — 5. Expanding s(u,v)(y and substituting d., we have

s, v) () = (g + m) (g ¥ v — 1) (g v —T+ 1)

”
n\k
=>e(z) ot
k=0
where ¢, is an appropriate constant. Then, by substituting into Claim 5.25,

5=3 S a(y) =3 e (3) Lo
k=0 uz#v k

=0 uFv

r r—1
SRR () R

r—1
n\" n\k ke
= (3) e+ X a(3) Lot
k=0 uFv
From the assumption of Agreement Discrepancy (Property 3.4), we have that
> onk =o(n?).

uFv
Therefore, the second term of S, is contained in o(n"*2). Therefore, we have that:

S, = (1+o(1))n"+227".
O

Finally, we can use S, to estimate the difference between the expected value of
f(a, €) and the actual value.

Lemma 5.27. We can estimate the difference between the expected value of f(a,€)
as the following:

> If(ae) —E(f)] = o(n").

Proof. By Cauchy-Schwarz, we have the following:

2
5.1

< nm2" Y [fla,e) —E(f)?

a,e

=nn2" Y [fla,e) = 2f(a, OE(f) + E(f)?]

> I f(ene) —E(f)

=n(r2" (Z [fle.)’] =2 [fla, OB + ) [E(f)2}> :

By definition,

E(f) = —— flase).

n(r)27”



18 LEAH VASHEVKO

Therefore,

PCRGIED R

o€ e

Thus, the middle and last terms combine:

(2" (Z [flae)?] = 2> BN+ [E(f)2]> = n(2" (Z [fla,e?] =) [E(f)]2> :

e o€ €

Then, we add and subtract a term, then rearrange and substitute S,.:

n(r)zr (Z [f(Oé, 6)2] - Z [E(f)]2> n('r)QT (Z [f(av 6)2} - Z [f(Oé, 6)]

+ [l =) [E(f)]2>

=2’ (Z [/(a,9)* = fla,e)]
NICOIEDY [E(f)}2>

a,e

= n(r)2" (Sr + Y [l = [E(f)]2> :

a,e

Then, we substitute the value of S, and the expected value of f:

(2" (sr + S e -3 [E(f)]2> = 2 ([(L+ o(1)n" 2277 + [y (n = 7)]

— [n(T)2T(n - r)22*2r} )
= n(T)Z’"( [nr+22*r] + [nr+227q o(1) + [ny(n —1)]
- [n(r)(n - T)22_7'] )

=n2" (0(nr+2))

= o(n*2).

Taking the square root, we have

> If(a,e) —E(f)| = o(n™ ).

We denote the difference
Ao, €) = f(a,e) —E(f).
Thus,
n—r

5 + A(q,¢€).

f(a7e) = E(f) +A(aa€) =
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Claim 5.28. Proposition 5.21 is true for r + 1. Namely,

_(rt+1
N* (M1 (8)) = (14 0(1)ng27 (%)
Proof. Substituting the A notation introduced above, we have

NOorao) = X [P s,

a a copy of M,(t)

By the inductive hypothesis, this sum has (1 4+ 0(1))71(,«)27(;) terms. Thus,

N*(Myar (1)) = (1 -+ o(1))ngy2~ ) [”2] Y A
«a a copy of M,.(t)

(3= (5)

we can simplify and substitute the bound on the A error term from Lemma 5.27:

Then, by the fact that

41

N* (M1 (1)) = (1+ 0(1)ngiy2” (3D + o(n7 )

7‘+1)

= (1+o(1)ngn2 ("
Therefore, the induction is completed, proving Proposition 5.19.

We have established the following cycle of implications:

Property 3.1 ——| Property 3.2

Property 3.4 Property 3.3

Therefore, we can conclude that all four properties are equivalent, completing the
proof of Theorem 3.5. O

6. EXAMPLE OF QUASIRANDOM GRAPH SEQUENCE

We now give a concrete example of a quasirandom graph sequence, namely the
Paley graph sequence defined using finite fields and quadratic residues.

Definition 6.1. Let p be a prime with p =1 (mod 4), and let F,, denote the finite
field of order p.

Definition 6.2. An element a € F,; is called a quadratic residue if there exists
b € F) such that a = b2. Otherwise, a is a quadratic nonresidue. Let R denote the
set of quadratic residues.

Definition 6.3. The Paley graph @Q, is the graph with vertex set numbered by F,
in which z,y € IF, are adjacent if and only if x — y is a quadratic residue in [F,,.
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The assumption p = 1 (mod 4) guarantees that —1 is a quadratic residue, and
therefore adjacency is symmetric: x — y is a quadratic residue if and only if y — x
is a quadratic residue. This is because the quadratic residues are a group: since
Z Y = —1, if the numerator is a quadratic residue, the denominator is, and vice
versa.

Theorem 6.4. The sequence of Paley graphs (Qp), indexed by primes p = 1
(mod 4), is quasirandom.

Proof. We verify that this sequence is quasirandom by checking Property 3.4 (Agree-
ment Discrepancy).
Fix vertices z,y and choose a third vertex z. We claim that a(z,2) = a(y, z) if
and only if
T —z
y—z
If both x — z and y— z are quadratic residues, their quotient is a quadratic residue
since the quadratic residues form a multiplicative subgroup. Also, note that if both
x —z and y — z are quadratic nonresidues, their quotient is also a quadratic residue.
Therefore, for each quadratic residue 3 € R, we can solve

€ R.

x—z B x—y
i z=19y— o1
Thus, there is a bijection between vertices z where a(x,z) = a(y,z) and the
set of quadratic residues R\ {1} (since 1 causes the denominator to be 0) Since
there are 251 elements in the set of quadratic residues, there are exactly 252 3 such
vertices z.
Therefore, the agreement function is

p r=Y
S(w7y):{p—3 .

2

= T #y

Then, we calculate the agreement discrepancy

z,y
:ZI ip‘i

2

= % + gp(p —1) = o(p®).

This is the correct bound, so Property 3.4 is satisfied, and thus the sequence of
Paley graphs is quasirandom. O

H_P‘

Despite being entirely deterministic, the Paley graphs, among many other exam-
ples, are quasirandom and therefore exhibit many of the same properties as random
graph sequences.
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