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Abstract. This is an expository paper discussing the foundations of measure

theory and Lebesgue integration, the resulting theory of Lp spaces, and ap-

plications of these developments in the analysis of convergence of numerical
methods. Major theorems covered include the Carathéodory criterion, mono-

tone convergence, Fatou’s lemma, dominated convergence, Hölder’s inequality,

Minkowski’s inequality, the completeness of Lp, and approximation results in
Lp.
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1. Notation

In this section, we develop some essential notation for later use.
Given a set A ⊂ Rn, we write the characteristic function (also known as the

indicator function) of A over Rn as

χA(x) =

{
1, x ∈ A

0, x /∈ A
.

Additionally, we denote the power set of A as 2A.
Given a sequence of sets An, we say An increases to A, denoted as An ↑ A,

if An ⊂ An+1 for all n and ∪∞
n=1An = A. Similarly, we say An decreases to A,

denoted as An ↓ A, if An+1 ⊂ An for all n and ∩∞
n=1An = A.

Given a sequence an, we write the limit superior as

lim sup an = inf
m≥1

sup
m≥n

am.

Similarly, the limit inferior is

lim inf an = sup
m≥1

inf
m≥n

am.
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Given a function f , we let f+ = f where f > 0 and f+ = 0 everywhere else. We
let f− = −f where f < 0 and f− = 0 everywhere else.

2. Foundational Measure Theory

In this section, we construct Lebesgue measure, one of the fundamental results
of measure theory and the basis for our later analyses. In doing so, we also provide
a more generalized method for the construction of measures.

It is important to realize that not all sets are well-behaved. When we eventually
construct measures, it is undesirable that the functionality of those measures be
corrupted by pathological or generally ill-behaved subsets of our target set. Thus,
we require some sort of edifice to ensure that our measure is only applied to sets
that behave somewhat predictably. This is the logic behind the introduction of the
algebra, or more typically the σ-algebra.

Definition 2.1. Given a set X, we say that a collection of subsets of X, denoted
A, is an algebra on X if the following properties are satisfied:

(1) X ∈ A.
(2) For all A ∈ A, we have AC := X \A ∈ A.
(3) For any finite sequence of sets A1, · · · , An ∈ A, we have ∪n

i=1Ai ∈ A.

Properties (1) and (2) together imply ∅ ∈ A. Moreover, we can show that an
algebra is also closed under finite intersections. We choose a new sequence, namely
Bi = X \ Ai, and apply property (2) to see that Bi ∈ A ∀i. We can then use
property (3) on the Bi, in conjunction with De Morgan’s laws, to obtain the result.

Definition 2.2. An algebra A is called a σ-algebra if Definition 1.1 (3) extends to
countable unions (and therefore, by De Morgan’s laws, to countable intersections).

We would like to be able to construct a measure, that is, a scalar-valued function
defined on a σ-algebra providing some notion of the size–such as length in one-
dimensional space or area in two-dimensional space–of sets in the σ-algebra.

Definition 2.3. Thus, we aim for a measure m defined on an input space and a
corresponding σ-algebra, denoted (X,A), to satisfy these properties:

(1) m(∅) = 0.
(2) For all sets A ∈ A, m(A) ≥ 0.
(3) For a pairwise-disjoint sequence of sets {Ai} ⊂ A, it holds that

∞∑
i=1

m(Ai) = m(∪iAi).

Property (3) above is known as countable additivity. Note that with the physical
notions measure is intended to represent, it is intuitive that the measure of a disjoint
union should equal the sum of the individual measures. These three properties alone
give measures most of the practicality we desire, with the specific functionality
depending on the precise measure one chooses to use.

However, constructing measures is often notably difficult. We cannot be certain
that all sets of interest are measurable–that is, there exist pathological sets for
which no meaningful measure, satisfying countable additivity, exists. Thus, we
postpone the construction of concrete measures (including Lebesgue measure) until
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after introducing some preliminary notions, which will be used in conjunction with
the σ-algebra to solve this problem.

We first introduce the outer measure, which is fundamental in the construction
of measures.

Definition 2.4. Given a set X, we say a function µ : 2X → [0,+∞] is an outer
measure if:

(1) µ(∅) = 0.
(2) For subsets A and B, A ⊂ B implies µ(A) ≤ µ(B).
(3) For an infinite sequence of subsets {A1, A2, · · · } ⊂ 2X , we have

µ(∪iAi) ≤
∑
i

µ(Ai).

Property (3) also holds for finite sequences of subsets: to represent a length-n
sequence, we set An+1, An+2, · · · = ∅ and employ property (1). Also, note that the
outer measure does not necessarily preserve countable additivity, but is character-
ized by the less strict countable subadditivity.

Remark 2.5. A measure also retains the property of countable subadditivity over
any collection of subsets contained in the σ-algebra the measure is defined on.

The conditions for an outer measure are weaker than those for a measure (observe
that countable additivity implies Definition 2.4 (2)). However, unlike the measure,
the outer measure is defined on all subsets of the set X. By restricting this aspect
of the outer measure, one can attain a measure.

Definition 2.6. We say a set A is measurable with respect to the outer measure
µ, or that A is µ-measurable, if for all subsets B ⊂ X, we have

µ(B) = µ(B ∩A) + µ(B ∩AC).

Intuitively, this means that A is µ-measurable if breaking any arbitrary subset B
into two disjoint components defined by A yields countably-additive behavior with
respect to µ. One may describe this as a certain well-defined behavior of A with
respect to µ.

As such, this route to constructing a measure is as follows: we define an outer
measure over the entire power set 2X , with relatively weak properties, and then
limit that outer measure to the subset of 2X consisting of well-behaved sets to
obtain a measure. The only potential oversights, the astute reader may notice,
are that we have not shown that the aforementioned subset (call it A) of 2X is
necessarily a σ-algebra, and that we have not shown that countable additivity will
hold when we restrain the outer mesaure to A. A powerful theorem known as the
Carathéodory criterion resolves this discrepancy.

Theorem 2.7. Carathéodory Criterion.

(1) For an outer measure µ defined on 2X for some set X, the restriction of µ
to the collection A of µ-measurable subsets of X is a σ-algebra.

(2) The restriction of µ to A is itself a measure.
(3) Any subset N ⊂ X with µ(N) = 0 is µ-measurable and is therefore an

element of A.

Proof. We provide a brief sketch of the proof; the full proof may be found in [1],
on pages 26-28.
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To prove (1), we first show that A is an algebra by showing that it satisfies the
criteria of Definition 2.1. Note that since XC = ∅, we have that for any B ⊂ X,

µ(B ∩X) + µ(B ∩ ∅) = µ(B) + µ(∅) = µ(B).

Definition 2.1 (1) is thus verified. Confirming Definition 2.1 (2) follows from the
symmetry of the definition of a µ-measurable set. Lastly, to verify Definition 2.1
(3), we note that, using induction, it suffices to show that if two sets A1, A2 are
in A, then their union is in A. This is achievable by writing the arbitrary subset
B ⊂ X as

B = (B ∩ (A1 ∪A2)) ∪ (B ∩ (A1 ∪A2)
C)

= (B ∩A1) ∪ (B ∩AC
1 ∩A2) ∩ (B ∩AC

1 ∩AC
2 ),

further decomposing the expression B ∩AC
1 using the definition of µ-measurability,

and applying the countable subadditivity of µ.
This allows us to show that A is closed under countable unions, and is therefore

a σ-algebra. Then, applying the countable subadditivity of the measure and the
definition of the measurable sets allows us to see that if A = ∪iAi, then we have

µ(A) =

∞∑
i=1

µ(Ai).

This shows that µ is a measure when restricted to A (as this restriction allows us
to invoke the definition of the measurable sets). Lastly, to prove (3), we write a
subset E as (E ∩N)∪ (E ∩NC). We then use the fact that µ(N) = 0 to show that
µ(E ∩N) = 0: then, since (E ∩NC) ⊂ E, we have that

µ(E ∩N) + µ(E ∩NC) = µ(E ∩NC) ≤ µ(E).

However, subadditivity yields the reverse inequality, which means that the two sides
are equal. Since E was arbitrary, this means N ∈ A by definition, and the proof is
thereby complete. □

We can now use this pipeline to construct the Lebesgue-Stieltjes measures, a
special case of which is Lebesgue measure, over the real line. Lebesgue measure
provides a notion of the “size” of sets and yields a useful integration method, which
we will see later on. It is applicable to a wide variety of sets, but, notably, not all
sets.

Denote the length function over a half-open interval (a, b] as l((a, b]). (We use
half-open intervals because they “stack” onto each other cleanly–imagine adding
(b, c] onto (a, b]). We write

l((a, b]) = α(b)− α(a)

where α is some increasing, right-continuous function. Thus, l is nonnegative.
We define our outer measure on a set X as

µ(E) = inf
{∑

i

l(Ai) : ∪iAi ⊃ E
}

where Ai = (ai, bi] ∀i.

Proposition 2.8. Given a length function l, the above function µ is an outer
measure, and thus if m is its restriction to µ-measurable sets, m is a measure.
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Proof. Observe that µ ≥ 0 since l ≥ 0.
Defintition 2.4 (1) is quickly verified for µ, as we do not need any intervals to

cover the empty set, so µ(∅) = 0.
Take subsets A ⊂ B ⊂ X. Then any group of intervals Ai that covers B also

covers A, so µ(A) cannot exceed µ(B). Definition 2.4 (2) is thus verified.
To verify Definition 2.4 (3), we first fix ε > 0. We then observe that the half-

open intervals of the form (a, b] cover all of R. Therefore, for any set Ai ⊂ X, we
can cover Ai with the union of some intervals Ii1, Ii2, · · · . By the fact that

µ(Ai) = inf
∑
j

l(Iij),

where the infimum is over the set of intervals, we can find a set of intervals Iij such
that ∑

j

l(Iij) ≤ µ(Ai) +
ε

2i
.

Since each Ai is contained in ∪jIij , we have ∪iAi ⊂ ∪i ∪j Iij . Therefore, by the
fact that µ(∪iAi) is the infimum, over all choices of intervals Iij , of∑

i

∑
j

l(Iij),

we can write the following inequality.

µ(∪iAi) ≤
∑
i

∑
j

l(Iij)

≤
∑
i

[
µ(Ai) +

ε

2i

]
=

[∑
i

µ(Ai)
]
+ ε.

Since ε was arbitrary, we conclude that Definition 2.4 (3) holds for µ. It follows
immediately by the Carathéodory criterion that if m is the restriction of µ to µ-
measurable sets, then m is a measure. □

Which measure m we obtain from this process depends on the choice of function
α. When α is the identity transformation, m is called Lebesgue measure.

It thus follows that the Lebesgue measure of an interval is its length, and the
Lebesgue measure of a single point (and thus of a countable set) is 0.

Going forward, we will use m to denote Lebesgue measure. Additionally, we
define a measure space (X,A, µ) to be a set X equipped with a σ-algebra A and a
measure on A, namely µ.

3. The Lebesgue Integral

Another useful application of measures is to functions. In this section, we first
lay out what it means for a function to be measurable, and then construct the
Lebesgue integral and analyze its useful properties. The Lebesgue integral will be
fundamental to the later analysis of Lp functional spaces.

Definition 3.1. Assume we have a σ-algebra A on a set X. We say a function
f : X → R is measurable with respect to A if for any number a ∈ R, it holds that

{x : f(x) > a} ∈ A.
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Proposition 3.2. If the functions f and g are measurable with respect to a σ-
algebra A, then so are the functions cf, f + g,−f, fg,max(f, g), and min(f, g),
where the max and min are taken pointwise.

The proof of this proposition may be found on pages 44-45 of [1].
Intuitively, measurability of f essentially means that f is well-behaved on X

relative to A. One can also interpret it as meaning that f ’s behavior is compatible
with the structure of information that A allows one to observe on X (whether
f(x) > a for some a).

In order to integrate a function f over a set A ⊂ X, we first need a means to
approximate f in a simple, feasible way.

Definition 3.3. A simple function ϕ : X → R is a function that can be written in
the form

ϕ(x) =

n∑
i=1

aiχEi(x)

where χ is the indicator function from Section 1, the Ei are measurable sets, and
ai ∈ R for each i.

Proposition 3.4. If f ≥ 0 is measurable on X (with σ-algebra A), then there exists
a sequence of increasing simple functions ϕn(x) such that ϕn → f pointwise on X.

Proof. For every n, we assemble the sets Ain as follows:

Ain =
{
x : f(x) ∈

[ i− 1

2n
,
i

2n

)}
with n2n of these sets (1 ≤ i ≤ n2n) for each n. One can imagine the Ain as n2n

evenly-sized, adjacent, disjoint baskets, covering all values of f in [0, n). Addition-
ally, construct Bn := {x : f(x) ≥ n}. Bn is equal to X \ (∪iAin).

Then, we let

ϕn(x) =
[ n2n∑

i=1

i− 1

2n
χAin

(x)
]
+ nχBn

.

Regardless of the input x, exactly one of the 1+n2n indicator functions appearing
in ϕn(x) will not be zero. Specifically, the χBn will “activate” if f(x) ≥ n, and
otherwise only the χAin resulting in the closest downward approximation of f(x)
will be nonzero.

So, ϕn(x) = n if f(x) ≥ n, and it approximates f(x) with a maximal error of
2−n if f(x) < n. Thus, ϕn → f as n→ ∞. □

We are now ready to define the Lebesgue integral of a simple function, from
which the definition of the Lebesgue integral of a generic measurable function f
will follow. The convergent approximations shown to exist by Proposition 3.4 will
be vital.

Definition 3.5. We define the Lebesgue integral of a simple function ϕ (defined
on a measure space (X,A, µ)) as∫

ϕdµ =

∫ n∑
i=1

aiχEi
dµ =

n∑
i=1

aiµ(Ei)
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Conventionally, if ai = 0 and µ(Ei) = ∞, we say ai · µ(Ei) = 0.
It is intuitive that the integral of a simple function with respect to Lebesgue

measure is the (weighted) sum of the “lengths” of the Ei. Considering that the
ai determine the values taken on by ϕ where χEi

̸= 0, this integral is the area (or
equivalent, depending on the dimension) under the function ϕ on the set X.

For the following two definitions, assume we have a measure space (X,A, µ).

Definition 3.6. If f ≥ 0 is measurable, then we write∫
fdµ = sup

{∫
ϕdµ : 0 ≤ ϕ ≤ f

}
where ϕ is restricted to be a simple function.

For generic measurable f , recall the definitions of f+ and f− from Section 1.
We write ∫

fdµ =

∫
f+dµ−

∫
f−dµ.

Definition 3.7. A measurable function f is said to be integrable if
∫
|f |dµ <∞.

We now show some useful properties regarding the Lebesgue integral.

Proposition 3.8. The following hold on a measure space (X,A, µ) for measurable
functions f and g:

(1) If f ≤ g, then
∫
fdµ ≤

∫
gdµ.

(2) For c ≥ 0, ∫
cfdµ = c

∫
fdµ.

(3) If µ(N) = 0, then
∫
N
fdµ = 0.

Proof. (1) Let Cf be the collection of all simple functions that are ≤ f . Let Cg be
the collection of all simple functions ≤ g. Since f ≤ g, we have Cf ⊂ Cg.

Let C = Cg \ Cf .
Thus, ∫

gdµ = sup
ϕ∈Cg

∫
ϕdµ = sup

ϕ∈Cf∪C

∫
ϕdµ ≥ sup

ϕ∈Cf

∫
ϕdµ =

∫
fdµ.

(2) Note that if f is measurable, then so is cf . Moreover, if there is a sequence
of simple functions {ϕn} such that ϕn → f (as Proposition 3.4 decrees there is),
then the sequence {ψn} defined by ψn = c · ϕn converges to cf . Hence,∫

cfdµ =
{
sup

∫
ϕdµ : 0 ≤ ϕ ≤ f, ϕ simple

}
= lim

n→∞

∫
ψndµ

= lim
n→∞

∫
cϕndµ

= lim
n→∞

c

∫
ϕndµ = c

∫
fdµ.

(3) For each simple function ϕ, let the Ai be measurable subsets of N .∫
N

fdµ = sup
{∫

N

ϕdµ : 0 ≤ ϕ ≤ f, ϕ simple
}
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= sup

∫
N

{ n∑
i=1

aiχAi

}

= sup
{ n∑

i=1

aiµ(Ai)
}
= sup

{ n∑
i=1

0
}
= 0

where Ai ⊂ N =⇒ µ(Ai) = 0 ∀i by countable subadditivity. □

We now cover four major theorems fundamental to analysis of the Lebesgue
integral, the first of which is the monotone convergence theorem.

Theorem 3.9. Monotone Convergence Theorem.
Suppose our measure space is (X,A, µ). Suppose fn is a sequence of nonnegative

µ-measurable functions with f1 ≤ f2 ≤ · · · pointwise and with

lim
n→∞

fn = f.

Then,

lim
n→∞

∫
fndµ =

∫
fdµ.

Proof. By Proposition 3.8 (1), we know that
∫
fndµ is increasing. Let L be its

limit; then, L ≤
∫
fdµ since each

∫
fndµ is less than or equal to

∫
fdµ.

Thus, we are done if we can show that
∫
fdµ ≤ L.

Let c be arbitrary in (0, 1) and let ϕ :=
∑N

i=1 aiχEi
be a simple function that is

≤ f pointwise.
For each value of n, define

An :=
{
x : f(x) ≥ c · ϕ(x)

}
.

An increases to the whole space X as n → ∞ because fn increases to f , which
means that for each value of n we have∫

X

fndµ ≥
∫
An

fndµ ≥ c

∫
An

ϕdµ = c

∫
An

N∑
i=1

aiχEi

= c

m∑
i=1

aiµ(Ei ∩An)

where the last expression comes from the fact that the integral is taken over An,
not Ei, so the χEi

(x) only contributes to the integral when x ∈ An.
We know that An ↑ X,n→ ∞. Therefore, sending n→ ∞ we get (Ei∩An) → Ei

for each i. Hence,

L = lim
n→∞

∫
fndµ ≥ c

m∑
i=1

aiµ(Ei) = c

∫
ϕdµ.

Since c was arbitrary in (0, 1), we get L ≥
∫
ϕdµ, and when we take the supremum

over all ϕ obeying the constraint we get

L ≥
∫
fdµ

and the equality is thus proven. □
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We next show an important property of the Lebesgue integral which has not been
proven yet, namely its linearity. Many of the following proofs would be extremely
cumbersome, if not impossible, without this property. Additionally, linearity is
extremely useful because it allows us to treat Lebesgue integration as an algebraic
operation–this will be vital in the theory of Lp spaces.

Theorem 3.10. If f, g are either (integrable) or (nonnegative and measurable),
then the Lebesgue integral is linear. That is,

∫
(f + g)dµ =

∫
fdµ+

∫
gdµ where µ

is a measure.

The proof of this theorem may be found on pages 9-10 of [2].

Theorem 3.11. Fatou’s Lemma.
Suppose {fn} is a sequence of nonnegative measurable functions on a measure

space (X,A, µ). Then, ∫
lim inf
n→∞

fndµ ≤ lim inf
n→∞

∫
fndµ.

Proof. Let gn = infi≥n fi. By the definition of lim inf, the gn are increasing and
limn→∞ gn = lim infn→∞ fn. By the definition of infimum, gn ≤ fi ∀i ≥ n. By
Proposition 3.8 (1), this implies that

∫
gndµ ≤

∫
fidµ ∀i ≥ n. Hence∫

gndµ ≤ inf
i≥n

∫
fidµ.

Taking the limit as n → ∞ on both sides and using the monotone convergence
theorem on the left side gives the desired result. □

Fatou’s lemma, while quite a major result, indeed serves as a lemma for the proof
of a variety of other theorems. The first of these is the dominated convergence
theorem, which will give us the necessary conditions to be able to conclude that
a sequence of integrals converges to the integral of the limit of the sequence of
integrands. This will be very useful when we later analyze convergence in Lp.

Theorem 3.12. Dominated Convergence Theorem.
Suppose that {fn} is a sequence of measurable functions on a measure space

(X,A, µ), and that there exists an integrable function g, such that |fn(x)| ≤ g(x)
for all n and all x. Additionally suppose that fn → f pointwise. Then,

lim
n→∞

∫
fndµ =

∫
fdµ.

Proof. For all n, since |fn| ≤ g for all x, it follows that g + fn ≥ 0. Hence Fatou’s
lemma applies for the sequence hn := g− fn ≥ 0 on (X,A, µ). Moreover, since f is
the limit of the fn, we have (using linearity) that∫

fdµ+

∫
gdµ =

∫
(f + g)dµ ≤ lim inf

n→∞

∫
(fn + g)dµ = lim inf

n→∞

∫
fndµ+

∫
gdµ.

The inequality comes by Fatou’s lemma.
We assumed g to be integrable, so its Lebesgue integral with respect to µ is

finite. We thus subtract that quantity from the inequality∫
fdµ+

∫
gdµ ≤ lim inf

n→∞

∫
fndµ+

∫
gdµ
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to get ∫
fdµ ≤ lim inf

n→∞
fndµ.

Similarly, the constraints of the theorem imply g − fn ≥ 0 pointwise for all n.
Exploiting this by the same steps as previously (via Fatou’s lemma, linearity, and
the integrability of g), we attain the inequality∫

(−f)dµ ≤ lim inf
n→∞

∫
(−fn)dµ.

Recognizing that the right side is equal to − lim supn→∞
∫
fndµ and negating the

entire inequality yields ∫
fdµ ≥ lim sup

n→∞
fndµ,

which, together with the previous result, proves the theorem. □

4. Lp Spaces

Having developed the Lebesgue integral, we now desire a robust framework to
analyze the behavior of functions, integration and integrability, and convergence.
The Lp vide useful mechanisms that allow us to perform these functional analyses.

Definition 4.1. Given a measure space (X,A, µ), we say a condition holds almost
everywhere on X, abbreviated as a.e., if it holds on X \ N where N ⊂ X and
µ(N) = 0.

Definition 4.2. Given a measure space (X,A, µ), we say µ is σ-finite if there exist
sets E1, E2, · · · such that Ei ∈ A for all i, µ(Ei) <∞ for all i, and X = ∪iEi.

Definition 4.3. Moreover, a measure space is called a σ-finite measure space if
the measure is σ-finite.

Throughout this section, we assume that any measure µ is σ-finite.
We start by defining the Lp norm, which provides a notion of the overall “size” or

“magnitude” of a function–although the precise meaning varies with the exponent
p. For example, the L2 norm has useful applications in physics and mathematics,
as it is an example of the notion of an inner product space.

Definition 4.4. Assume we have a σ-finite measure space (X,A, µ). For a finite
value of p, namely 1 ≤ p <∞, we write the Lp norm of a function f as

∥f∥p = p

√∫
|f |pdµ.

For p = +∞, we write the corresponding norm (L∞ norm) of f as

∥f∥∞ = inf{M ≥ 0 : µ(x : |f(x)| ≥M) = 0}.

We let the functional space Lp be the set of equivalence classes that can be
constructed from all functions whose Lp norm is finite. Two functions are defined
to be in the same equivalence class if they are equal almost everywhere on the space
X. By the definition of “almost everywhere” and the countable subadditivity of
the measure, this means that all functions in an equivalence class are equal almost
everywhere. One can think about Lp simply as the space of functions whose Lp

norm is finite; however, attempting to rigorously construct that functional space
results in a fundamental issue with the Lp norm.
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Remark 4.5. Note that L1 is exactly the set of equivalence classes of all Lebesgue
integrable functions!

However, a norm must satisfy certain properties, so we have not yet shown that
the Lp norm is actually a norm on the space Lp.

It is clear that all but one of the norm properties are satisfied for the Lp norm:
∥f∥p = 0 when f = 0 a.e., ∥f∥p > 0 when f is not identically 0 a.e., and for
any α ∈ R it holds that ∥αf∥p = |α|∥f∥p. These are all quickly verified from the
definitions of the Lp norm for finite and infinite p.

Toward showing that the Lp norm obeys the triangle inequality, we first show
another useful inequality, namely Hölder’s inequality.

Definition 4.6. For a given value of p, we let q be the quantity in [1,+∞] solving

1

p
+

1

q
= 1.

Conventionally we say that 1/∞ = 0. This q is henceforth referred to as the
conjugate exponent of our p.

Theorem 4.7. Hölder’s inequality.
On a measurable space (X,A, µ), let 1 ≤ p ≤ ∞ and let q be the conjugate

exponent of p. Then for A-measurable functions f and g we have∫
|fg|dµ ≤ ∥f∥p · ∥g∥q.

When p = 2 this inequality becomes the well-known Cauchy-Schwarz inequality.

Proof. If p = ∞ (and thus q = 1), then |f | ≤ M := ∥f∥∞ almost everywhere.
Therefore, we have ∫

|fg|dµ ≤M

∫
|g|dµ = ∥f∥∞∥g∥1

by Proposition 3.8 (1). The inequality is symmetric with respect to p and q, so the
case p = 1, q = ∞ is proven the same way.

Now assume 1 < p < ∞. If ∥f∥p = 0 or ∥g∥q = 0, then either f or g is equal to
0 almost everywhere, meaning that

∫
|fg|dµ = 0. Both sides of the inequality thus

evaluate to 0.
Therefore, we now assume ∥f∥p, ∥g∥q > 0. We also assume both norms are finite,

because if either one were infinite the inequality would trivially hold.
Define F (x) = |f(x)|/∥f∥p and G(x) = |g(x)|/∥g∥q. By construction, showing

that
∫
FGdµ ≤ 1 is equivalent to proving the theorem.

Since the function h(x) = ex is everywhere-convex on R, it holds for all a ≤ b
and all λ ∈ [0, 1] that

eλa+(1−λ)b ≤ λea + (1− λ)eb.

We select λ = 1
p , which makes 1 − λ equal to 1

q , and we let a = p logF (x), b =

q logG(x). Substituting into the convexity inequality above yields

F (x)G(x) ≤ F (x)p

p
+
G(x)q

q
.

Using Proposition 3.8 (2) and the linearity of the integral, integrating both sides
yields ∫

F (x)G(x)dµ ≤ 1

p

∫
F (x)pdµ+

1

q

∫
G(x)qdµ
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=
1

p

∫ ( |f(x)|
∥f∥p

)p

+
1

q

∫ ( |g(x)|
∥g∥q

)q

=
1

p∥f∥pp
∥f∥pp +

1

q∥g∥qq
∥g∥qq =

1

p
+

1

q
= 1.

□

We can now use Hölder’s inequality to prove Minkowski’s inequality, which is
the last step toward establishing the Lp norm as a norm. However, a brief lemma
is first required.

Lemma 4.8. If p ∈ [1,+∞) and a, b ≥ 0 it holds that

(a+ b)p ≤ 2p−1(ap + bp).

Proof. We assume that a > 0 and p > 1 since the cases where a = 0 and where
p = 1 are trivial.

Let x = b/a: then, after dividing both sides by ap, we realize that showing that

f(x) := 2p−1xp − (1 + x)p ≥ 0

for all nonnegative x will imply the lemma. Using the assumption that p > 1,
convexity arguments for the function g(x) = xp yield the inequality

1p + xp

2
≥

(1 + x

2

)p

.

Multiplying both sides by 2p shows that x ≥ 0 =⇒ f(x) ≥ 0. □

Theorem 4.9. Minkowski’s Inequality.
If p ∈ [1,+∞] and f, g are measurable functions on a measure space (X,A, µ),

then

∥f + g∥p ≤ ∥f∥p + ∥g∥p.

Proof. First let p = ∞. Then if ∥f∥∞ =Mf and ∥g∥∞ =Mg, let Af = {x : f(x) ≥
Mf} and Ag = {x : f(x) ≥ Mg}. Both sets have measure 0 by the definition of
“almost everywhere.” Then the set A := {x : |f(x)+g(x)| ≥Mf +Mg} is contained
in the union of Af and Ag. Therefore,

µ(A) ≤ µ(Af ∪Ag) ≤ µ(Af ) + µ(Ag) = 0.

The L∞ norm of f + g is therefore bounded above by Mf +Mg = ∥f∥∞ + ∥g∥∞.
The numerical triangle inequality tells us that |f + g| ≤ |f |+ |g| pointwise, and

so using Proposition 3.8 (1) proves the case where p = 1.
We now assume 1 < p <∞ and additionally assume that neither ∥f∥p nor ∥g∥p

is infinite, and that ∥f + g∥p > 0, as otherwise the inequality would trivially hold.
If we let a = |f(x)| and b = |g(x)| in Lemma 4.8 and integrate both sides using

Proposition 3.8 (1), we get∫
|f + g|pdµ ≤ 2p−1

(∫
|f(x)|pdµ+

∫
|g(x)|pdµ

)
.

Therefore we know that ∥f + g∥p is finite.
Observe that

|f + g|p ≤ |f ||f + g|p−1 + |g||f + g|p−1
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since we can factor |f + g|p−1 out of the right-hand side and apply the numerical
triangle inequality. Hence, letting q be the conjugate exponent of p and applying
Hölder’s inequality gives∫

|f + g|p ≤ ∥f∥p
(∫

|f + g|q(p−1)
)1/q

+ ∥g∥p
(∫

|f + g|q(p−1)
)1/q

= (∥f∥p + ∥g∥p)∥f + g∥p/qp

since q(p − 1) = pq − q = p by the conjugate exponent equation. Recognizing the

left side as ∥f+g∥pp and dividing through by ∥f+g∥p/qp gives the desired inequality.
□

We have now proven that Lp is a normed functional space. Moreover, the fol-
lowing equality condition holds.

Remark 4.10. Equality holds in Minkowski’s inequality if and only if af = bg for
real numbers a, b ≥ 0.

A full proof of this condition may be found in pages 8 and 9 of [3].
Next, it will be important to prove that Lp is complete. This will be essential

for the later justification of many important convergence arguments.

Theorem 4.11. If 1 ≤ p ≤ ∞, then the functional space Lp, when taken to be a
metric space, is complete.

Prior to embarking upon the proof of this theorem, we observe that it makes
sense to view Lp as a metric space, with the Lp norm serving as the distance
function: in Lp, |f − g| = ∥f − g∥p. Since the Lp norm is nonnegative, symmetric
(as |f − g| = |g − f |), and ∥f − g∥p = 0 when f = g a.e., this setup satisfies the
intuitive requirements of a metric space.

Proof. We first prove for a fixed p < ∞. Let fn be a Cauchy sequence in Lp. We
are tasked with showing that its limit is in Lp. Since fn is Cauchy, we know that
for every εj > 0, there exists nj > 0 such that

∥fn − fm∥ < εj

for all n,m ≥ nj . Let each εj = 2−j−1, and additionally assume WLOG that
nj ≥ nj−1 (if not, we can redefine nj = nj−1 + 1 and the above inequality will still
hold).

We set n0 = 0 and f0 to be the constant 0 function. Then, we propose the limit
function of the Cauchy sequence as

f =
∑
m

[
fnm

− fnm−1

]
.

To show that this series converges absolutely (a precondition for f being in Lp),

we first set gj(x) =
∑j

m=1 |fnm(x) − fnm−1(x)|, which clearly increases with j
pointwise. We let the limit, if it exists, be denoted by g(x). Then, we have (by
Minkowski’s inequality) that

∥gj∥p ≤
j∑

m=1

∥fnm − fnm−1∥p
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≤ ∥fn1
− fn0

∥p +
j∑

m=2

2−(m−1)−1

≤ ∥fn1
∥p +

1

2
by our condition that n0 = 0 and thus fn0(x) = 0.

Now Fatou’s lemma yields that∫
|g(x)|pdµ ≤ lim

j→∞

∫
|gj(x)|pdµ = lim

j→∞
∥gj(x)∥pp ≤

(
∥fn1

(x)∥+ 1

2

)p

<∞

where we know that ∥fn1
∥ is finite by the definition of the ni and their correspon-

dence with our chosen εi.
Hence the limit function g(x) is finite almost everywhere, so the series converges

absolutely almost everywhere. This means that the proposed limit function f is
well-defined almost everywhere. On the measure-zero set where the absolute con-
vergence does not hold (which may or may not be the empty set), set f = 0.

From the definition of f ,

f(x) = lim
J→∞

J∑
m=1

[
fnm(x)− fnm−1(x)

]
= lim

J→∞
fnJ

(x)

since fn0
= 0. Now, Fatou’s lemma yields the following: for any j,

∥f − fnj
∥pp =

∫
|f − fnj

|pdµ ≤ lim inf
J→∞

∫
|fnJ

− fnj
|pdµ

= lim inf
J→∞

∥fnJ
− fnj

∥pp ≤ 2−(j+1)p.

This means that as j → ∞, we have ∥f − fnj
∥p → 0. Thus, the subsequence

we built from the nj values converges under the Lp metric (equivalent to the Lp

norm). We aim to show that the whole sequence converges.
Fix ε > 0; then there exists N ∈ N such that ∥fn − fm∥p < ε when n,m ≥ N .

Note that this implies that ∥fnj
− fm∥p < ε as long as we force j large enough that

nj ≥ N . Since f has been established to be the limit of fnj
, we once more employ

Fatou’s lemma and obtain that

∥f − fm∥pp ≤ lim inf
j→∞

∥fnj
− fm∥pp

=⇒ ∥f − fm∥p ≤ lim inf
j→∞

∥fnj − fm∥p < ε

since we are taking j to ∞. Thus, fm → f in the Lp metric as m→ ∞.

Now we consider p = ∞. Observe that we have already shown, using the εj
argument, that the absolute convergence of an arbitrary series in the Lp norm
implies the completeness of Lp. Thus, let the sequence of functions fn be such that∑

∥fn∥∞ <∞.

In other words, the series converges absolutely in L∞. Now let

Gn =

n∑
k=1

|fk|

and G = limn→∞Gn.
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By Minkowski’s inequality,

∥Gn∥∞ =
∥∥∥ n∑

k=1

|fk|
∥∥∥
∞

≤
n∑

k=1

∥∥∥|fk|∥∥∥
∞

=

n∑
k=1

∥∥∥fk∥∥∥
∞
<∞.

Since |fk| ≤ ∥fk∥∞ almost everywhere by the definition of the L∞ norm, it follows
that ∥G∥∞ <∞ almost everywhere.

Now let F =
∑

k fk. Convergence of F guarantees completeness of L∞.
We aim to use the Cauchy criterion to show that F converges in the L∞ norm

by showing that the partial sum sequence is Cauchy. Observe that by Minkowski’s
inequality,

0 ≤
∥∥∥F −

n∑
k=1

fk

∥∥∥ =
∥∥∥ ∞∑

k=n+1

fk

∥∥∥
∞

≤
∞∑

k=n+1

∥fk∥∞.

The last sum must go to zero by the “divergence test” since fk converges absolutely
in L∞. Hence, F is Cauchy and therefore convergent, which means that L∞ must
be complete.

□

5. Convergence

A particularly helpful use of the Lp spaces is to analyze the convergence of
approximation methods. In various applications, mathematicians, scientists, and
analysts aim to attain, as closely as possible, the behavior of a given function. Since
the Lp distance metric gives a clear notion of the “distance” between functions, it is
an excellent method of quantifying the error of approximation. Another application
is quadrature, or the numerical integration of functions. As we will see later on,
particularly intuitive for these approaches are the L1 and L2 norms.

As such, in this section, we first motivate the use of our theorems. We then
prove the density of simple functions in Lp for p < ∞ and develop useful results
including the Pythagorean identity in Lp approximation. Then, we end with error
bounds in Lp and Parseval’s identity.

We first lay out some different forms of convergence which will be useful for
further analysis.

Definition 5.1. On a measure space (X,A, µ), we say a sequence of measurable
functions fn converges almost everywhere to a measurable function f if f − fn → 0
as n→ ∞ everywhere on X \N , where µ(N) = 0.

Definition 5.2. Let 1 ≤ p < ∞. On a measure space (X,A, µ), we say that a
sequence of measurable functions fn converges to a measurable function f in Lp if∫

|f − fn|pdµ→ 0 ⇐⇒ ∥f − fn∥p → 0

as n→ ∞.

This form of convergence is intuitive when we consider the argument we used to
prove the convergence of the arbitrary Cauchy sequence in Lp under the Lp norm,
or metric, in the previous section. It means that “the Lp metric between f and fn
vanishes as n→ ∞.”

Next, we aim to show that the set of simple functions is dense in Lp(R) (with p <
∞). This will validate the numerical approximation of integrals by step functions,
a form of quadrature.
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Proposition 5.3. On a measure space (X,A, µ) and for p ∈ [1,∞), if µ is σ-finite,
then the set of simple functions is dense in the space Lp.

Proof. We let f be a function in Lp. Then, we want to find a sequence of simple
functions ϕn such that ∥f − ϕn∥p → 0 as n → ∞, which will show that the set of
simple functions is dense in the Lp “metric”.

We define a sequence of truncated functions fn, by the equation

fn =

{
f(x), |f(x)| ≤ n and x ∈ An

0, else

where An is a measurable subset of X with µ(An) < ∞ for all n and An ↑ X.
Then, it follows that for all n, |fn(x)| ≤ |f(x)|, and additionally that fn(x) → f(x)
almost everywhere on X (since the An increase to X).

Note that p is finite. We can thus use the dominated convergence theorem
with |f |p as the dominating function, and taking the pth root yields that ∥f −
fn∥p → 0 almost everywhere. Therefore, it suffices to show that we can accurately
approximate each fn using simple functions with an error that vanishes as n→ ∞.

We fix some n. Then, we note that fn is, by construction, bounded with finite
support (zero outside some set An of finite measure). We proceed by letting m ∈ N
be the number of simple functions we want to use to approximate fn. (The error will
vanish as m→ ∞.) Then, we partition the range interval [−n,+n] into K := 2nm
disjoint intervals of length 1/m by the following construction:

Ik =
[
− n+

k − 1

m
,−n+

k

m

)
, k = 1, 2, · · · ,K.

We add the point {n} to IK , and then the Ik cover [−n, n].
Next, define the set Ek as the preimage of the interval Ik. Since every point in

each Ik maps back to the corresponding Ek, we have that ∪kEk = An. Additionally,
the Ek are clearly disjoint.

We can now define the simple functions based on n and the fineness of the
intervals 1/(2m). We let

ϕnm(x) =

K∑
k=1

akχEk
(x)

where each ak is the midpoint of the corresponding interval Ik. Note that since
∪kEk = An, this function is also zero outside of An because all the indicator
functions are zero.

Fix some interval width 1/m. If the point x is in Ej for some j, then it is not in
any other Ek since these sets are disjoint. Therefore, ϕnm(x) = aj . Additionally,
this means that fn(x) ∈ Ij by construction. Since aj is the midpoint of Ij , we have

|fn(x)− ϕnm(x)| = |fn(x)− aj | ≤
1

2m

for all x ∈ An. Moreover, the approximation error is 0 outside of An since both
functions are equal to 0.

Now we can show that f can be approximated–with respect to the Lp norm–with
simple functions, and thus that the set of simple functions is dense in Lp.

We have shown that ∥f−fn∥p → 0 a.e.. Therefore, given ε > 0, fix n large enough

that ∥f − fn∥p < ε/2. Then, choose m > p
√
µ(An)/ε. It follows by Proposition 3.8
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(1) and (2), and the fact that p ≥ 1, that

∥fn − ϕnm∥p = p

√∫
An

|fn(x)− ϕnm(x)|pdµ ≤ p

√∫
An

( 1

2m

)p

dµ

=
1

2m
p
√
µ(An) < ε/2.

Finally, we apply Minkowski’s inequality to see that

∥f − ϕnm∥p ≤ ∥f − fn∥p + ∥fn − ϕnm∥p <
ε

2
+
ε

2
= ε.

□

Given this result, we are now ready to prove a more sophisticated approxima-
tion result. This result will give us the notion of a “best” approximation, and is
more precise than the previous result, which only informs us that it is possible to
approximate a function in Lp with step functions. The result to come is one that
will be foundational for tools such as least-squares regression and Fourier series.

Definition 5.4. We say a subsetK ⊂ Lp is convex if for any two functions f, g ∈ K
and any λ ∈ [0, 1], it holds that the combination

λf + (1− λ)g ∈ K.

This is notably similar to the notion of convexity in finite-dimensional real spaces.

For example, if we fix a finite basis of functions g1(x), g2(x), · · · , gn(x) ∈ Lp,
then the span {∑

i

aigi(x) : ai ∈ R
}

is convex, since taking a linear combination of two elements of the set produces
another element of the set (by the definition of a span).

Definition 5.5. We say a subset K ⊂ Lp is closed if it contains all of its limit
points. In other words, K is closed if it holds that

fn ∈ K ∀n, ∥f − fn∥p → 0 as n→ ∞ =⇒ f ∈ K.

These notions are necessary for the following result, which is restricted to closed,
convex subsets of Lp.

Theorem 5.6. Given a fixed p ∈ [1,∞), a function f ∈ Lp, and a closed, convex
subset K ⊂ Lp, there exists a unique function g ∈ K–known as the best approxima-
tion function of f–that minimizes ∥f − g∥p.

Proof. Let

d = inf
h∈K

∥f − h∥p.

We want to show that d is attained by exactly one function g.
Since d is the infimum, there exists a sequence gn such that gn ∈ K for each n

and ∥f − gn∥p descends to d as n→ ∞. We aim to show that {gn} is Cauchy and
thus convergent.

Since ∥f −gn∥ → d, we know that for every ε > 0, there exists a natural number
N such that for all n ≥ m > N we have

|∥f − gn∥p − d| < ε.
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Now, we note that by Minkowski’s inequality and Remark 4.10, we have∥∥∥gn + gm
2

− f
∥∥∥
p
=

∥∥∥gn
2

− f

2
+
gm
2

− f

2

∥∥∥
p

<
1

2
∥gn − f∥p +

1

2
∥gm − f∥p

as long as gn ̸= gm. Since the value of ∥gi − f∥p is bounded from below by d and
we know that |∥gm− f∥p−d|, |∥gn− f∥p−d| < ε, we must have gn → gm, N → ∞.
This means that the sequence {gn} is Cauchy.

Next, since Lp viewed as a metric space is complete (Theorem 4.11), we have
that gn must converge by the Cauchy criterion. We call the limit g, and we then
have ∥f − g∥p = d.

Moreover, since K is closed, it contains all its limit points (or limit functions,
since Lp is a functional space). Since g is the limit of {gn}, we have that g ∈ K.

We now show uniqueness of g by a similar argument to before. Assume that there
exists another function g∗ such that ∥f − g∗∥p = d. Then, we have by Minkowski’s
inequality that∥∥∥f − g + g∗

2

∥∥∥
p
<

1

2
∥f − g∥p +

1

2
∥f − g∗∥p =

d

2
+
d

2
= d

as long as f − g and f − g∗ are not directly proportional with the same sign. Then,
we have generated a function–in K, by convexity–that achieves an Lp distance from
f that is less than d, which is a contradiction.

If the functions are directly proportional, it means that ∃c ≥ 0 such that

f − g = c(f − g∗).

If c = 0, it implies that g = f , which means f itself is the best approximating
function (which can happen, if f ∈ K). Then d = 0, and only a function f∗ that
is equal to f a.e. (and therefore in the same equivalence class as f) can attain
∥f − f∗∥p = d. Therefore, we proceed assuming c > 0 and d > 0.

Observe that ∥f − g∥p = ∥f − g∗∥p = d. Hence, by Proposition 3.8 (2) we have

∥f − g∥p = p

√∫
|f − g|pdµ

= p

√∫
|c|p|f − g∗|pdµ

= |c| p

√∫
|f − g∗|pdµ

= |c| · ∥f − g∗∥p

Hence d = |c| ·d =⇒ |c| = 1. Since Remark 4.10 dictates c ≥ 0, c must be equal to
1, which implies f − g = f − g∗ =⇒ g = g∗ a.e.. Uniqueness of g is thus proven.

□
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6. Conclusion

We have built out the notion of a measure using the notions of outer measure
and measurable sets. The Carathéodory criterion provides a condition to pass from
an outer measure to a measure. Following this recipe for constructing measures,
we successfully constructed Lebesgue measure.

Next, we built the Lebesgue integral, and showed several useful properties, in-
cluding approximation by simple functions and monotonicity. Important theorems
include the monotone convergence theorem, Fatou’s lemma, and the dominated
convergence theorem. These theorems are crucial for various other proofs in the
following sections.

We then built the Lp functional spaces, with 1 ≤ p ≤ ∞, by first defining
the Lp norm and then showing several of its properties. We proved that the Lp

norm satisfies the norm properties by proving Hölder’s inequality and Minkowski’s
inequality, the latter of which functions as the triangle inequality for Lp. Next,
we showed Lp to be a complete metric space under the Lp norm, by an argument
relying on Fatou’s lemma and Minkowski’s inequality.

Finally, we discussed convergence of approximation methods in Lp. We first
showed that on a σ-finite measure space, the set of simple functions is dense in
Lp. Using this result, we showed that under certain conditions, given a function
f ∈ Lp, there is necessarily a unique function g serving as the “best approximation”
of f under the Lp norm. These results may be further built upon when discussing
the Lp error estimate, convergence of specific numerical methods such as linear
interpolation, and Fourier series, the latter of which arise from orthogonal projection
from Lp onto a finite-dimensional subspace.
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