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Abstract. The Peter-Weyl theorem asserts the denseness of the matrix co-

efficients of a locally compact group G in the Hilbert space L2(G). In this
paper, we first present construction of a Haar measure, then build prerequisite

material concerning functional analysis and representation theory, and finally,

prove the the Peter-Weyl theorem.
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1. Introduction

In 1927, Hermann Weyl and Peter Fritz proved the denseness of the matrix
coefficients of a compact Lie group G in C(G), as well as the reducibility of any
unitary representation of G [1]. Following this, in 1933, Alfréd Haar developed the
Haar measure, a translation-invariant, countably additive, nontrivial measure on
a locally compact group G [2]. Haar’s results had several immediate applications:
John von Neumann solved Hilbert’s fifth problem on compact groups in an article
directly succeeding Haar’s [3]. In addition, Haar’s measure was used to extend the
Peter-Weyl theorem to the setting of compact groups.

We begin by proving existence and uniqueness of the Haar measure up to a scalar
multiple on locally compact groups. After, we develop the prerequisite knowledge
in representation theory and functional analysis, proving the spectral theorem for
compact operators. Finally, we bring everything together, culminating in the Peter-
Weyl theorem concerning the denseness of matrix coefficients in L2(G).
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This paper assumes familiarity with topology, group theory, linear algebra and
measure theory. We freely use Fubini-Tonelli theorem (proven in [4]) the Arzelá-
Ascoli theorem (proven in [6]), and more. In addition, the Riesz-Markov represen-
tation theorem is stated and used without proof. See [4] for a detailed proof.

2. Preliminaries

2.1. Topological Preliminaries.

Definition 2.1 (Cc(X)). Let X be a locally compact Hausdorff space. The set of
all complex (resp. real)-valued continuous functions with compact support on X is
denoted by Cc(X) (resp. CR

c (X)).

Definition 2.2 (Positive Cone). Let X be a locally compact Hausdorff space. The
positive cone, denoted C+

c (X), is given by

C+
c (X) = {f ∈ CR

c (X) : f(x) ≥ 0 for all x ∈ X}.
Lemma 2.3. Let X be a locally compact Hausdorff space, let U ⊆ X be open,
and let K ⊆ U be compact. Then there exists an open set N with compact closure
such that K ⊆ N ⊆ clX(N) ⊆ U .

Proof. Let Y be the one-point compactification of X. Since X is a locally compact
Hausdorff space, Y is normal. Since U is open in X, U is open in Y . Since K is
compact in X, it is compact in Y . Since Y is Hausdorff, K is closed. Since Y is
normal, there exists an open set V in Y such that K ⊆ V and clY (V ) ⊆ U . Then
V ⊆ X, so V is open in X.

Let x ∈ K. Since X is locally compact, there exists an open neighborhood Nx

of x such that clX(Nx) is compact. Then Nx ∩ V is an open neighborhood of x.
Furthermore, clX(Nx ∩ V ) is compact and contained in U . By the compactness of

K, there exists finitely many points {x1, ..., xn} such that K ⊆
n⋃

i=1

(Nxi
∩ V ). Set

N =
n⋃

i=1

(Nxi
∩V ). Then clX(N) =

n⋃
i=1

clX(Nxi
∩V ). Since clX(Nxi

∩V ) is compact

and contained in U for each i, clX(N) is compact and contained in U . In addition,
N is open as it is the union of open sets. Gathering, we see clX(N) is compact and

K ⊆ N ⊆ clX(N) ⊆ U. □

Theorem 2.4. Let X be a locally compact Hausdorff space. Suppose U ⊆ X is
open and K ⊆ U is compact. Then there exists a continuous function f : X → [0, 1]
with compact support such that supp f ⊆ U and f(K) = {1}.
Proof. Let Y be the one-point compactification of X. By the previous lemma, there
is an open set N with compact closure such that

K ⊆ N ⊆ clX(N) ⊆ U.

Observe K and Y \ N are disjoint closed sets in Y . By Urysohn’s Lemma, there
exists a continuous function h : Y → [0, 1] such that h(Y \N) = {0} and h(K) =
{1}. Let f = h|X . Then f : X → [0, 1] is continuous and f(K) = {1}. In addition,
{x ∈ X : f(x) ̸= 0} ⊆ N . Thus,

supp f ⊆ clX(N) ⊆ U.

Since clX(N) is compact and supp f is closed, f has compact support. □
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Definition 2.5 (Topological Group). A topological group G is a group that is also
a T1 topological space such that the maps (x, y) 7→ xy and x 7→ x−1 are continuous.

A remarkable fact of topological groups we will not prove is that simply by
assuming they are T1 topological spaces, we can obtain they are regular (T3) topo-
logical spaces. By further assuming local compactness, we obtain that they are
normal (T4) spaces, allowing use of Urysohn’s lemma and related tools.

Definition 2.6. Let G be a topological group and let A,B ⊆ G. Then AB = {ab :
a ∈ A, b ∈ B} and A−1 = {a−1 : a ∈ A}.

Proposition 2.7. Let G be a topological group and let U be a neighborhood of e.
Then there exists a symmetric neighborhood V (that is, V = V −1) of e such that
V 2 ⊆ U .

Proof. Let m be the multiplication map. Since U is open and G is a topological
group, m−1(U) is open in G×G. Then there exists a basic open set A×B ⊆ m−1(U)
such that (e, e) ∈ A×B. Let W = A ∩B. Then W is open. Note e ∈ W .

Set V = W ∩W−1. Again, e ∈ V . In addition, V is open as it is the intersection
of open sets. Furthermore, if v ∈ V , then v ∈ W ∩W−1. Thus, v−1 ∈ W−1 ∩W ,
so v−1 ∈ V . Thus, V ⊆ V −1.

Similarly, if x ∈ V −1, then x = v−1 for some v ∈ V = W ∩ W−1. Then
x ∈ W−1 ∩W , so x ∈ V . Thus, V −1 ⊆ V . Thus, V = V −1. Thus, V is symmetric.
Observe m(V × V ) ⊆ m(W ×W ) ⊆ m(A×B) ⊆ U , so V 2 ⊆ U . □

Proposition 2.8. Let G be a topological group and K ⊆ G be compact. Let U
be an open set containing K. Then there exists a neighborhood V of e such that
KV ∪ V K ⊆ U .

Proof. For each x ∈ K, let Vx,1 be a neighborhood of e such that V 2
x,1 ⊆ x−1U .

Then xV 2
x,1 ⊆ U . Similarly, let Vx,2 be a neighborhood of e such that V 2

x,2x ⊆ U .

Set Vx = Vx,1 ∩ Vx,2. Then xV 2
x ⊆ U .

By compactness, there exists x1, ..., xn such that K ⊆
n⋃

i=1

xiVxi and K ⊆
n⋃

i=1

Vxixi.

Set V =
n⋂

i=1

Vxi
. Then KV ⊆

n⋃
i=1

xiVxi
V ⊆

n⋃
i=1

xiV
2
xi

⊆ U . Similarly, V K ⊆
n⋃

i=1

V Vxi
x ⊆

n⋃
i=1

V 2
xi
xi ⊆ U . □

2.2. The functional (· : g). Our construction of the Haar measure will be done in
3 steps. In each step, we will investigate the property of a certain family of func-
tionals. We start with the functional (· : g), defined in Definition 2.12. Throughout
the construction of the Haar measure, G refers to a locally compact topological
group.

Definition 2.9 (Ωn(f : g)). Let n ∈ N and f, g ∈ C+
c (G) \ {0}. For each n ∈ N,

we define

Ωn(f : g) =

{
(c1, ..., cn, s1, ..., sn) ∈ (R+)n ×Gn : ∀x ∈ G

[
f(x) ≤

n∑
i=1

cig(six)

]}
.
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Definition 2.10 (Ω(f : g)). Let f, g ∈ C+
c (G) \ {0}. Then

Ω(f : g) =

∞⋃
n=1

Ωn(f : g).

Lemma 2.11. Suppose f, g ∈ C+
c (G) \ {0}. Then Ω(f : g) is nonempty.

Proof. Since g ̸= 0, we see that ∥g∥ > 0. Let α ∈ R with 0 < α < ∥g∥. Then there
exists a ∈ G such that g(a) > α. By continuity, there exists a neighborhood U of
a such that g(x) > α for all x ∈ U . Set V = a−1U . Then V is a neighborhood of e
such that g(x) > α for all x ∈ aV .

By the compactness of supp f , there exist x1, ..., xn ∈ G such that supp f ⊆
n⋃

k=1

xkV . Set sk = ax−1
k for 1 ≤ k ≤ n. Set ck = ∥f∥

α for 1 ≤ k ≤ n. Sup-

pose x ∈ supp f . Then there exists k with 1 ≤ k ≤ n such that x ∈ xkV . Then
skx ∈ ax−1

k xkV = aV . Thus, g(skx) > α. Thus,

f(x) ≤ ∥f∥ ≤ ∥f∥
α

g(skx) ≤
n∑

i=1

cig(six).

Suppose x ̸∈ supp f . Then

f(x) = 0 ≤
n∑

i=1

cig(six).

Thus, (c1, ..., cn, s1, ..., sn) ∈ Ωn(f : g). Thus, Ω(f : g) is nonempty. □

Definition 2.12 ((f : g)). Let f, g ∈ C+
c (G) \ {0}. Then we define (f : g) by

(f : g) = inf

n∑
i=1

ci,

where the infimum is taken over all (c1, ..., cn, s1, ..., sn) ∈ Ω(f : g).

In the following lemmas, we prove some properties of (f : g). These properties
will be instrumental in demonstrating similar properties in the following functionals,
and eventually, the Haar measure.

Lemma 2.13 (Left-Translation Invariance). Let f, g ∈ C+
c (G) \ {0}. Fix s ∈ G.

Define fs(x) = f(sx) for all x ∈ G. Then

(fs : g) = (f : g).

Proof. Suppose (c1, ..., cn, s1, ..., sn) ∈ Ω(f : g). Then

fs(x) = f(sx) ≤
n∑

i=1

cig(sisx)

for all x ∈ G. Thus, (c1, ..., cn, s1s, ..., sns) ∈ Ω(fs : g). Thus,

(f : g) ≤ (fs : g).

However, since f = (fs)s−1 ,

(fs : g) ≤ ((fs)s−1 : g) = (f : g).

Thus, (fs : g) = (f : g). □
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Lemma 2.14. Let f, g ∈ C+
c (G) \ {0}. Then for all c > 0,

(cf : g) = c(f : g).

Proof. Let ϵ > 0. Suppose (c1, ..., cn, s1, ..., sn) ∈ Ω(f : g) be such that
n∑

i=1

ci < (f :

g) + ϵ. Then

(cf)(x) ≤
n∑

i=1

ccig(six)

for all x ∈ X. Thus,

(cf : g) ≤
n∑

i=1

cci < c(f : g) + cϵ.

Since ϵ is arbitrary, (cf : g) ≤ c(f : g). Using this, we obtain

(f : g) =

(
1

c
cf : g

)
≤ 1

c
(cf : g) ,

so c(f : g) ≤ (cf : g). Thus, (cf : g) = c(f : g). □

Lemma 2.15. Let f, g ∈ C+
c (G) \ {0}. Then ∥f∥

∥g∥ ≤ (f : g).

Proof. Since supp f is compact, there exists x0 ∈ G such that f(x0) = ∥f∥ (by the
Extreme Value Theorem). Then for any (c1, ..., cn, s1, ..., sn) ∈ Ω(f : g),

∥f∥ = f(x0) ≤
n∑

i=1

cig(six0) ≤ ∥g∥
n∑

i=1

ci.

Thus, ∥f∥
∥g∥ ≤

n∑
i=1

ci. Thus,
∥f∥
∥g∥ ≤ (f : g) □

Lemma 2.16. Let f1, f2, g ∈ C+
c (G) \ {0}. If f1 ≤ f2, then (f1 : g) ≤ (f2 : g).

Proof. Suppose (c1, ..., cn, s1, ..., sn) ∈ Ω(f2 : g). Then for all x ∈ G,

f1(x) ≤ f2(x) ≤
n∑

i=1

cig(six).

Thus, (c1, ..., cn, s1, ..., sn) ∈ Ω(f1 : g). Thus, Ω(f2 : g) ⊆ Ω(f1 : g). Thus,
(f1 : g) ≤ (f2 : g). □

Lemma 2.17. Let f1, f2, g ∈ C+
c (G) \ {0}. Then

(f1 + f2 : g) ≤ (f1 : g) + (f2 : g).

Proof. Let ϵ > 0. By definition of (f1 : g) and (f2 : g), there exist (c1, ..., cn, s1, ..., sn) ∈
Ω(f1 : g) and (d1, ..., dm, t1, ..., tm) ∈ Ω(f2 : g) such that

n∑
i=1

ci < (f1 : g) +
ϵ

2
and

m∑
j=1

dj < (f2 : g) +
ϵ

2
.

Set ak = ck and rk = sk for 1 ≤ k ≤ n and set ak = dk−n and rk = tk−n for
n < k ≤ n+m. Then for all x ∈ G,

f1(x) + f2(x) ≤
n∑

i=1

cig(six) +

m∑
j=1

djg(tjx) =

n+m∑
k=1

akg(rkx).
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Thus, (a1, ..., an+m, r1, ..., rn+m) ∈ Ω(f1 + f2 : g). Thus,

(f1 + f2 : g) ≤
n+m∑
k=1

ak =

n∑
i=1

ci +

m∑
j=1

dj < (f1 : g) + (f2 : g) + ϵ.

Since ϵ is arbitrary, (f1 + f2 : g) ≤ (f1 : g) + (f2 : g). □

Lemma 2.18. Let f, g, h ∈ C+
c (G) \ {0}. Then
(f : h) ≤ (f : g)(g : h).

Proof. Suppose (c1, ..., cn, s1, ..., sn) ∈ Ω(f : g) and (d1, ..., dm, t1, ..., tm) ∈ Ω(g : h).
Then for all x ∈ G,

f(x) ≤
n∑

i=1

cig(six) ≤
n∑

i=1

ci

 m∑
j=1

djh(tjsix)

 =

n∑
i=1

m∑
j=1

cidjh(tjsix).

Thus, (c1d1, ..., cndm, t1s1, ..., tmsn) ∈ Ω(f : h). Thus,

(f : h) ≤
n∑

i=1

m∑
j=1

cidj =

(
n∑

i=1

ci

) m∑
j=1

dj

 .

Taking the infimum on RHS, (f : h) ≤ (f : g)(g : h). □

2.3. The functional Λg,h. We now begin the second step of our construction,
turning our attention to a new class of functionals, Λg,h.

Definition 2.19 (Λg,h). Let g, h ∈ C+
c (G) \ {0}. Then we define Λg,h : C+

c (G) \
{0} → R by

Λg,h(f) =
(f : h)

(g : h)

for all f ∈ C+
c (G) \ {0}.

Note. Observe that we may view Λg,h as an element of

RC+
c (G)\{0} =

∏
f∈C+

c (G)\{0}

R

by viewing Λg,h(f) as the fth coordinate of λ.

Lemma 2.20. Let g, h ∈ C+
c (G) \ {0}. Then

Λg,h ∈
∏

f∈C+
c (G)\{0}

[
1

(g : f)
, (f : g)

]
.

Proof. Let f ∈ C+
c (G) \ {0}. By Lemma 2.18, Λg,h(f) ≤ (f : g). Using Lemma

2.18 again,

(g : f)Λg,h(f) = (g : f)
(f : h)

(g : h)
≥ (g : h)

(g : h)
≥ 1.

Thus,
1

(g : f)
≤ Λg,h(f) ≤ (f : g).

Thus,

Λg,h ∈
∏

f∈C+
c (G)\{0}

[
1

(g : f)
, (f : g)

]
.



HAAR MEASURE, SPECTRAL THEORY AND THE PETER-WEYL THEOREM 7

□

We note some properties of the functional Λg,h which follow immediately from
the properties proven about (f : g).

Lemma 2.21. Let g, h ∈ C+
c (G) \ {0}. Then

(1) For all s ∈ G and f ∈ C+
c (G) \ {0}, if fs is given by fs(x) = f(sx), then

Λg,h(f) = Λg,h(fs).
(2) For all c > 0 and f ∈ C+

c (G) \ {0}, Λg,h(cf) = cΛg,h(f).
(3) For all f1, f2 ∈ C+

c (G) \ {0}, if f1 ≤ f2, then Λg,h(f1) ≤ Λg,h(f2).
(4) For all f1, f2 ∈ C+

c (G) \ {0}, Λg,h(f1 + f2) ≤ Λg,h(f1) + Λg,h(f2).

Definition 2.22 (C+
V (G)). Let V be a neighborhood of e. Then

C+
V (G) = {h ∈ C+

c (G) : supph ⊆ V }.

Definition 2.23 (ΣV,g). Let g ∈ C+
c (G) \ {0}. For each neighborhood V of e, the

set ΣV,g is the closure of

{Λg,h : h ∈ C+
V (G) \ {0}}

in ∏
f∈C+

c (G)\{0}

[
1

(g : f)
, (f : g)

]
.

The following lemma will be used to obtain a functional on C+
c (G) which will

be extended to all of Cc(G), giving us the Haar functional.

Lemma 2.24. Let g ∈ C+
c (G) \ {0}. Let V be the collection of all open neighbor-

hoods of e. Then ⋂
V ∈V

ΣV,g ̸= ∅.

Proof. Set

∆ =
∏

f∈C+
c (G)\{0}

[
1

(g : f)
, (f : g)

]
.

By Tychonoff’s Theorem, ∆ is compact. Fix V ∈ V. By Theorem 2.4, there exists
a continuous function h : G → [0, 1] with compact support such that supph ⊆ V
and f(e) = 1. Thus, h ∈ C+

V (G) \ {0}, so Λg,h ∈ ΣV,g.

Suppose V1, ..., Vn ∈ V and V =
n⋂

i=1

Vi. Then V is a neighborhood of e, so

V ∈ V. Suppose h ∈ C+
V (G) \ {0}. Then supph ⊆ V ⊆ Vi for all 1 ≤ i ≤ n, so

h ∈
n⋂

i=1

C+
Vi
(G). Thus, ΣV,g ⊆

n⋂
i=1

ΣVi,g, so
n⋂

i=1

ΣVi,g ̸= ∅ (since ΣV,g is nonempty

by the previous argument).

Thus, {ΣV,g : V ∈ V} is a family of closed subsets of the compact space ∆ having
the finite intersection property. Thus,⋂

V ∈V
ΣV,g ̸= ∅.

□
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We now prove a lemma asserting the uniform continuity of a compactly supported
function. This will see use in proving the uniqueness of the Haar functional and
several lemmas for the Peter-Weyl theorem.

Lemma 2.25. Let f ∈ Cc(G). Then for all ϵ > 0, there exists a neighborhood V
of e such that

|f(x)− f(y)| < ϵ

for all x, y ∈ G such that y−1x ∈ V .

Proof. Fix ϵ > 0. Let K = supp f . For each x ∈ K, let Ux be a neighborhood of
x such that |f(x)− f(y)| < ϵ/2 for all y ∈ Ux (this is guaranteed by continuity).
Then x−1Ux is a neighborhood of e. By Proposition 2.7, there exists a symmetric
neighborhood Wx of e such that W 2

x ⊆ x−1Ux. Clearly, {xWx}x∈K is an open cover
of K. By compactness, it admits a finite subcover {xiWxi

}ni=1.

Set V =
n⋂

i=1

Wxi
. Clearly, V is a neighborhood of e. Suppose that x, y ∈ G

such that y−1x ∈ V . If x ̸∈ K and y ̸∈ K, then |f(x)− f(y)| = 0 < ϵ.

Suppose that x ∈ K. Then there exists i with 1 ≤ i ≤ n such that x ∈ xiWxi
.

Thus, x−1
i x ∈ Wxi

. Since y−1x ∈ V ⊆ Wxi
and Wxi

is symmetric, x−1y ∈ Wxi
.

Since W 2
xi

⊆ x−1
i Uxi , we see x−1

i y = x−1
i xx−1y ∈ x−1

i Uxi . Thus, y ∈ Uxi . Further-

more, since x−1
i x ∈ Wxi

, we see x−1
i x = ex−1

i x ∈ x−1
i Uxi

, so x ∈ Uxi
. Thus, since

x, y ∈ Uxi
,

|f(x)− f(y)| ≤ |f(x)− f(xi)|+ |f(xi)− f(y)| < ϵ.

A similar argument holds when y ∈ K. Thus, V is a neighborhood of e such that
|f(x)− f(y)| < ϵ for all x, y ∈ G such that y−1x ∈ V . □

Lemma 2.26. Let g, f1, f2 ∈ C+
c (G) \ {0}. Let ϵ > 0. Then there exists a

neighborhood V of e such that

Λg,h(f1) + Λg,h(f2) ≤ Λg,h(f1 + f2) + ϵ

for all h ∈ C+
V (G) \ {0}.

Proof. Set f = f1 + f2. Note f ∈ C+
c (G) \ {0}. Thus, supp f is compact. By

Theorem 2.4, there exists a compactly supported function k : G → [0, 1] such that
k(supp f) = {1}. Let

δ =
ϵ

4(k : g)
and η = min

{
ϵ

4(f : g)
,
1

2

}
.

Then 2η(f : g) ≤ ϵ/2, 2η ≤ 1, and 2δ(k : g) ≤ ϵ/2. Let F = f + δk. Set h1 = f1/F
and h2 = f2/F (for points where F = 0, set h1 = h2 = 0). Then h1 and h2 are
continuous functions, and clearly have compact support. By the previous lemma,
for i ∈ {1, 2}, there exists a neighborhood Vi of e such that

|hi(x)− hi(y)| < η

whenever x, y ∈ G such that y−1x ∈ Vi. Set V = V1∩V2. Let h ∈ C+
V (G)\{0}. Let

(c1, ..., cn, s1, ..., sn) ∈ Ω(F : h) and x ∈ G. Let j ∈ {1, ..., n} such that h(sjx) ̸= 0,

then sjx ∈ V , so
∣∣hi(x)− hi(s

−1
j )
∣∣ < η for i ∈ {1, 2}. Thus,

hi(x) ≤
∣∣hi(x)− hi(s

−1
j )
∣∣+ hi(s

−1
j ) < hi(s

−1
j ) + η
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for i ∈ {1, 2}. For each 1 ≤ i ≤ 2 and 1 ≤ j ≤ n, set ci,j = cj [hi(s
−1
j ) + η]. Thus,

for i ∈ {1, 2},

fi(x) = F (x)hi(x) ≤
n∑

j=1

cjh(sjx)hi(x) ≤
n∑

j=1

ci,jh(sjx).

Thus, (fi : h) ≤
n∑

j=1

ci,j for i ∈ {1, 2}. Since h1 + h2 = f/F ≤ 1,

(f1 : h) + (f2 : h) ≤
n∑

j=1

c1,j + c2,j ≤
n∑

j=1

cj(1 + 2η).

Taking the infimum over all (c1, ..., cn, s1, ..., sn) ∈ Ω(F : h),

(f1 : h) + (f2 : h) ≤ (F : h)(1 + η) ≤ [(f : h) + δ(k : h)](1 + 2η)

= (f : h) + 2η(f : h) + δ(1 + 2η)(k : h).

Dividing by (g : h), we obtain

Λg,h(f1) + Λg,h(f2) ≤ Λg,h(f) + 2ηΛg,h(f) + δ(1 + 2η)Λg,h(k).

Since 2ηΛg,h(f) ≤ 2η(f : g) ≤ ϵ/2 and δ(1 + 2η)Λg, h(k) ≤ 2δ(k : g) ≤ ϵ/2,

Λg,h(f1) + Λg,h(f2) ≤ Λg,h(f1 + f2) + ϵ. □

3. Existence and Uniqueness of the Haar Measure

Now, we begin the final step of the construction of the Haar measure, turning
our attention to the final functional, the (left) Haar functional Λ. Once we have the
Haar functional, we use the Riesz-Markov representation theorem, stated below, to
transform the left Haar functional to a left Haar measure.

Theorem 3.1 (Riesz-Markov Representation Theorem). Let (X, τ) be a locally
compact Hausdorff space and let ϕ : Cc(X) → C be a positive linear functional.
Let (X,M, µ) be the measure space induced by ϕ. Then for all f ∈ Cc(X),

(∗) ϕ(f) =

∫
X

f dµ

In addition:

(1) B(X) ⊆ M, where B(X) are the Borel subsets of X.
(2) If K is the collection of compact subsets of X, then µ is finite on K.
(3) µ(E) = inf

E⊆V ∈τ
µ(V ) for all E ∈ M.

(4) (a) µ(E) = sup
{K∈K:K⊆E}

µ(K) for all E ∈ τ .

(b) µ(E) = sup
{K∈K:K⊆E}

µ(K) for all E ∈ M with µ(E) < ∞.

(5) The measure space (X,M, µ) is complete.

Furthermore, µ is uniquely determined on M by equation (∗), (2), (3), and (4a).

We now prove the existence of the Haar functional.

Theorem 3.2 (Existence of the Haar Functional). Let g ∈ C+
c (G) \ {0}, and let

V be the collection of neighborhoods of e. Let

Λ ∈
⋂
V ∈V

ΣV,g,
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and extend Λ to Cc(G) by setting

(1) Λ(0) = 0.
(2) Λ(f) = Λ(f+)− Λ(f−) for f ∈ CR

c (G).
(3) Λ(u+ iv) = Λ(u) + iΛ(v) for u, v ∈ CR

c (G).

Then Λ is a nonzero, left-translation invariant, positive linear functional on Cc(G).

Proof. (Nonzero, Positivity) Set

∆ =
∏

f∈C+
c (G)\{0}

[
1

(g : f)
, (f : g)

]
.

Note that for any f ∈ C+
c (G) \ {0}, Λ(f) ≥ 1

(g:f) , so Λ is positive. In addition, Λ

is not identically zero.

(Homogeneity) We first prove that for f ∈ C+
c (G) \ {0} and c > 0, we have

Λ(cf) = cΛ(f). Fix f ∈ C+
c (G) \ {0} and c > 0. Consider

N = {Φ ∈ ∆ : |Φ(f)− Λ(f)| < ϵ and |Φ(cf)− Λ(cf)| < ϵ}.
Clearly, N is a neighborhood of Λ. Since Λ ∈ ΣG,g, there exists h ∈ C+

G(G) \ {0}
such that Λg,h ∈ N (by definition of ΣG,g). Then

|Λ(cf)− cΛ(f)| ≤ |Λ(cf)− Λg,h(cf)|+ |cΛg,h(f)− cΛ(f)| < (1 + c)ϵ.

Since ϵ is arbitrary, Λ(cf) = cΛ(f).

This homogeneity clearly extends immediately to the case that c = 0 or f = 0
since Λ(0) = 0.

Suppose f ∈ CR
c (G) and c ∈ R. If c = 0, linearity holds immediately as stated

prior. Suppose c > 0. Then

Λ(cf) = Λ((cf)+)− Λ((cf)−) = cΛ(f+)− cΛ(f−) = c(Λ(f+)− Λ(f−)) = cΛ(f).

Note

Λ(−f) = Λ((−f)+)− Λ((−f)−) = Λ(f−)− Λ(f+) = −Λ(f).

Thus, for c < 0,

Λ(cf) = (−c)Λ(−f) = cΛ(f).

Finally, suppose f ∈ Cc(G) and c ∈ C. Let u = Rf and v = If . Let a = Rc and
b = Ic. Then

Λ(cf) = Λ((a+ bi)(u+ iv)) = Λ(au− bv + i(av + bu))

aΛ(u)− bΛ(v) + iaΛ(v) + ibΛ(u) = (a+ bi)(Λ(u) + iΛ(v)) = cΛ(f).

(Additivity) Suppose f1, f2 ∈ C+
c (G) \ {0} and ϵ > 0. By Lemma 2.26, there exists

V ∈ V such that for any h ∈ C+
V (G) \ {0},

|Λg,h(f1 + f2)− Λg,h(f1)− Λg,h(f2)| ≤ ϵ.

Consider

N = {Φ ∈ ∆ : |Φ(f1)− Λ(f1)| < ϵ, |Φ(f2)− Λ(f2)| < ϵ

and |Φ(f1 + f2)− Λ(f1 + f2)| < ϵ}.
As before, N is a neighborhood of Λ. Since Λ ∈ ΣV,g, there exists h ∈ C+

V (G) \ {0}
such that Λg,h ∈ N .
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Set f = f1 + f2. Then

|Λ(f)− Λ(f1)− Λ(f2)| ≤ |Λ(f)− Λg,h(f)|+ |Λg,h(f)− Λg,h(f1)− Λg,h(f2)|
+ |Λg,h(f1)− Λ(f1)|+ |Λg,h(f2)− Λ(f2)| < 4ϵ.

Since ϵ is arbitrary, Λ(f) = Λ(f1 + f2).

Let f1, f2 ∈ CR
c (G). Set f = f1 + f2. Then f+ − f− = (f+

1 − f−
1 ) + (f+

2 − f−
2 ).

Thus, f+ + f−
1 + f−

2 = f− + f+
1 + f+

2 . Thus,

Λ(f+) + Λ(f−
1 ) + Λ(f−

2 ) = Λ(f+ + f−
1 + f−

2 )

= Λ(f− + f+
1 + f+

2 ) = Λ(f−) + Λ(f+
1 ) + Λ(f+

2 ).

Thus,

Λ(f) = Λ(f+)− Λ(f−) = (Λ(f+
1 )− Λ(f−

1 )) + (Λ(f+
2 )− Λ(f−

2 ))Λ(f1) + Λ(f2).

Finally, let f1, f2 ∈ Cc(G), and set f = f1 + f2. Let u = Rf and v = If . For
i ∈ {1, 2}, let ui = Rfi and vi = Ifi. Then

Λ(f) = Λ(u+ iv) = Λ(u1 + u2) + iΛ(v1 + v2)

= Λ(u1) + Λ(u2) + iΛ(v1) + iΛ(v2) = Λ(f1) + Λ(f2).

(Translation Invariance) For a function f ∈ Cc(G) and s ∈ G, let fs(x) = f(sx).
Fix f ∈ C+

c (G) \ {0} and s ∈ G. Consider

N = {Φ ∈ ∆ : |Φ(f)− Λ(f)| < ϵ and |Φ(fs)− Λ(fs)| < ϵ}.
Clearly, N is a neighborhood of Λ. Since Λ ∈ ΣG,g, there exists h ∈ C+

G(G) \ {0}
such that Λg,h ∈ N (by definition of ΣG,g). Then

|Λ(fs)− Λ(f)| ≤ |Λ(fs)− Λg,h(fs)|+ |Λg,h(f)− Λ(f)| < 2ϵ.

Since ϵ is arbitrary, Λ(fs) = Λ(fs).

This immediately extends to the case f = 0, since then fs = 0 for any s ∈ G.
Now, let f ∈ CR

c (G) and s ∈ G. Set

f++
s (x) =

{
f+
s (x) f(x) ≥ 0

0 f(x) < 0
, f+−

s (x) =

{
f+
s (x) f(x) < 0

0 f(x) ≥ 0.
,

f−+
s (x) =

{
f−
s (x) f(x) ≥ 0

0 f(x) < 0
, f−−

s (x) =

{
f−
s (x) f(x) < 0

0 f(x) ≥ 0.
.

In addition, set

f++(x) =

{
f+(x) fs(x) ≥ 0

0 f(x) < 0
, f+−(x) =

{
f+(x) fs(x) < 0

0 f(x) ≥ 0.
,

f−+(x) =

{
f−(x) fs(x) ≥ 0

0 f(x) < 0
, f−−(x) =

{
f−(x) fs(x) < 0

0 f(x) ≥ 0.
.

Then

Λ(fs) = Λ(f+
s )− Λ(f−

s ) = Λ(f++
s ) + Λ(f+−

s )− Λ(f−+
s )− Λ(f−−

s )

= Λ(f++) + Λ(−f−+)− Λ(−f+−)− Λ(f−−)

= Λ(f++) + Λ(f+−)− Λ(f−+)− Λ(f−−) = Λ(f+)− Λ(f−) = Λ(f).
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Finally, let f ∈ Cc(G) and s ∈ G. Set u = Rf and v = If . Then

Λ(fs) = Λ(us + ivs) = Λ(us) + iΛ(vs) = Λ(u) + iΛ(v) = Λ(f).

Thus, Λ is a nonzero, left-translation invariant, positive linear functional on Cc(G).
□

Theorem 3.3 (Uniqueness of the Haar Functional). Let Λ1 and Λ2 be left-translation
invariant positive linear functionals on Cc(G) with Λ2 nonzero. Then Λ1 = cΛ2 for
some c ≥ 0.

Proof. If Λ1 = 0, take c = 0. Thus, we may assume Λ1 ̸= 0. By linearity, Λ1 and
Λ2 are determined by their values on C+

c (G) \ {0}. Thus, it suffices to show that
Λ1

Λ2
is constant on C+

c (G) \ {0}.

Let f, g ∈ C+
c (G) \ {0}. Let K = supp f . Since G is locally compact, by Lemma

2.3 that there exists an open set W with compact closure so K ⊆ W . Let V be the
collection of neighborhoods of e. By Proposition 2.8, there exists V1 ∈ V such that
KV1 ∪ V1K ⊆ W . Let ϵ > 0. By Lemma 2.25 (it is clear from the proof we may
take xy−1 ∈ V as the condition rather than y−1x ∈ V ), there exist V2, V3 ∈ V such
that for all x ∈ G, ∣∣f(x)− f(xt−1)

∣∣ < ϵ/2 for all t ∈ V2

and ∣∣f(x)− f(s−1x)
∣∣ < ϵ/2 for all s ∈ V3.

Set U = V1 ∩ V2 ∩ V3 and V = U ∩ U−1. Then KV ∪ V K ⊆ W , V −1 = V and for
all x ∈ G, s, t ∈ V ,

|f(sx)− f(xt)| < ϵ.

By Theorem 2.4, there exists a function k : G → [0, 1] with compact support such
that f(cl(W )) = {1}. Fix x ∈ G and s ∈ V . If x ∈ W , then f(sx) = f(sx)k(x)
and f(xs) = f(xs)k(x).

If x ̸∈ W , then x ̸∈ KV ∪ V K. If sx ∈ K, then s−1 ∈ V , so x = s−1(sx) ∈ V K,
a contradiction. Thus, sx ̸∈ K. Thus, f(sx) = 0, so f(sx) = f(sx)k(x). A similar
argument shows f(xs) = 0, so f(xs) = f(xs)k(x).

Thus, for all x ∈ G and s ∈ V

|f(sx)− f(xs)| = |k(x)| |f(sx)− f(xs)| ≤ ϵ |k(x)| .

Fix h′ ∈ C+
V (G) \ {0} and set h(x) = h′(x) + h′(x−1) for all x. Let µ1 be the

measure induced by Λ1 and µ2 be the measure induced by Λ2. Since h(x
−1y)f(y) ∈

Cc(G × G) ⊆ L1(µ1 ⊗ µ2), by Fubini’s Theorem and the fact h(x−1y) = h(y−1x),
we see ∫ ∫

h(y−1x)f(y) dµ1(x) dµ2(y) =

∫ ∫
h(x−1y)f(y) dµ2(y) dµ1(x).

By the left-translation invariance of Λ1, Fubini’s Theorem, and the Riesz-Markov
Representation Theorem,∫ ∫

h(y−1x)f(y) dµ1(x) dµ2(y) =

∫ (∫
h(y−1x) dµ1(x)

)
f(y) dµ2(y)
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=

∫ (∫
h(x) dµ1(x)

)
f(y) dµ2(y) = Λ1(h)Λ2(f).

By the left-translation invariance of Λ2,∫ ∫
h(x−1y)f(y) dµ2(y) dµ1(x) =

∫ ∫
h(y)f(xy) dµ2(y) dµ1(x).

Thus,

Λ1(h)Λ2(f) =

∫ (∫
h(y)f(xy) dµ2(y)

)
dµ1(x).

Now, observe by the left-translation invariance of Λ1 and the Riesz-Markov Repre-
sentation theorem∫ (∫

h(y)f(yx) dµ1(x)

)
dµ2(y) =

∫
h(y)

(∫
f(yx) dµ1(x)

)
dµ2(y)

=

∫
h(y)

(∫
f(x) dµ1(x)

)
dµ2(y) = Λ1(f)Λ2(h).

Since supph ⊆ V ,

|Λ1(h)Λ2(f)− Λ1(f)Λ2(h)| =
∣∣∣∣∫

x∈G

∫
y∈V

h(y)[f(xy)− f(yx)] dµ2(y) dµ1(x)

∣∣∣∣
≤ ϵ

∫
x∈G

∫
y∈V

h(y)k(x) dµ2(y) dµ1(x) = ϵΛ2(h)Λ1(k).

A similar argument produces a function j (associated to g as k is to f) such that

|Λ1(h)Λ2(g)− Λ1(g)Λ2(h)| ≤ ϵΛ2(h)Λ1(j).

Dividing these inequalities (by Λ2(h)Λ2(f) and Λ2(h)Λ2(g) respectively), we obtain∣∣∣∣Λ1(h)

Λ2(h)
− Λ1(f)

Λ2(f)

∣∣∣∣ ≤ ϵ
Λ1(k)

Λ2(f)
and

∣∣∣∣Λ1(h)

Λ2(h)
− Λ1(g)

Λ2(g)

∣∣∣∣ ≤ ϵ
Λ1(j)

Λ2(g)
.

By the triangle inequality, we obtain∣∣∣∣Λ1(f)

Λ2(f)
− Λ1(g)

Λ2(g)

∣∣∣∣ ≤ ϵ

[
Λ1(k)

Λ2(f)
+

Λ1(j)

Λ2(g)

]
.

Since ϵ is arbitrary, Λ1(f)
Λ2(f)

= Λ1(g)
Λ2(g)

, so Λ1

Λ2
is constant on C+

c (G)\{0}. Thus, Λ1 = cΛ2

for some c ≥ 0. □

Definition 3.4 ((Left) Haar Functional). Let G be a locally compact topological
group. A (nonzero) left-translation invariant positive linear functional Λ on Cc(G)
is called a (left) Haar functional of G.

Definition 3.5 ((Left) Haar Measure Space). Let G be a locally compact topo-
logical group and Λ a (left) Haar functional on G. The measure space (X,M, µ)
induced by Λ by the Riesz-Markov Representation theorem is known as a (left)
Haar measure space for G.

Note. Note the Haar functionals are unique up to a constant. If G is compact,
since the Haar measure is finite (by the Riesz-Markov Representation Theorem),
we may normalize the Haar measure µ so µ(G) = 1 (since µ(G) is finite).
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4. The Spectral Theorem

We now turn to proving the spectral theorem, the second main ingredient in
proving the Peter-Weyl theorem.

Definition 4.1 (Self-Adjoint Operator). Let V be a Hilbert space with inner prod-
uct ⟨·, ·⟩ and let T : V → V be a linear operator. We say T is self-adjoint if for all
u, v ∈ V ,

⟨T (u), v⟩ = ⟨u, T (v)⟩.

Lemma 4.2. Let V be a Hilbert space with inner product ⟨·, ·⟩ and let T : V → V
be a self-adjoint operator. Then

∥T∥ = sup
x̸=0

|⟨Tx, x⟩|
⟨x, x⟩

.

Proof. Suppose x ∈ V with x ̸= 0. Then

|⟨Tx, x⟩| ≤ ∥Tx∥ ∥x∥ ≤ ∥T∥ ∥x∥2 = ∥T∥ ⟨x, x⟩.

Thus, |⟨Tx,x⟩|
⟨x,x⟩ ≤ ∥T∥. Thus, sup

x ̸=0

|⟨Tx,x⟩|
⟨x,x⟩ ≤ ∥T∥.

Suppose x ∈ V with x ̸= 0. Then

|⟨Tx, x⟩|
⟨x, x⟩

=
|⟨Tx, x⟩|
∥x∥2

=

∣∣∣∣〈T ( x

∥x∥

)
,

x

∥x∥

〉∣∣∣∣ .
Thus, for all x ∈ V with x ̸= 0, there exists y ∈ V with ∥y∥ = 1 such that

|⟨Tx, x⟩|
⟨x, x⟩

= |⟨Ty, y⟩| .

Thus, sup
x ̸=0

|⟨Tx,x⟩|
⟨x,x⟩ = sup

∥y∥=1

|⟨Ty, y⟩| (equality holds since ∥y∥2 = ⟨y, y⟩ = 1). Set

M = sup
∥y∥=1

|⟨Ty, y⟩|. Let x, y ∈ V . Then

⟨T (x+ y), x+ y⟩ − ⟨T (x− y), x− y⟩ = 2⟨Tx, y⟩+ 2⟨Ty, x⟩ = 4⟨Tx, y⟩.
Let x, y ∈ V with ∥x∥ = ∥y∥ = 1. Then, applying the Parallelogram Identity,

|⟨Tx, y⟩| ≤ 1

4
|⟨T (x+ y), x+ y⟩+ ⟨T (x− y), x− y⟩| ≤ α(∥x+ y∥2 + ∥x− y∥2)

4
≤ M.

Finally, setting y = Tx
∥Tx∥ , for all x ∈ V with ∥x∥ = 1,

⟨Tx, y⟩ = ∥Tx∥2

∥Tx∥
= ∥Tx∥ .

Thus, ∥T∥ = sup
∥x∦=0

∥Tx∥
∥x∥ = sup

∥x∥=1

∥Tx∥ ≤ sup
∥y∥=1

|⟨Ty, y⟩|. Thus, ∥T∥ = |⟨Tx,x⟩|
⟨x,x⟩ . □

Definition 4.3 (Compact Operator). Let V be a normed vector space and let
T : V → V be a linear operator. We say T is compact if T is bounded and for
every sequence {xi}∞i=1 of points in V , the sequence {T (xi)}∞i=1 has a convergent
subsequence.

Lemma 4.4. Let V be a nonzero Hilbert space and let T : V → V be a compact,
self-adjoint, nonzero operator. Then T has an eigenvector with nonzero eigenvalue.
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Proof. By Lemma 4.2, there exists a sequence {xi}∞i=1 ⊆ V such that ∥xi∥ = 1 for
all i ∈ N and |⟨Txi, xi⟩| = ∥T∥. By self-adjointedness and the sesquilinearity of the
inner product, for all x ∈ V ,

⟨Tx, x⟩ = ⟨x, Tx⟩ = ⟨Tx, x⟩.
Thus, ⟨Txi, xi⟩ is real for all i ∈ N. Set λ = ∥T∥, and note λ ̸= 0. Then
lim
i→∞

|⟨Txi, xi⟩| = λ. WLOG, there exists some subsequence {⟨Txij , xij ⟩}∞j=1 con-

verging to λ. Since T is a compact operator, there exists a further subsequence
{Txijk

}∞k=1 converging to some vector v ∈ V . For the sake of notation, we set
yk = xijk

for all k ∈ N.

Fix k ∈ N. Then, by the Cauchy-Schwarz inequality,

|⟨Tyk, yk⟩| ≤ ∥Tyk∥ ∥yk∥ = ∥Tyk∥ ≤ ∥T∥ ∥yk∥ = λ.

Since lim
k→∞

⟨Tyk, yk⟩ = λ, lim
k→∞

∥Tyk∥ = λ. Since T is self-adjoint, for all k ∈ N

∥λyk − Tyk∥2 = ⟨λyk − Tyk, λyk − Tyk⟩ = λ2 ∥yk∥2 + ∥Tyk∥2 − 2λ⟨Tyk, yk⟩.

Since lim
k→∞

∥Tyk∥2 = λ2 and lim
k→∞

⟨Tyk, yk⟩ = λ,

lim
k→∞

λ2 ∥yk∥2 + ∥Tyk∥2 − 2λ⟨Tyk, yk⟩ = λ2 + λ2 − 2λ2 = 0.

Thus, lim
k→∞

λyk − Tyk = 0. Since lim
k→∞

Tyk = v, we see lim
k→∞

λyk = v. Thus,

lim
k→∞

yk = λ−1v. Since T is a compact operator, it is bounded, and thus, continuous.

Thus, v = lim
k→∞

Tyk = λ−1Tv. Thus, λv = Tv, so v is a eigenvector of T with

eigenvalue λ. □

Lemma 4.5. Let V be an inner product space, let T : V → V be a self-adjoint
operator, and let v be an eigenvector of T with eigenvalue λ ̸= 0. Then v ∈ (kerT )⊥.

Proof. Since v is an eigenvector of T , there exists λ such that Tv = λv. Suppose
w ∈ kerT . Then

λ⟨v, w⟩ = ⟨λv,w⟩ = ⟨Tv,w⟩ = ⟨v, Tw⟩ = ⟨v, 0⟩ = 0.

Thus, ⟨v, w⟩ = 0, so v ∈ (kerT )⊥. □

Theorem 4.6 (Spectral Theorem For Compact Operators). Let V be a Hilbert
space with inner product ⟨·, ·⟩ and let T : V → V be a compact self-adjoint operator.
Let N = kerT . Then dimension of N⊥ is countable, and for any positive eigenvalue,
the dimension of the corresponding eigenspace is finite. In addition, N⊥ has a
orthonormal basis {ϕi} of eigenvectors of T so that T (ϕi) = λiϕi. If N⊥ is not
finite-dimensional, then lim

i→∞
λi = 0.

Proof. If T = 0, then the statement clearly holds, since N⊥ = {0}.

Suppose T is nonzero. Suppose x ∈ N⊥. Let y ∈ N. Then ⟨Tx, y⟩ = ⟨x, Ty⟩ =
⟨x, 0⟩ = 0, so Tx ∈ N⊥. Thus, T (N⊥) ⊆ N⊥. Let Σ be the collection of all or-
thonormal subsets of N⊥ whose elements are eigenvectors of T , partially ordered
by inclusion. By Lemma 4.4, T has an eigenvector v with nonzero eigenvalue. By
Lemma 4.5, v ∈ N⊥, so Σ is nonempty.
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Let {Uα}α∈J be a chain in Σ. Take U =
⋃

α∈J

Uα. Then U is an orthonormal

subset of N⊥ whose elements are eigenvectors of T such that Uα ⊆ U for all α.

By Zorn’s Lemma, Σ has a maximal element S. Set W = cl(spanS). Set H = W⊥.
Suppose x ∈ N. Since W ⊆ N⊥, we see ⟨x,w⟩ = 0 for all w ∈ W . Thus, x ∈ H.
Thus, N ⊆ H.

Let x ∈ H such that Tx ̸= 0. Then T is a nonzero operator on the nonzero
Hilbert space H. Thus, by Lemma 4.4, T has an eigenvector v ∈ H. But then, by
Lemma 4.5, S ∪ {v} ∈ Σ, contradicting the maximality of S since v ̸∈ S. Thus, for
all x ∈ H, we see Tx = 0. Thus, H ⊆ N, so H = N. Thus, W = N⊥.

Thus, S = {ϕα}α∈J is an orthonormal basis of N⊥ consisting of eigenvectors of
T (since S is an orthonormal basis of W ). For each α ∈ J , let λα be the eigenvalue
corresponding to ϕα.

Fix ϵ > 0. Suppose there exist infinitely many α ∈ J such that |λα| > ϵ. Then
there exists a sequence {ϕαi

}∞i=1 such that ∥λαi
ϕαi

∥ = ∥Tϕαi
∥ > ϵ for all i ∈ N.

Fix i ̸= j. Since ⟨λαiϕαi , λαjϕαj ⟩ = 0,∥∥Tϕαi
− Tϕαj

∥∥2 =
∥∥λαi

ϕαi
− λαi

ϕαj

∥∥2 = ⟨λαi
ϕαi

− λαj
ϕαj

, λαi
ϕαi

− λαj
ϕαj

⟩

⟨λαiϕαi , λαiϕαi⟩+ ⟨λαjϕαj , λαjϕαj ⟩ = λ2
αi

∥ϕαi∥
2
+ λ2

αj

∥∥ϕαj

∥∥2 = λ2
αi

+ λ2
αj
.

Thus, for i ̸= j,
∥∥Tϕαi

− Tϕαj

∥∥ ≥ ϵ
√
2. Thus, Tϕαi

has no convergent subsequence,
contradicting the compactness of T . Thus, there exist finitely many α ∈ J such
that |λα| > ϵ. In particular, for any positive eigenvalue λ > 0, the dimension of the
eigenspace corresponding to λ is finite. In addition, N⊥ is countable-dimensional,
and lim

i→∞
λαi = 0. □

5. The Peter-Weyl Theorem

5.1. Representations and Matrix Coefficients.

Definition 5.1 (Representation). Let V be a finite-dimensional vector space over
C and let G be a topological group. A representation of G is a continuous group
homomorphism ρ : G → GL(V ).

Definition 5.2 (Matrix Coefficients). Let V be a finite-dimensional vector space
over C and let G be a topological group. Suppose ρ : G → GL(V ) is a representation
of G and L : V → C is a linear functional. For each v ∈ V , the function ϕv : G → C
given by

ϕv(g) = L(ρ(g)(v))

is called a matrix coefficient of ρ. The matrix coefficients of a topological group G
are the collection all matrix coefficients of all representations of G.

Note. Let V be a finite-dimensional complex vector space. Let {e1, ..., en} be
a basis of V and let ρ : G → GL(V ) be a representation of the group G. Let
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v =
n∑

i=1

viei. Then

ρ(g)v =

ρ11(g) · · · ρ1n(g)
...

...
ρn1(g) · · · ρnn(g)


v1

...
vn

 ,

where each of the functions ρij is a matrix coefficient of ρ given by ρij(g) =

Li(π(g)(ej)), where Li

(
n∑

j=1

vjej

)
= vi. This is why we use the name matrix

coefficient.

Proposition 5.3. If G is a topological group, the matrix coefficients of G are
continuous functions.

Proof. Let ϕ : G → C be a matrix coefficient. Then there exists a finite dimensional
topological complex vector space V , a representation ρ : G → GL(V ), and a linear
functional L : V → C, and a point v ∈ V such that

ϕ(g) = L(ρ(g)(v))

for all g ∈ G. Note L is continuous since it is a linear functional on a finite-
dimensional complex vector space. Thus, ϕ is continuous, as it is composed from
continuous maps. □

Definition 5.4 (rG). Let G be a group. We define the action rG of G on the space
of complex valued functions on G by

(rG(g)f)(x) = f(xg)

for all x, g ∈ G and functions f : G → C.

Theorem 5.5. Let G be a topological group and let f : G → C be a continuous
function. Then f is a matrix coefficient ofG if and only if the functions {rG(g)f}g∈G

span a finite-dimensional complex vector space.

Proof. (⇒) Suppose f is a matrix coefficient of G. Then there exists a represen-
tation ρ : G → GL(V ), where V is some finite-dimensional complex vector space
such that f is a matrix coefficient of ρ. Then there exists some (continuous) linear
functional L : V → C and some v ∈ V such that f(g) = L(ρ(g)(v)) for all g ∈ G.
Fix h ∈ G. Then for all x ∈ G,

(rG(g)f)(x) = f(xg) = L(ρ(xg)(v)) = L(ρ(x)ρ(g)(v)).

Set u = ρ(g)v. Then for all x ∈ G,

(rG(g)f)(x) = L(ρ(x)(u)).

Thus, rG(g)f is a matrix coefficient of the representation ρ : G → GL(V ) for all
g ∈ G. Let n = dimV . Since the matrix coefficients of ρ span a vector space of
dimension n2 (n dimensions in the choice of L, n dimensions in the choice of v), we
see that {rG(g)f}g∈G spans a finite-dimensional vector space.

(⇐) Suppose the functions {rG(g)f}g∈G span a finite-dimensional F -vector space
V . Then rG : G → GL(V ) is a representation of G. Define L : V → C by
L(ϕ) = ϕ(e) for all ϕ ∈ V . Then L(rG(g)f) = f(g) for all g ∈ G, so f is a matrix
coefficient. □
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5.2. The Peter-Weyl Theorem. We are now at the final steps of proving the
Peter-Weyl theorem. Throughout this subsection, G is a compact group and µ is
the left Haar measure on G normalized so µ(G) = 1.

Definition 5.6 (Convolution). Suppose f1, f2 ∈ C(G). The convolution of f1 and
f2, denoted f1 ∗ f2, is given by

(f1 ∗ f2)(g) =
∫
G

f1(gh
−1)f2(h) dµ(h).

Using substitution of variables h 7→ h−1g, we see

(f1 ∗ f2) =
∫
G

f1(h)f2(h
−1g) dµ(h).

In addition, we sometimes perform the convolution of non-continuous functions,
such as if f1 ∈ L∞(G) and f2 ∈ L1(G). For ϕ ∈ C(G), we define Tϕ by Tϕ(f) = ϕ∗f .

Proposition 5.7. For ϕ ∈ C(G), Tϕ is a bounded linear operator on L1(G) and if
f ∈ L1(G), then

∥Tϕ(f)∥∞ ≤ ∥ϕ∥∞ ∥f∥1 .

Proof. Suppose f1, f2 ∈ L1(G) and α1, α2 ∈ C. Then

Tϕ(α1f1 + α2f2) =

∫
G

ϕ(gh−1)[(α1f1 + α2f2)(h)] dµ(h)

= α1

∫
G

ϕ(gh−1)f1(h) dµ(h) + α2

∫
G

ϕ(gh−1f2(h) dµ(h) = α1Tϕ(f1) + α2Tϕ(f2).

Suppose f ∈ L1(G). Then

∥Tϕ(f)∥∞ = sup
g∈G

∣∣∣∣∫
G

ϕ(gh−1)f(h) dµ(h)

∣∣∣∣ ≤ ∥ϕ∥∞
∫
G

∥f(h)∥ dµ(h) = ∥ϕ∥∞ ∥f∥1 .

Thus, Tϕ is a bounded linear operator on L1(G). □

Lemma 5.8. The following holds: L∞(G) ⊆ L2(G) ⊆ L1(G).

Proof. Suppose f ∈ L∞(G). Then

∥f∥2 =

(∫
G

|f |2 dµ

)1/2

≤
(∫

G

∥f∥2∞ dµ

)1/2

= ∥f∥∞ < ∞.

Thus, f ∈ L2(G).

Suppose f ∈ L2(G). Let I : G → C be given by I(g) = 1 for all g ∈ G. By
Hölder’s Inequality with p = q = 2,

∥f∥1 = ∥f · I∥1 ≤ ∥f∥2 · ∥I∥2 = ∥f∥2 < ∞.

Thus, f ∈ L1(G). □

Proposition 5.9. For ϕ ∈ C(G), Tϕ is a bounded operator on L2(G) and

∥Tϕ∥ ≤ ∥ϕ∥∞ .

In addition, Tϕ is a compact operator on L2(G) and if ϕ(g−1) = ϕ(g), then Tϕ is
self-adjoint.
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Proof. By the previous lemma, L∞(G) ⊆ L2(G) ⊆ L1(G). In addition, for all
f ∈ L2(G),

∥Tϕf∥2 ≤ ∥Tϕf∥∞ ≤ ∥ϕ∥∞ ∥f∥1 ≤ ∥ϕ∥∞ ∥f∥2 .
Thus, Tϕ is a bounded operator on L2(G) with ∥Tϕ∥ ≤ ∥ϕ∥∞.

Let B = {Tϕ(f) : f ∈ L1(G), ∥f∥1 ≤ 1}. By the previous proposition, B is
bounded in L∞(G). By Lemma 2.25, since ϕ is continuous and G is compact, for
all ϵ > 0, there exists a neighborhood V of e such that

|ϕ(kg)− ϕ(g)| < ϵ

for all g with k ∈ V . Suppose f ∈ L1(G) and ∥f∥1 ≤ 1. Then for all g ∈ G,

|(ϕ ∗ f)(kg)− (ϕ ∗ f)(g)| =
∣∣∣∣∫

G

[ϕ(kgh−1)− ϕ(gh−1)]f(h) dµ(h)

∣∣∣∣∫
G

∣∣ϕ(kgh−1)− ϕ(gh−1)
∣∣ |f(h)| dµ(h) < ϵ ∥f∥1 ≤ ϵ

when k ∈ V . Thus,B is equicontinuous. In addition, we immediately seeB ⊆ C(G)
and B is closed. Thus, by the Arzelà-Ascoli Theorem, for any sequence {fi}∞i=1 in
B, there is a subsequence {fik}∞i=1 which converges uniformly (that is, with respect
to the maximum norm). Set U = {Tϕ(f) : f ∈ L2(G), ∥f∥2 ≤ 1}. Since U is a
closed subset of B, U is sequentially compact with respect to the maximum norm,
and thus, U is sequentially compact with respect to the L2(G) norm. Thus, Tϕ is a
compact operator.

Suppose ϕ(g−1) = ϕ(g) for all g ∈ G. Then

⟨Tϕf1, f2⟩ =
∫
G

∫
G

ϕ(gh−1)f1(h)f2(g) dg dh

= ⟨f1, Tϕf2⟩ =
∫
G

∫
G

f1(h)ϕ(hg−1)f2(g) dg dh = ⟨f1, Tϕf2⟩.

Thus, in this case, Tϕ is self-adjoint. □

Proposition 5.10. Let ϕ ∈ C(G) and let λ be an eigenvalue of Tϕ. Then the
λ-eigenspace

V (λ) = {f ∈ L2(G) : Tϕ(f) = λf}
is invariant under rG for all g ∈ G.

Proof. Suppose Tϕf = λf . Then

(Tϕ(rG(g)f))(x) =

∫
G

ϕ(xh−1)f(hg) dµ(h).

Applying the change of variables h → hg−1,∫
X

ϕ(xh−1f(hg) dµ(h) =

∫
G

ϕ(xgh−1)f(h) dµ(h) = rG(g)(Tϕf) = λ(rG(g)f)(x).

Thus, rGf ∈ V (λ), so V (λ) is invariant under rG. □

Lemma 5.11. For any open set U , there exists ϕ ∈ C+
U (G) such that ϕ(g) = ϕ(g−1)

for all g ∈ G and ∫
G

f dµ = 1.
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Proof. Since U is open, µ(U) > 0. By the inner regularity of µ on open sets,
there exists K ⊆ V such that 0 < µ(K) ≤ µ(U). By Theorem 2.4, there exists
ϕ∗ : G → [0, 1] such that suppϕ∗ ⊆ U and ϕ∗(K) = {1}. Then

0 <

∫
G

ϕ∗ dµ < ∞.

Setting ϕ†(g) = ϕ†(g) + ϕ†(g−1) for all g ∈ G, ϕ†(g) = ϕ†(g−1) and

0 <

∫
G

ϕ† dµ < ∞.

Thus, by multiplying by a positive real number, we obtain a positive real-valued
function ϕ ∈ C+

U (G) such that ϕ(g) = ϕ(g−1) for all g ∈ G and∫
G

ϕdµ = 1. □

Theorem 5.12 (Peter-Weyl Theorem). The matrix coefficients of G are dense in
C(G).

Proof. Let f ∈ C(G) and fix ϵ > 0. Since G is compact, by Lemma 2.25, there
exists a neighborhood U of e such that if g ∈ V , then

|f(xg)− f(x)| < ϵ/2.

for all x ∈ G. Thus, for g ∈ V ,

∥rG(g)f − f∥∞ < ϵ/2.

Let µ be the left Haar measure on G normalized so µ(G) = 1. By Lemma 5.11,
there exists ϕ ∈ C+

U (G) such that ϕ(g) = ϕ(g−1) for all g ∈ G and∫
G

ϕdµ = 1.

Define Tϕ : L2(G) → L2(G) by Tϕ(f) = ϕ∗f . By Proposition 5.2, Tϕ is a self-adjoint
compact operator on L2(G). Let h ∈ G. Then

|(ϕ ∗ f)(h)− f(h)| =
∣∣∣∣∫

G

ϕ(g)f(g−1h) dµ− f(h)

∫
G

ϕ(g) dµ(g)

∣∣∣∣
=

∣∣∣∣∫
G

ϕ(g)f(g−1h)− ϕ(g)f(h) dµ(g)

∣∣∣∣ ≤ ∫
U

ϕ(g)
∣∣f(g−1h)− f(h)

∣∣ dµ(g)∫
U

ϕ(g) ∥rG(g)f − f∥ dµ(g) ≤
∫
U

ϕ(g)(ϵ/2) dµ(g) =
ϵ

2
.

Thus, for all f ∈ L2(G), ∥Tϕf − f∥∞ < ϵ/2. If λ is an eigenvalue of Tϕ, let V (λ) be
the λ-eigenspace. By the spectral theorem (Theorem 4.6), V (λ) is finite-dimensional
for all λ ̸= 0, and are mutually orthogonal and span L2(G). For each eigenvalue λ,

let fλ be the projection of f on V (λ). By orthogonality,
∑
λ

∥fλ∥22 = ∥f∥22 < ∞. By

the Cauchy criterion for convergent series, there exists some q > 0 such that√ ∑
0<|λ|<q

∥fλ∥22 <
ϵ

2 ∥ϕ∥∞
.

Set f∗ =
∑

|λ|≥q

fλ and f ′ = Tϕ(f
∗). By the spectral theorem (Theorem 4.6), there

are finitely many eigenvalues λ such that |λ| ≥ q, each with finite-dimensional
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corresponding eigenspace. Thus, V =
⊕

|λ|≥q

V (λ) is finite-dimensional. Clearly, for

any eigenvalue λ of Tϕ, Tϕ(V (λ)) ⊆ V (λ). Thus, since f∗ ∈ V , we see that f ′ =
Tϕ(f

∗) ∈ V . By Proposition 5.10, V is invariant under rG, so {rG(g)f ′}g∈G ⊆ V .
Since V is finite-dimensional, {rG(g)f ′}g∈G spans a finite-dimensional vector space.
Thus, by Theorem 5.5, f ′ is a matrix coefficient of G. Observe

Tϕ(f − f∗) = Tϕ

f0 +
∑

0≤|λ|<q

fλ

 = Tϕ

 ∑
0≤|λ|<q

fλ

 .

By Proposition 5.7 and Lemma 5.8,

∥Tϕ(f − f∗)∥∞ ≤ ∥ϕ∥∞ ∥f − f∗∥1 ≤ ∥ϕ∥∞ ∥f − f∗∥2 = ∥ϕ∥∞
√ ∑

0<|λ|<q

∥fλ∥22 <
ϵ

2
.

Thus,

∥f − f ′∥∞ = ∥f − Tϕf + Tϕ(f − f∗)∥∞ ≤ ∥f − Tϕf∥+∥Tϕ(f − f∗)∥∞ <
ϵ

2
+
ϵ

2
= ϵ.

Thus, the matrix coefficients of G are dense in C(G). □

Corollary 5.13. The matrix coefficients of G are dense in L2(G).

Proof. By the Peter-Weyl Theorem, the matrix coefficients of G are dense in C(G).
Since C(G) is dense in L2(G), the matrix coefficients of G are dense in L2(G). □
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