HAAR MEASURE, SPECTRAL THEORY AND THE
PETER-WEYL THEOREM

JULIE SUN

ABSTRACT. The Peter-Weyl theorem asserts the denseness of the matrix co-
efficients of a locally compact group G in the Hilbert space L?(G). In this
paper, we first present construction of a Haar measure, then build prerequisite
material concerning functional analysis and representation theory, and finally,
prove the the Peter-Weyl theorem.

CONTENTS
1. Introduction 1
2. Preliminaries 2
2.1. Topological Preliminaries 2
2.2.  The functional (- : g) 3
2.3.  The functional A, 6
3. Existence and Uniqueness of the Haar Measure 9
4. The Spectral Theorem 14
5. The Peter-Weyl Theorem 16
5.1. Representations and Matrix Coefficients 16
5.2.  The Peter-Weyl Theorem 18
Acknowledgments 21
References 21

1. INTRODUCTION

In 1927, Hermann Weyl and Peter Fritz proved the denseness of the matrix
coefficients of a compact Lie group G in C(G), as well as the reducibility of any
unitary representation of G [1]. Following this, in 1933, Alfréd Haar developed the
Haar measure, a translation-invariant, countably additive, nontrivial measure on
a locally compact group G [2]. Haar’s results had several immediate applications:
John von Neumann solved Hilbert’s fifth problem on compact groups in an article
directly succeeding Haar’s [3]. In addition, Haar’s measure was used to extend the
Peter-Weyl theorem to the setting of compact groups.

We begin by proving existence and uniqueness of the Haar measure up to a scalar
multiple on locally compact groups. After, we develop the prerequisite knowledge
in representation theory and functional analysis, proving the spectral theorem for
compact operators. Finally, we bring everything together, culminating in the Peter-
Weyl theorem concerning the denseness of matrix coefficients in L?(G).
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This paper assumes familiarity with topology, group theory, linear algebra and
measure theory. We freely use Fubini-Tonelli theorem (proven in [4]) the Arzelé-
Ascoli theorem (proven in [6]), and more. In addition, the Riesz-Markov represen-
tation theorem is stated and used without proof. See [4] for a detailed proof.

2. PRELIMINARIES

2.1. Topological Preliminaries.

Definition 2.1 (C.(X)). Let X be a locally compact Hausdorff space. The set of
all complex (resp. real)-valued continuous functions with compact support on X is
denoted by C.(X) (resp. CX(X)).

Definition 2.2 (Positive Cone). Let X be a locally compact Hausdorff space. The
positive cone, denoted CF(X), is given by

CHX)={feC¥X): f(x)>0forall z € X}.

Lemma 2.3. Let X be a locally compact Hausdorff space, let U C X be open,
and let ' C U be compact. Then there exists an open set N with compact closure
such that K C N Cclx(N) CU.

Proof. Let Y be the one-point compactification of X. Since X is a locally compact
Hausdorff space, Y is normal. Since U is open in X, U is open in Y. Since K is
compact in X, it is compact in Y. Since Y is Hausdorff, K is closed. Since Y is
normal, there exists an open set V in Y such that K C V and cly (V) C U. Then
V C X, s0V isopenin X.

Let x € K. Since X is locally compact, there exists an open neighborhood N,
of x such that clx(N;) is compact. Then N, NV is an open neighborhood of z.
Furthermore, clx (N, NV) is compact and contained in U. By the compactness of

n
K, there exists finitely many points {z1,...,z,} such that K C |J (N, NV). Set
i=1

N = |J (N, NV). Then clx(N) = | clx(N,, NV). Since clx (N, NV) is compact
i=1 =1

and contained in U for each i, clx (V) is compact and contained in U. In addition,

N is open as it is the union of open sets. Gathering, we see clx (V) is compact and

K CNCeclx(N)CU. O
Theorem 2.4. Let X be a locally compact Hausdorff space. Suppose U C X is

open and K C U is compact. Then there exists a continuous function f : X — [0, 1]
with compact support such that supp f C U and f(K) = {1}.

Proof. Let Y be the one-point compactification of X. By the previous lemma, there
is an open set N with compact closure such that

K CN Cclx(N)CU.

Observe K and Y \ N are disjoint closed sets in Y. By Urysohn’s Lemma, there
exists a continuous function h : Y — [0, 1] such that h(Y \ N) = {0} and h(K) =
{1}. Let f = h|x. Then f: X — [0,1] is continuous and f(K) = {1}. In addition,
{re X : f(z) #0} C N. Thus,

supp f C clx(N) C U.

Since clx (V) is compact and supp f is closed, f has compact support. [
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Definition 2.5 (Topological Group). A topological group G is a group that is also
a Ty topological space such that the maps (z,y) — zy and = — z~! are continuous.

A remarkable fact of topological groups we will not prove is that simply by
assuming they are T} topological spaces, we can obtain they are regular (T53) topo-
logical spaces. By further assuming local compactness, we obtain that they are
normal (7y) spaces, allowing use of Urysohn’s lemma and related tools.

Definition 2.6. Let G be a topological group and let A, B C G. Then AB = {ab:
a€Abe By and A~ ={a"t:a € A}.

Proposition 2.7. Let G be a topological group and let U be a neighborhood of e.
Then there exists a symmetric neighborhood V' (that is, V = V1) of e such that
VZCU.

Proof. Let m be the multiplication map. Since U is open and G is a topological
group, m~!(U) is open in GxG. Then there exists a basic open set Ax B C m~1(U)
such that (e,e) € A x B. Let W = AN B. Then W is open. Note e € W.

Set V=W NW~! Again, e € V. In addition, V is open as it is the intersection
of open sets. Furthermore, if v € V, then v € W N W™, Thus, v=! € W= nW,
sov~teV. Thus, VC V1

Similarly, if z € V!, then z = v~! for some v € V = W N W~!. Then
reWINW,sox € V. Thus, V-! C V. Thus, V = VL. Thus, V is symmetric.
Observe m(V x V) Cm(W x W) Cm(A x B) CU, so V2 CU. O

Proposition 2.8. Let G be a topological group and K C G be compact. Let U
be an open set containing K. Then there exists a neighborhood V of e such that
KVUVK CU.

Proof. For each x € K, let V;; be a neighborhood of e such that Vrf,l C z~U.
Then waQ’l C U. Similarly, let V; o be a neighborhood of e such that Vizx cU.
Set V,, =V, 1N V,2. Then V2 C U.

1=

n n
By compactness, there exists z1, ..., , such that K C |J z;V,, and K C |J V,,2;.
i=1 1

Set V.= (| Vz,. Then KV C | V.,V C U xiVﬁi C U. Similarly, VK C
i=1 i=1 i=1

VVy,x C Vﬁixi cU. O
=1 =1

K2

7

2.2. The functional (- : g). Our construction of the Haar measure will be done in
3 steps. In each step, we will investigate the property of a certain family of func-
tionals. We start with the functional (- : g), defined in Definition 2.12. Throughout
the construction of the Haar measure, G refers to a locally compact topological

group.

Definition 2.9 (2,(f : g)). Let n € Nand f,g € CH(G) \ {0}. For each n € N,
we define

Q. (f:9) = {(cl,...,cn,sl, e 8n) ERN" X G":Vz € G

flz) < Zcig(six)] } .
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Definition 2.10 (Q(f : g)). Let f,g € CF(G) \ {0}. Then
Af:9)=J Wf:9).
n=1

Lemma 2.11. Suppose f,g € CF(G) \ {0}. Then Q(f : g) is nonempty.

Proof. Since g # 0, we see that ||g|| > 0. Let o € R with 0 < a < ||g||- Then there
exists a € G such that g(a) > «. By continuity, there exists a neighborhood U of
a such that g(z) > a for all z € U. Set V = a~'U. Then V is a neighborhood of e
such that g(x) > « for all z € aV.

By the compactness of supp f, there exist zi,...,x, € G such that supp f C
n

U zV. Setsk:axlzlforlgkgn. Setck:@forlgkgn. Sup-
k=1

pose x € supp f. Then there exists k with 1 < k < n such that x € zxV. Then
sz € az; 'wpV = aV. Thus, g(sgx) > a. Thus,

£ < 171 < Wotsay < 3 crglsiar).

« :
=1

Suppose = & supp f. Then
fl@)=0<> cig(six).
i=1

Thus, (¢1,...sCn, S1, ooy Sn) € Qn(f : g). Thus, Q(f : ¢g) is nonempty. O
Definition 2.12 ((f: g)). Let f,g € C;F(G) \ {0}. Then we define (f : g) by

(f:9) = ianci,
i=1

where the infimum is taken over all (¢1, ..., ¢p, 81, ..., $n) € Q(f : g9).

In the following lemmas, we prove some properties of (f : g). These properties
will be instrumental in demonstrating similar properties in the following functionals,
and eventually, the Haar measure.

Lemma 2.13 (Left-Translation Invariance). Let f,g € C.F(G) \ {0}. Fix s € G.
Define fs(x) = f(sz) for all x € G. Then

(fs :g) = (f : g)'
Proof. Suppose (C1,...;Cn, 81, -, 5n) € Q(f : g). Then
fs(@) = f(sz) < Zcz'g(sisx)
i=1
for all x € G. Thus, (¢1,...,Cn, 18, .., Sn8) € Q(fs : g). Thus,
(f:9)<(fs:9)
However, since f = (fs)s-1,
(fs :g) < ((fs)s*l :g) = (f : g)'
Thus, (fs:9)=(f:9). a
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Lemma 2.14. Let f,g € CF(G) \ {0}. Then for all ¢ > 0,

(cf:g)=cf:9)
Proof. Let € > 0. Suppose (¢1, ..., Cpn, S1, ..., 8n) € Q(f : g) be such that Zn: ci < (f
g) + €. Then =

for all x € X. Thus,

Since € is arbitrary, (cf : g) < c(f : g). Using this, we obtain

(f:9)= (ECf:g) S%(Cfrg),
soc(f:g)<(cf:g) Thus, (cf:g)=c(f: 9)- O
Lemma 2.15. Let f,g € CH(G)\ {0}. Then <(f:9).

Proof. Since supp f is compact, there exists z¢p € G such that f(xzg) = ||f]| (by the
Extreme Value Theorem). Then for any (c1, ..., Cpn, 1, ..., $n) € Q[ : g),

I = f(zo) <Y ciglsizo) < llg Y e
i=1 i=1

Thusigg s%g(f:g) O

Lemma 2.16. Let fi, f2,g € CF(G) \ {0}. If f1 < fo, then (f1:9) < (f2:9).
Proof. Suppose (€1, ...,Cny 815 ...y Sn) € Q(f2 : g). Then for all z € G,

fi(z) < fa(z) < Zczg(szx)
i=1

Thus, (C1y..y CnyS1,-s80) € Qf1 1 g). Thus, Q(f2 : 9) € Q(f1 : g). Thus,
(fr:9) <(f2:9). U

Lemma 2.17. Let f1, fo,g € CH(G) \ {0}. Then
(fitfarg) <(fizg)+(f2:9).

Proof. Let € > 0. By definition of (f; : g) and (fs : g), there exist (1, ..., Cn, 81, .-, 8n) €
Q(f1:9)and (di,...,dm,t1, ..., tm) € Q(f2 : g) such that
n € m
Zci<(f1 tg)+5 and Zdj <(f2:9)+5
=1 Jj=1
Set ap, = ¢ and r, = s for 1 < k < n and set ap = dy_,, and r, = ty_,, for
n < k <n+m. Then for all z € G,

n+m

fi(@) + fa(x Z (siz) + Zdjg(tjif) = Z arg(rrx).
i=1 j=1 k=1
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Thus, (a17~-~7an+myrla . Tn+m) S Q(fl + f2 : ) Thus,

n+m
(fi+farg) Zak—ZCL—FZd <( +(fa:9)+e
Since € is arbitrary, (f1 + f2:9) < (f1:9)+ (f2: 9). |

Lemma 2.18. Let f,g,h € CF(G)\ {0}. Then
(f:h) <(f:9)g:h)

Proof. Suppose (1, ...,Cny 81,y $n) € Q(f : g) and (dy, ..., dim, 1, ooy tm) € Qg = h).
Then for all z € G,

S Zn:cig(sil‘) S Zn:ci ( - d]h(tjszilf)) = Xn:icidjh(tjsix)
i=1 j=1

i=1 j=1

Thus, (c1d1, ..., Cndm, t151, -y tmSn) € Q(f : h). Thus,

(fim) < ;id _ (Z) (i:d) |

Taking the infimum on RHS, (f : h) < (f:9)(g: h). O

2.3. The functional A, ;. We now begin the second step of our construction,
turning our attention to a new class of functionals, Ay .

Definition 2.19 (Ay ;). Let g,h € CF(G) \ {0}. Then we define Ay : CHG) \
{0} = R by
(f:h)

(g:h)

Ag,h(f) =
for all f € CF(G)\ {0}.
Note. Observe that we may view Ay as an element of

ROV = ] R
fect (G)\{o}
by viewing Ay ,(f) as the fth coordinate of .

Lemma 2.20. Let g,h € CH(G) \ {0}. Then

Ane ] [

s:0]

FecE(G)\{0}

Proof. Let f € CHG)\ {0}. By Lemma 2.18, Ay ,(f) < (f : g). Using Lemma
2.18 again, ) ( )

) f h g:h

(g: Agn(f)=(g: f) WS
Thus, .
A
(g:f) <Agn(f)<(f:9)

Thus,

1
e 1 {(g:f)’

fect(@)\{0}
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d

We note some properties of the functional Ay which follow immediately from
the properties proven about (f : g).
Lemma 2.21. Let g,h € CH(G) \ {0}. Then
(1) For all s € G and f € CF(G) \ {0}, if fs is given by fs(z) = f(sz), then

Ag,h(f) - Ag,h(fs)'
(2) Forall ¢ >0 and f € CHG)\ {0}, Agn(cf) = cAgn(f).

2
(3) For all fhfg c Cj(G) \ {0}, if fl < fg, then Ag,h(fl) < Ag’h(fg).
(4) For all f1, fo € CH(G)\ {0}, Agn(fi + f2) < Agn(f1) + Agn(f2)-

Definition 2.22 (C{/(G)). Let V be a neighborhood of e. Then
CH(G)={h e CHG) :supph C V}.

Definition 2.23 (Xy,,4). Let g € CF(G) \ {0}. For each neighborhood V of e, the
set Xy, is the closure of

{Agn:h € CY(G)\{0}}

I |00

fecd (@)\{o}

in

The following lemma will be used to obtain a functional on C;(G) which will
be extended to all of C.(G), giving us the Haar functional.

Lemma 2.24. Let g € CF(G) \ {0}. Let V be the collection of all open neighbor-
hoods of e. Then
m Z:V,g 7& 9.

vey

a= T gy
reci(@)\oy -7
By Tychonoff’s Theorem, A is compact. Fix V € V. By Theorem 2.4, there exists
a continuous function h : G — [0, 1] with compact support such that supph C V
and f(e) = 1. Thus, h € C{F(G) \ {0}, s0 Ay s € v,

Proof. Set

Suppose Vi,..,V, € V and V = ﬁ Vi. Then V is a neighborhood of e, so
V € V. Suppose h € CF(G) \ {0} l’ﬁlen supph CV CV;foralll <i<n, so
h e ﬁ C‘ﬁ(G) Thus, Yy, C (n] Yv, g, SO ﬁ Yy, g # @ (since Ly 4 is nonempty
by tflzlprevious argument). = =

Thus, {Zy,4 : V € V} is a family of closed subsets of the compact space A having
the finite intersection property. Thus,

ﬂ EV,g # 0.

vey
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We now prove a lemma asserting the uniform continuity of a compactly supported
function. This will see use in proving the uniqueness of the Haar functional and
several lemmas for the Peter-Weyl theorem.

Lemma 2.25. Let f € C.(G). Then for all € > 0, there exists a neighborhood V/
of e such that

[f(@) = fly)l <e
for all z,y € G such that y~ 'z € V.

Proof. Fix € > 0. Let K = supp f. For each = € K, let U, be a neighborhood of
x such that |f(z) — f(y)| < €/2 for all y € U, (this is guaranteed by continuity).
Then 2~ 'U, is a neighborhood of e. By Proposition 2.7, there exists a symmetric
neighborhood W, of e such that Wf C z7'U,. Clearly, {xW, }zek is an open cover
of K. By compactness, it admits a finite subcover {x; W, };.

Set V.= (| W,,. Clearly, V is a neighborhood of e. Suppose that x,y € G
i=1
such that y~lz € V. If ¢ K and y € K, then |f(z) — f(y)| =0 <e.

Suppose that € K. Then there exists ¢ with 1 < ¢ < n such that z € x;W,,.
Thus, z; 'z € W,,. Since y~'z € V. C W,, and W,, is symmetric, 2~y € W,,.
Since Wf - :ci_lUri, we see xi_ly = xi_lx:vfly € xi_lUmi. Thus, y € U,,. Further-
more, since a:i_lx e W,,, we see xi_lw = exi_lx € x;lei, so z € Uy,. Thus, since
x,y € Ug,,
|f(@) = fW)| < [f(@) = fla)l + [f (@) = fy)] <e.

A similar argument holds when y € K. Thus, V is a neighborhood of e such that
|f(z) — f(y)| < e for all z,y € G such that y "'z € V. O

Lemma 2.26. Let g, f1,f> € CS(G) \ {0}. Let € > 0. Then there exists a
neighborhood V of e such that

Agn(fr) + Agn(f2) < Agn(fi+ f2) +€
for all h € C7(G) \ {0}.

Proof. Set f = f1 + fo. Note f € CH(G)\ {0}. Thus, supp f is compact. By
Theorem 2.4, there exists a compactly supported function k : G — [0, 1] such that

k(supp f) = {1}. Let

5 € q . € 1

TAkg " ”mln{4(f:g>’2}'

Then 2n(f : g) <¢€/2,2n <1, and 2§(k : g) <¢/2. Let F = f + k. Set hy = f1/F
and he = f3/F (for points where F' = 0, set hy = hy = 0). Then h; and hy are
continuous functions, and clearly have compact support. By the previous lemma,
for i € {1,2}, there exists a neighborhood V; of e such that

|hi(@) = hi(y)] <n
whenever z,y € G such that y~'z € V;. Set V = Vi NVa. Let h € C{7(G)\ {0}. Let
(C1y ey Cny 815y 8n) € Q(F : h) and « € G. Let j € {1,...,n} such that h(s;z) # 0,
then s;z € V, so |hi(z) — hz(sj_l)| < n for i € {1,2}. Thus,

hi(x) < |hi(x) = hi(s; )|+ Ri(s; 1) < hi(s;') +1
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for i € {1,2}. Foreach1 <i<2and 1<j <n,setc¢, = cj[hi(sj_l) + n]. Thus,
for i € {1,2},

fi(z) = F(x)hi(z) < chh(ij)hi(x) < Zci,jh(ij)

n

Thus, (f; : h) < " ¢ for i € {1,2}. Since hy + ho = f/F <1,

(fizh)+(f2:h) < ZCLj +e2; < ch(l + 21).
j=1

j=1
Taking the infimum over all (c1, ..., ¢y, 81, ..., 8n) € Q(F : h),
(fr:h)+(fa:h) <(F:h)A+n) <[(f:h)+(k: )1+ 2n)
=(f:h)+2(f:h)+06(1+2n)(k:h).

Dividing by (g : h), we obtain
Agn(f1) + Mg n(f2) < Agn(f) +2nAg n(f) + (1 + 27)Ag n (k).
Since 2nAg n(f) < 2n(f : g) < €/2 and (1 + 2n)Ag, h(k) < 20(k : g) < €/2,
Ag,h(f1)+Ag,h(f2) SAg,h(fl + f2) +e U

3. EXISTENCE AND UNIQUENESS OF THE HAAR MEASURE

Now, we begin the final step of the construction of the Haar measure, turning
our attention to the final functional, the (left) Haar functional A. Once we have the
Haar functional, we use the Riesz-Markov representation theorem, stated below, to
transform the left Haar functional to a left Haar measure.

Theorem 3.1 (Riesz-Markov Representation Theorem). Let (X,7) be a locally
compact Hausdorff space and let ¢ : C.(X) — C be a positive linear functional.
Let (X, M, 1) be the measure space induced by ¢. Then for all f € C.(X),

() o(f) = /X fdu

In addition:

(1) B(X) € M, where B(X) are the Borel subsets of X.

(2) If K is the collection of compact subsets of X, then y is finite on K.
(3) u(E) = 1nf u(V) for all E € M.
(4)

4) (a) p(F ) sup  wp(K) for all E € 1.
{KeK:KCE}
(b) u(E) = sup  p(K) for all E € M with u(F) < oo.
{KeK:KCE}

(5) The measure space (X, M, p1) is complete.
Furthermore, p is uniquely determined on M by equation (x), (2), (3), and (4a).

We now prove the existence of the Haar functional.

Theorem 3.2 (Existence of the Haar Functional). Let g € CH(G) \ {0}, and let
V be the collection of neighborhoods of e. Let

Ae m ZV,g;
\42%
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and extend A to C.(G) by setting

(1) A(0) =0.
(2) A(f) = A(f*) = A(f7) for f € CZ(G).
(3) A(u+iv) = A(u) +iA(v) for u,v € CR(G).

Then A is a nonzero, left-translation invariant, positive linear functional on C.(G).
Proof. (Nonzero, Positivity) Set
1
A= ] { ,f),(f:g)}
fec (@)\{0}

Note that for any f € CH(G)\ {0}, A(f) > ﬁ, so A is positive. In addition, A
is not identically zero.

—
)

(Homogeneity) We first prove that for f € CH(G) \ {0} and ¢ > 0, we have
A(cf) = cA(f). Fix f € CF(G) \ {0} and ¢ > 0. Consider
N={2 e A:|0(f)— A(f)| <eand |P(cf) — Alef)| < €}
Clearly, N is a neighborhood of A. Since A € ¢ 4, there exists h € CZ(G) \ {0}
such that Ay, € N (by definition of ¥¢ ). Then
[A(cf) = AN < IA(ef) = Agn(ef)] + egn(f) = eA(f)] < (1 + e,
Since € is arbitrary, A(cf) = cA(f).

This homogeneity clearly extends immediately to the case that ¢ = 0 or f = 0
since A(0) = 0.

Suppose f € CR(G) and ¢ € R. If ¢ = 0, linearity holds immediately as stated
prior. Suppose ¢ > 0. Then
Alef) = A((cf)T) = A(ef)7) = eA(fT) = eA(f7) = c(A(fT) = A(f7)) = cA(f).
Note
A=) =AMEHT) = A(=H)7) = A7) = A(T) = —A).
Thus, for ¢ < 0,
Alef) = (=e)A(=f) = cA(f).
Finally, suppose f € C.(G) and ¢ € C. Let u = Rf and v = Jf. Let a = Re and
b= TJc. Then
Alef) = Al(a+ bi)(u +iv)) = Alau — bu + i(av + bu))
al(u) — bA(v) + iaA(v) + ibA(u) = (a + bi)(A(u) +iA(v)) = cA(f).
(Additivity) Suppose f1, fo € CF(G)\ {0} and € > 0. By Lemma 2.26, there exists
V € V such that for any h € C (G) \ {0},

|Ag,h(f1 + f2) — Agn(fr) — Ag,h(f2>‘ <e
Consider
N={®ecA:|0(f1) = A(fi)] <& [®(f2) = A(f2)| <e
and [®(f1 + f2) — A(f1 + f2)| < €}

As before, N is a neighborhood of A. Since A € Xy, there exists h € i (G) \ {0}
such that Ay, € N.
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Set f = f1 + f2. Then
IACf) = ACf) = A(f2)] S A = Agn (D] + 180 (f) = Mg n(f1) — Agn(f2)]

+ 8 (f1) = AU+ [Ag n(f2) = A(f2)] < 4e.
Since € is arbitrary, A(f) = A(f1 + fa2).

Let fi,f2 € CX(G). Set f = fi+ fo. Then f*— f~ = (fif — f1)+(f5 — f2)
Thus, f*+ fi +f; = f + fi7 + f5. Thus,

A+ AU +AS) = AT+ T+ fy)
=A™+ T+ D) = AT) + A + A
Thus,
AS) =AY = A(f7) = (AU = AUT)) + (M) = A ))A(fL) + A(Sf2)-

Finally, let fi, fo € C.(G), and set f = f1 + fo. Let u = Rf and v = Jf. For
i €{1,2}, let u; = Rf; and v; = Jf;. Then

A(f) = Alu +iv) = Alug + ug) + iA(vy + v2)
= A(u) + Auz) +iA(v1) + iA(v2) = A(f1) + A(f2)-

(Translation Invariance) For a function f € C.(G) and s € G, let fs(z) = f(sz).
Fix f € CH(G)\ {0} and s € G. Consider

N ={® e A:[0(f) = A(f)] < eand [®(fs) — A(fs)] <€}

Clearly, N is a neighborhood of A. Since A € X 4, there exists h € C%(G) \ {0}
such that Ay, € N (by definition of ¥¢ 4). Then

IA(fs) = ADI < [A(fs) = Agn () + [Agn(f) = AF)] < 2e.
Since € is arbitrary, A(fs) = A(fs)-

This immediately extends to the case f = 0, since then f; = 0 for any s € G.
Now, let f € C®(G) and s € G. Set

) fi@) f@) >0 oy @) flx) <0
fi*(x){o ) <0’ I (ﬂﬂ){0 Ha) >0,
, (@) f(x) =0 __ fo(x) f(z) <0
fs+(x)_{0 fay <o’ T (x)_{o fla)>0.
In addition, set
) =) fs(x) >0 o (@) fe(x) <0
f++(x)_{o fz)y<o’ f+()_{0 f(z)>o0."
_ (@) fs(x)>0 ey J @) fs(x) <0
[ ) = {o fay <o’ L (z) = {o fl@)>0.
Then
A(f) = A(fH) = AT = A + A(FE) = AT = A(f)

=AfT) AT A=) AT
=AfTO)HAST) AT AT = AT - AUT) = A

~—
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Finally, let f € C.(G) and s € G. Set u =Rf and v =Jf. Then
A(fs) = Alus +ivs) = Alus) + iA(vs) = Au) +iA(v) = A(f).

Thus, A is a nonzero, left-translation invariant, positive linear functional on C.(G).
O

Theorem 3.3 (Uniqueness of the Haar Functional). Let A; and As be left-translation
invariant positive linear functionals on C.(G) with Ay nonzero. Then A; = ¢A, for
some ¢ > 0.

Proof. If Ay = 0, take ¢ = 0. Thus, we may assume A; # 0. By linearity, A; and
Ay are determined by their values on Cf(G) \ {0}. Thus, it suffices to show that
ﬁ—; is constant on CF(G) \ {0}.

Let f,g € CF(G)\ {0}. Let K = supp f. Since G is locally compact, by Lemma
2.3 that there exists an open set W with compact closure so K C W. Let V be the
collection of neighborhoods of e. By Proposition 2.8, there exists V7 € V such that
KViUViK CW. Let € > 0. By Lemma 2.25 (it is clear from the proof we may
take xy~! € V as the condition rather than y~'a € V), there exist V5, V3 € V such
that for all x € G,

|fx) = f(@t™)| <e/2 foralltel,
and

|f(z) — f(sflm)| <e€/2 forall s e Vs.
Set U=ViNnVanVsand V=UNU"!. Then KVUVK CW,V~! =V and for
allx € G, s,t eV,

|f(sz) — f(at)] <e.

By Theorem 2.4, there exists a function k : G — [0, 1] with compact support such
that f(cl(W)) = {1}. Fixz € Gand s € V. If z € W, then f(sz) = f(sz)k(x)
and f(xs) = f(xs)k(x).

Ifx g W, thenx ¢ KVUVK. If st € K, then s71 € V,s0o 2z = s71(sz) € VK,
a contradiction. Thus, sz & K. Thus, f(sx) =0, so f(sz) = f(sx)k(x). A similar
argument shows f(zs) =0, so f(zs) = f(zs)k(x).

Thus, for all z € G and s € V

[f(sx) = flzs)| = [k()|[f (sx) = fzs)] < e|k(z)].

Fix ' € C{7(G) \ {0} and set h(z) = W (z) + h/(x~ ') for all x. Let u; be the
measure induced by A; and pg be the measure induced by As. Since h(z~1y)f(y) €
C.(G x G) C L*(u1 ® p2), by Fubini’s Theorem and the fact h(x~1y) = h(y~'z),
we see

// Ta)f () dya (@) dpea(y // =) f(y) dpa(y) dpn ().

By the left-translation invariance of A, Fubini’s Theorem, and the Riesz-Markov
Representation Theorem,

[ [t 0w an @ ) = [ [ aotoan@) fo) o)
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= [ ([ 1)) £ duat) = 10205

By the left-translation invariance of Asg,

//hw y) f(y) dpa(y) dus (z //h (zy) dua(y) dpa ().
As(B)A /</h () dpia(y )) dp ().

Now, observe by the left-translation invariance of A; and the Riesz-Markov Repre-
sentation theorem

/(/ h(y)f (yz) dm(%)) dpia (y) / (/f yx) dpa (@ ) A= (y)
- / h(y) < / f(z) dul(a:)> dpa(y) = A (f)A2(h).

Since supph C V,

Thus,

[A1(R)A2(f) — A (f)A2(h)| =

/ / W) [f () — F(yo)] dua(y) dpa ()
zeG JyeV

<e / h(y)k(x) dpa(y) dpn () = eAa(R)As (k).
zeG JyeV
A similar argument produces a function j (associated to g as k is to f) such that
|A1(R)A2(g) — Ar(g)A2(h)] < eAa(h)A1(5).
Dividing these inequalities (by As(h)A2(f) and Ay(h)As(g) respectively), we obtain
‘A1(h) B Al(f)‘ < eAl(k) Ai(h) Al(g)‘ < eAl(j)
Aa(h)  Aa(f)] — A2(f) Aa(h)  A2(g)| — Aa(g)
By the triangle inequality, we obtain
Ai(f)  Ai(g) . l:Al(k) " Al(j):|
Aa(f)  Aa(g) |~ [A2(f)  A29)

= 21(9), S0 21 is constant on CF(G)\{0}. Thus, A; = cAs
for some ¢ > 0. [l

and ‘

. . . A
Since € is arbitrary, 1

Definition 3.4 ((Left) Haar Functional). Let G be a locally compact topological
group. A (nonzero) left-translation invariant positive linear functional A on C.(G)
is called a (left) Haar functional of G.

Definition 3.5 ((Left) Haar Measure Space). Let G be a locally compact topo-
logical group and A a (left) Haar functional on G. The measure space (X, M, )
induced by A by the Riesz-Markov Representation theorem is known as a (left)
Haar measure space for G.

Note. Note the Haar functionals are unique up to a constant. If G is compact,
since the Haar measure is finite (by the Riesz-Markov Representation Theorem),
we may normalize the Haar measure p so u(G) =1 (since p(G) is finite).
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4. THE SPECTRAL THEOREM

We now turn to proving the spectral theorem, the second main ingredient in
proving the Peter-Weyl theorem.

Definition 4.1 (Self-Adjoint Operator). Let V be a Hilbert space with inner prod-
uct (-,-) and let 7' : V' — V be a linear operator. We say T is self-adjoint if for all
u,v €V,
(T'(w),v) = (u, T(v)).

Lemma 4.2. Let V be a Hilbert space with inner product (-,-) and let T: V — V
be a self-adjoint operator. Then
(T, z)|

(z, )

IT]| = sup
x#0

Proof. Suppose z € V with x # 0. Then
2
[(Tz,z)| < [Tl || < [T =" = T (x, ).
Thus, M < ||T||- Thus, Sup% <||7T||-
z#0 ’

(z,x

Suppose z € V with x # 0. Then

o) _(tma) |y () =)

Thus, for all € V with = # 0, there exists y € V with ||y|| = 1 such that

(T, z)]
LY _ 1y, ).
i)
Thus, sup% = sup |[(T,y)| (equality holds since |jy||*> = (y,y) = 1). Set
x0T llyll=1
M = sup [(Ty,y)|. Let z,y € V. Then

llyll=1
(T(@+y)z+y) —(T(@—y)z—y) =2Tz,y) + 2Ty, x) = {Tz,y).
Let x,y € V with ||z|| = ||ly|| = 1. Then, applying the Parallelogram Identity,

1 afllz + yl* + ||z — y||*
(Ta,y)| < 71T (@ +y)o+y) + (T = y)z —y)] < (lz +yl - le—yl") _
Finally, setting y = ”;—i”, for all x € V with [|z|| =1,
Tz
(Tz,y) = =Tz .
17|
Thus, ||7]| = sup 1280 = sup |Ta| < sup [(Ty,y)l. Thus, |7 = K20l O
up T = Sup P oy
[l=||#0 llzll=1 llyll=1

Definition 4.3 (Compact Operator). Let V be a normed vector space and let
T : V — V be a linear operator. We say T is compact if T' is bounded and for
every sequence {z;}5°; of points in V, the sequence {T'(x;)}$2, has a convergent
subsequence.

Lemma 4.4. Let V' be a nonzero Hilbert space and let 7' : V' — V be a compact,
self-adjoint, nonzero operator. Then T has an eigenvector with nonzero eigenvalue.
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Proof. By Lemma 4.2, there exists a sequence {x;}52, C V such that ||z;|| =1 for
all i € Nand [(Tx;,z;)| = ||T||. By self-adjointedness and the sesquilinearity of the
inner product, for all x € V,

(Tz,x) = (z,Tx) = Tz, x).

Thus, (Tz;,x;) is real for all ¢ € N. Set A = ||T]|, and note A # 0. Then

lim [(T'z;, z;)] = A\. WLOG, there exists some subsequence {(Tz;;,;;)}52; con-
71— 00

verging to A. Since T is a compact operator, there exists a further subsequence
{Tx;; }32, converging to some vector v € V. For the sake of notation, we set
Yk = Tij, for all £ € N.

Fix k € N. Then, by the Cauchy-Schwarz inequality,

(Tyrs yi) | < Tyl lyell = 1Tyl < 1T ywll = A
Since klirn (Tyr, yr) = A, klim ITyk|| = A. Since T is self-adjoint, for all k € N
— 00 — 00

Ak — Tyrll® = Oy — Ty, Mgk — Ty) = A yell> + [ Tyill” — 20Ty, yi)-
Since lim || Tyl|* = A2 and lim (Tyg, yi) = A,
k—o0 k—o0
Jim A? lyell® + Tkl — 2M(Tyr, y) = A2 4+ X2 — 202 = 0.
— 00
Thus, lim Ayy — Ty, = 0. Since lim Ty, = v, we see lim Ay = v. Thus,
k—o0 k—o00 k—o0
klim yr = A 'v. Since T is a compact operator, it is bounded, and thus, continuous.
—00
Thus, v = klim Ty, = A~ 'Tv. Thus, v = Twv, so v is a eigenvector of T with
— 00
eigenvalue \. (Il

Lemma 4.5. Let V be an inner product space, let T : V' — V be a self-adjoint
operator, and let v be an eigenvector of T with eigenvalue A # 0. Then v € (ker T)*.

Proof. Since v is an eigenvector of T, there exists A such that Tv = Av. Suppose
w € kerT. Then

Mo, w) = (Av,w) = (Tv,w) = (v,Tw) = (v,0) = 0.
Thus, (v,w) =0, so v € (ker T)*. O

Theorem 4.6 (Spectral Theorem For Compact Operators). Let V' be a Hilbert
space with inner product (-, -} and let T': V' — V be a compact self-adjoint operator.
Let 9t = ker 7. Then dimension of M is countable, and for any positive eigenvalue,
the dimension of the corresponding eigenspace is finite. In addition, M has a
orthonormal basis {¢;} of eigenvectors of T' so that T(¢;) = A\;¢;. If M is not
finite-dimensional, then lim A\; = 0.

1—00

Proof. If T = 0, then the statement clearly holds, since 9+ = {0}.

Suppose T is nonzero. Suppose r € N+. Let y € M. Then (Tx,y) = (x,Ty) =
(x,0) = 0, so Tx € N+, Thus, T(MH) € NL. Let  be the collection of all or-
thonormal subsets of 91+ whose elements are eigenvectors of T', partially ordered
by inclusion. By Lemma 4.4, T" has an eigenvector v with nonzero eigenvalue. By
Lemma 4.5, v € M+, so ¥ is nonempty.
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Let {Uy}acs be a chain in . Take U = |J U,. Then U is an orthonormal
ac]

subset of M+ whose elements are eigenvectors of T such that U, C U for all a.

By Zorn’s Lemma, Y has a maximal element S. Set W = cl(span S). Set $ = W+.
Suppose z € M. Since W C N+, we see (v, w) = 0 for all w € W. Thus, z € §.
Thus, 9N C §H.

Let € $ such that Tx # 0. Then T is a nonzero operator on the nonzero
Hilbert space $). Thus, by Lemma 4.4, T has an eigenvector v € ). But then, by
Lemma 4.5, SU{v} € ¥, contradicting the maximality of S since v € S. Thus, for
all z € 9, we see Tz = 0. Thus, $ CN, so $H = N. Thus, W = N-+.

Thus, S = {¢a}acs is an orthonormal basis of M+ consisting of eigenvectors of
T (since S is an orthonormal basis of W). For each a € J, let A, be the eigenvalue
corresponding to ¢,.

Fix € > 0. Suppose there exist infinitely many « € J such that |A,| > €. Then
there exists a sequence {¢q, 122, such that ||Aq,da;l| = [|[T¢a,]| > € for all i € N.
Fix i # j. Since (Ao, Pa;» Aa; Pa,) = 0,

TG0 = Tha, ||” = || A bar — As b ||° = Pews bs — Ay By s A s — Aas Bary)

<>‘041:¢0ti7>‘041:¢0ti> =+ </\aj¢aja)‘aj¢aj> = )‘il ||¢ai H2 + /\Zj H¢0q H2 = /\31 + /\ij'

Thus, for i # j, ||T¢a;, — TPa; H > €1/2. Thus, T'¢,, has no convergent subsequence,
contradicting the compactness of T. Thus, there exist finitely many « € J such
that |A\| > e. In particular, for any positive eigenvalue A > 0, the dimension of the

eigenspace corresponding to A is finite. In addition, 91+ is countable-dimensional,
and lim Ay, =0. (]

11— 00

5. THE PETER-WEYL THEOREM

5.1. Representations and Matrix Coefficients.

Definition 5.1 (Representation). Let V' be a finite-dimensional vector space over
C and let G be a topological group. A representation of GG is a continuous group
homomorphism p : G — GL(V).

Definition 5.2 (Matrix Coefficients). Let V' be a finite-dimensional vector space
over C and let G be a topological group. Suppose p : G — GL(V) is a representation
of G and L : V — C is a linear functional. For each v € V, the function ¢, : G — C
given by

¢u(9) = L(p(9)(v))
is called a matrix coefficient of p. The matrix coefficients of a topological group G

are the collection all matrix coefficients of all representations of G.

Note. Let V be a finite-dimensional complex vector space. Let {eq,...,e,} be
a basis of V and let p : G — GL(V) be a representation of the group G. Let
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n
v =Y v;e;. Then

i=1
p1(g) -+ pl9)) [ur
plov="1 : aE

Pnl (g) e pnn(g) Un
where each of the functions p;; is a matrix coefficient of p given by p;;(g) =
Li(m(g)(ej)), where L; | > vje; | = v;. This is why we use the name matrix

j=1

coeflicient.

Proposition 5.3. If G is a topological group, the matrix coefficients of G are
continuous functions.

Proof. Let ¢ : G — C be a matrix coefficient. Then there exists a finite dimensional
topological complex vector space V, a representation p : G — GL(V), and a linear
functional L : V — C, and a point v € V such that

#(g9) = L(p(g)(v))

for all ¢ € G. Note L is continuous since it is a linear functional on a finite-
dimensional complex vector space. Thus, ¢ is continuous, as it is composed from
continuous maps. O

Definition 5.4 (rg). Let G be a group. We define the action ¢ of G on the space
of complex valued functions on G by

(ra(9)f)(z) = f(zg)
for all z,¢g € G and functions f : G — C.

Theorem 5.5. Let G be a topological group and let f : G — C be a continuous
function. Then f is a matrix coefficient of G if and only if the functions {rg(9) f}seca
span a finite-dimensional complex vector space.

Proof. (=) Suppose f is a matrix coefficient of G. Then there exists a represen-
tation p : G — GL(V'), where V is some finite-dimensional complex vector space
such that f is a matrix coefficient of p. Then there exists some (continuous) linear
functional L : V — C and some v € V such that f(g) = L(p(g)(v)) for all g € G.
Fix h € G. Then for all x € G,

(ra(9)f)(@) = f(zg) = L(p(xg)(v)) = L(p(x)p(g)(v))-
Set u = p(g)v. Then for all z € G,

(ra(9)f)(x) = L(p(x)(u)).
Thus, r¢(g)f is a matrix coefficient of the representation p : G — GL(V) for all
g € G. Let n = dim V. Since the matrix coefficients of p span a vector space of
dimension n? (n dimensions in the choice of L, n dimensions in the choice of v), we
see that {ra(g)f}sec spans a finite-dimensional vector space.

(<) Suppose the functions {r¢(9)f}sec span a finite-dimensional F-vector space
V. Then r¢ : G — GL(V) is a representation of G. Define L : V. — C by
L(¢) = ¢(e) for all ¢ € V. Then L(rg(g)f) = f(g) for all g € G, so f is a matrix
coefficient. O
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5.2. The Peter-Weyl Theorem. We are now at the final steps of proving the
Peter-Weyl theorem. Throughout this subsection, G is a compact group and p is
the left Haar measure on G normalized so p(G) = 1.

Definition 5.6 (Convolution). Suppose f1, fo € C(G). The convolution of f; and
f2, denoted f1 * fo, is given by

(s £)(0) = [ falah™ ) falh) ),
Using substitution of variables h — h~1g, we see

(% fo) = /G () fa(h"g) duh).

In addition, we sometimes perform the convolution of non-continuous functions,
such asif f; € L>®(Q) and f2 € L' (G). For ¢ € C(G), we define Ty by Ty(f) = ¢ f.

Proposition 5.7. For ¢ € C(G), T} is a bounded linear operator on L!(G) and if
f € LY(G), then

1To (Nl < Nlloo 1515 -
Proof. Suppose f1, fo € L'(G) and a1, ay € C. Then

Tylarfs +asfs) = /G S(gh™V)(nfy + o fa)(R)] dpu(h)
—m / o(gh™) 11 (h) dpu(h) + / O(gh™ Fo(h) du(h) = ar Ty(f1) + 0aTy(f2).
Suppose f € L'(G). Then

7). = sup du<h>] < 6l | LA ditt) = 6l 1511

Thus, T is a bounded linear operator on L'(G). O
Lemma 5.8. The following holds: L>(G) C L?(G) C LY(G).
Proof. Suppose f € L°°(G). Then

1/2 1/2
151l = </Gf|2 du) < (/anio du) — /]l < oo

Thus, f € L*(G).
Suppose f € L*(G). Let I : G — C be given by I(g) = 1 for all ¢ € G. By
Holder’s Inequality with p = ¢ = 2,
11l = WS- Il < Wl - My = [ f]ly < oo
Thus, f € L'(G). O
Proposition 5.9. For ¢ € C(G), T} is a bounded operator on L?(G) and
15l < 18]l

In addition, T} is a compact operator on L*(G) and if ¢(g71) = ¢(g), then Ty is
self-adjoint.
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Proof. By the previous lemma, L>(G) C L?(G) C L'(G). In addition, for all
feL(G),

ITsflly < 1 Toflloo < Dl 111 < Nl [1f1]2 -
Thus, T} is a bounded operator on L?(G) with ||T,| < [|¢]|

Let B = {T,(f) : f € LY(G),||fll; < 1}. By the previous proposition, B is
bounded in L*°(G). By Lemma 2.25, since ¢ is continuous and G is compact, for
all € > 0, there exists a neighborhood V of e such that

|6(kg) — p(g)] < €
for all g with k € V. Suppose f € L'(G) and || f||; < 1. Then for all g € G,

(6% F)(kg) |—]/ (kgh™") — o(gh=")] 7 (1) dyu(h)

/C¥|¢(kgh_1) “OHFR] du(h) < ellflly < e

when k € V. Thus, B is equicontinuous. In addition, we immediately see B C C(G)
and B is closed. Thus, by the Arzela-Ascoli Theorem, for any sequence {f;}5°; in
B, there is a subsequence {f;, }52, which converges uniformly (that is, with respect
to the maximum norm). Set f = {T,(f) : f € L*(G),|fll, < 1}. Since il is a
closed subset of B, Ll is sequentially compact with respect to the maximum norm,
and thus, i is sequentially compact with respect to the L?(G) norm. Thus, Ty is a
compact operator.

Suppose ¢(g~ 1) = ¢(g) for all g € G. Then

(o1, fo) = / / b(gh™Y) f1(h)Falg) dg dh

= (f1,Tsf2) / / f1(h)d(hg=1) f2(g) dg dh = (f1, Ty f2).
Thus, in this case, T is self-adjoint. O

Proposition 5.10. Let ¢ € C(G) and let A be an eigenvalue of Ty. Then the
A-eigenspace
V() = {f € L*(G) : T4(f) = M}

is invariant under rg for all g € G.

Proof. Suppose Ty f = Af. Then

(Ts(ra(g / ¢(xh=") f(hg) du(h).
Applying the change of variables h — hg™*,
[ o= gy aun) = | olaah= 10 dulh) = r6(0)(Tof) = Nrolo))(e).
Thus, raf € V(X), so V(A) is invariant under rg. O

Lemma 5.11. For any open set U, there exists ¢ € C{}(G) such that ¢(g) = ¢(g~ 1)

for all g € G and
/fd,uzl.
G
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Proof. Since U is open, u(U) > 0. By the inner regularity of 1 on open sets,
there exists K C V such that 0 < pu(K) < u(U). By Theorem 2.4, there exists
¢* : G — [0,1] such that supp ¢* C U and ¢*(K) = {1}. Then

0 *d .

</G<b < 00

Setting ¢'(g) = ¢T(g) + ¢'(¢g7") for all g € G, ¢'(g9) = ¢T(¢7") and
0 td .
</Gq§ 0w < 00

Thus, by multiplying by a positive real number, we obtain a positive real-valued
function ¢ € Cf(G) such that ¢(g) = ¢(g~!) for all g € G and

L¢W:L 0

Theorem 5.12 (Peter-Weyl Theorem). The matrix coefficients of G are dense in
C(G).

Proof. Let f € C(G) and fix € > 0. Since G is compact, by Lemma 2.25, there
exists a neighborhood U of e such that if g € V, then

|f(zg) — f()] <e/2.
for all x € G. Thus, for g € V,
Ira(9)f — fllo < €/2.

Let p be the left Haar measure on G normalized so p(G) = 1. By Lemma 5.11,
there exists ¢ € Cf (G) such that ¢(g) = ¢(g 1) for all g € G and

L¢M:L

Define Ty, : L%(G) — L?(G) by Ty(f) = ¢=*f. By Proposition 5.2, Ty is a self-adjoint
compact operator on L?(G). Let h € G. Then

6+ F)() /¢ g Ry dyu— £(h /¢ w>‘
— bg)f(R) du<g>] <[ ¢<g>|f<g*1h>—f<h>| du(g)

/qs ) Ira(9)f — £1l duls) /¢ (e/2) du(g) =

Thus, for all f € L*(G), |Tyf — fll, < €/2. If X is an eigenvalue of Ty, let V() be

the A-eigenspace. By the spectral theorem (Theorem 4.6), V() is finite-dimensional

for all A # 0, and are mutually orthogonal and span L?(G). For each eigenvalue \,

let fx be the projection of f on V(\). By orthogonality, > ||f>\||§ = ||f|\§ < o0. By
A

the Cauchy criterion for convergent series, there exists some ¢ > 0 such that

2___ ¢
2 Ihlk < 3pgr

0< || <q
Set f* = > frand f' = Ty(f*). By the spectral theorem (Theorem 4.6), there
R
are finitely many eigenvalues A such that |A\| > ¢, each with finite-dimensional
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corresponding eigenspace. Thus, V = @ V() is finite-dimensional. Clearly, for
[A>=q

any eigenvalue X of Ty, T, (V(A)) € V(A). Thus, since f* € V, we see that f' =

Ty(f*) € V. By Proposition 5.10, V is invariant under r¢, so {ra(g)f }gec C V.

Since V is finite-dimensional, {r¢(g)f'}4cc spans a finite-dimensional vector space.

Thus, by Theorem 5.5, f’ is a matrix coefficient of G. Observe

To(f=1)=Ts | fot D, K|=Ts| D, 5

0<|A|<q 0<|A[<q

By Proposition 5.7 and Lemma 5.8,

ITo(F = Flle <l 17 = 51 <Ml 17 = SN2 = lblloo | D= A5 < 5.
0<|A\|<q

Thus,

" . € €
If = Flloe = IIf = Tof + To(f = oo SNf = TofIIHITo(f = )l < 5T5 =€
Thus, the matrix coefficients of G are dense in C(G). O

Corollary 5.13. The matrix coefficients of G are dense in L*(G).

Proof. By the Peter-Weyl Theorem, the matrix coefficients of G are dense in C(G).
Since C(G) is dense in L?(G), the matrix coefficients of G are dense in L?(G). O
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