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Abstract. We prove the levelwise finite generation of free polynomial G-Tambara functors
in a collection of cases, most notably when G is a finite Dedekind group or when G ∼= Cp⋊Cq,
p > q primes. In the process, we establish the permanence of various finiteness conditions
under box products and norms nG

H of Tambara functors, including a weak Hilbert Basis
Theorem.
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1. Introduction

1.1. Background. Tambara functors are equivariant analogues of commutative rings, ap-
pearing naturally as ring structures associated to systems of representations. Representation
rings, Galois extensions, Burnside rings, and even commutative rings with a G-action in the
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2 THE LEVELWISE FINITE GENERATION OF FREE TAMBARA FUNCTORS

simplest case all give rise to Tambara functors, which are defined as a functor sending finite
G-sets to sets satisfying certain properties.

The notion of a free polynomial Tambara functor, first introduced in [BH18], is the equi-
variant analogue of a free polynomial ring; they represent the functors which send a Tambara
functor to its underlying set in a chosen level. In some sense, these can be viewed as very lage
Burnside rings—indeed, specializing to the generator associated to the G-set X = ∅ recovers
the usual Burnside ring.

Free polynomial Tambara functors both mirror and differ from their classical counterparts
in interesting ways. A result of [Bru05] shows that the bottom level of any free polynomial
Tambara functor A[X] is a free polynomial ring with |X| generators. On the other hand, in
[HMQ22], free Tambara functors are shown to be almost never flat, a striking deviation from
classical algebra.

However, not much is known about the levelwise structure of polynomial Tambara functors
aside from a collection of specialized cases. In [SSW25], the free polynomial Tambara functor on
a top-level generator is shown to be levelwise finitely generated. A weak Hilbert basis theorem
for free polynomial Tambara functors was shown for G = Cp by recent work in [4DS], where a
computation of their Nakaoka spectra is also given. Knowing such results in greater generality
allows us to better apply the wealth of knowledge from classical commutative algebra in the
equivariant setting.

1.2. Main Results. In this paper, we establish several finiteness results for free polynomial
Tambara functors. First, a definition:

Definition (Definition 4.10). A finite group G is said to be Tambara finite if the free polynomial
Tambara functor A[X] is levelwise finitely generated for all finite G-sets X, i.e. A[X](G/L)
is a finite-type Z-algebra for all L ≤ G. We say that G is transitively Tambara finite or just
transitively finite if A[X] is levelwise finitely generated for all transitive finite G-sets X.

The Tambara-finiteness of G = Cp is established in [4DS]; our main theorem is the extension
of this result to a much larger class of groups. More precisely, we prove:

Theorem A (Theorem 6.17). Let G be a finite group satisfying one of the following conditions:
(a) G is a Dedekind group.
(b) Every proper, nontrivial subgroup of G is maximal, and every subgroup is either normal

or satisfies NG(H) = H.
(c) G ∼= D8.

Then G is Tambara finite.

Recall that a Dedekind group is a group whose subgroups are all normal. In particular, the
class of G to which the theorem applies includes all finite abelian groups and the quaternion
group Q8.

This is a fairly strong finiteness condition on A[X]. For general G, we prove a weaker
theorem:

Theorem B (Theorem 6.16). Let G be a finite group and X be a G-set. Then A[X] is
relatively finite-dimensional, in the sense that all restriction maps ResKH are finite ring maps.
In particular, A[X] is module-Noetherian when G is Tambara finite.

The notion of a relatively finite-dimensional Green or Tambara functor is new, due to
[CW25], and it is critical to extending any results obtained for transitive G-sets to general



EMORY SUN 3

G-sets, as it is well-behaved under box products; we will see this in §6. We also prove a weak
Hilbert Basis Theorem which generalizes the corresponding result for G = Cp presented in
[4DS].

Theorem C (Weak Hilbert Basis Theorem, Theorem 6.20). Let G be a Tambara finite group,
X a finite G-set, and T a levelwise Noetherian, relatively finite-dimensional Tambara functor.
Then T [X] = T ⊠A[X] is also levelwise Noetherian and relatively finite-dimensional. If T is
levelwise finitely generated, then so is T [X].

In particular, under the assumptions above, T [X] is Noetherian, i.e. satisfies the ascending
chain condition on Tambara ideals.

Our proof of Theorem A proceeds by first establishing transitive Tambara finiteness; tech-
nical results on the box product of two Tambara functors are developed in §6 to show that
transitively Tambara finite groups are also Tambara finite. In particular, a simple (noninduc-
tive) formula for the box product of an arbitrary number of G-Mackey functors for a finite
group G is developed in §6.

Theorem D (Theorem 6.5). Let G be a finite group, M1, . . . ,MN be a collection of G-Mackey
functors and write M = M1 ⊠ · · · ⊠MN . Fix a subgroup L ≤ G. For any subgroup H ≤ L,
define

SLH =M1(G/H)⊗ · · · ⊗MN (G/H).

Then we have

M(G/L) =

⊕
H≤L

SLH

 /F,

where F is the submodule generated by Frobenius and Weyl relations, defined in §6.

This generalizes previously known formulas for the box product appearing in the literature
for when G is a cyclic p-group; for instance, an inductive formula when G = Cpn is described
in [Maz13]. The formula also has the advantage of having an easy-to-describe ring structure
when the Mi are Tambara functors. We use this to prove the following:

Theorem E. Let G be a finite group and let T,R be two levelwise finitely generated Tambara
functors. Then T ⊠R is levelwise finitely generated.

This is a surprisingly delicate result, as it fails for Green functors—a simple counterexample
when G = Cp is given in §6.

(Bi)incomplete Tambara functors are not considered in this paper, which constitutes a
direction for further investigation. While we suspect that Theorem A holds for all Tambara
functors and all finite groups, it fails for Green functors in general (in the sense that not all
free Green functors for a finite group G are levelwise finitely generated). In light of this fact,
one might ask: what conditions must one impose on the indexing system of an incomplete
Tambara functor to ensure levelwise finite generation?

We note moreover that a better understanding of the levelwise ring structure of the free
polynomial functors A[X] can be achieved if more explicit information were known about
the ring structure of the norms nGH of Tambara functors, H ≤ G. The norm functor nGH is
the left adjoint to the restriction functor ResGH which sends a G-Tambara functor to an H-
Tambara functor via precomposition by induction of H-sets—see [HM19] and [Hoy14]. In fact,
our results show:
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Theorem F (Corollary 7.2, Theorem 7.3). The norm functors nGH preserve levelwise finite
generation over Z for all finite H ≤ G iff all finite groups are Tambara finite. If H ≤ G and
G is a finite group satisfying the hypotheses of Theorem A, then nGH preserves levelwise finite
generation.

This leads to the natural followup question:

Question. Let T be an H-Tambara functor which is levelwise Noetherian/relatively finite-
dimensional. Is the same true for nGHT?

1.3. Acknowledgements. This work was completed as part of the 2025 Mathematics REU
program at the University of Chicago. I am deeply indebted to my REU mentor Noah Wisdom,
for without his guidance this project would not have been possible. I would also like to thank
David Chan, Danika Van Niel, and David Merhle for their patience and willingness to explain
their work to me. I am incredibly grateful to Peter May for his comments, from which the
organization of the paper has benefitted immensely.

2. Review of Mackey and Tambara Functors

2.1. The Polynomial Category. We briefly review the notions of equivariant algebra we
will need and establish some conventions for the rest of this text. For details, we refer the reader
to [Str12]. Fix a finite group G. We use PG to denote the category of bispans of finite G-sets
or category of polynomials of finite G-sets, where objects are finite G-sets and morphisms are
isomorphism classes of polynomials [X

p←− A q−→ B
r−→ Y ], and P+

G the category of spans of finite
G-sets, the subcategory of P+

G containing all the objects and where morphisms are polynomials
above such that q is an isomorphism. Here, an isomorphism of polynomials is described by a
commutative diagram of the form

A B

X Y

A′ B′

∼= ∼=

A composition of polynomials [X
p←− A

q−→ B
r−→ Y ] and [Y

p′←− A′ q′−→ B′ r′−→ Z] is given by
[X ← A′′ → B′′ → Z] in the diagram

A′′ W B′′

A B A′ B′

X Y Z

where B′′ = {(b′, s) | s : q′−1(b′)→ B, rs = p′},

W = B′′ ×B′ A′ = {(a′, s) | s : q′−1
(q′(a′))→ B, rs = p′},

W → B is given by (a′, s) 7→ s(a′), and A′′ =W ×B A (see [Str12]).
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There are three distinguished types of morphisms in PG. For any map f : X → Y of finite
G-sets, we write

Rf = [Y
f←− X 1−→ X

1−→ X], Nf = [X
1←− X f−→ Y

1−→ Y ], Tf = [X
1←− X 1−→ X

f−→ Y ].

These are called restriction, norm, and transfer along f , respectively.
Let g ∈ G. for any H ≤ G, there is a G-isomorphism fg : G/H → G/gHg−1 defined by

xH 7→ xHg−1 = xg−1(gHg−1). Transfer along fg is denoted by Cg, and in fact

Cg = Tfg = Res−1
fg
.

2.2. Mackey and Tambara Functors.

Definition 2.1. A G-semi-Mackey functor is a product-preserving functor P+
G → Set. A

G-semi-Tambara functor is a product-preserving functor PG → Set.

It is well-known that every semi-Mackey functor takes values in commutative monoids, and
that every semi-Tambara functor takes values in commutative semirings.

Definition 2.2. A G-Mackey functor is a semi-Mackey functor which takes values in (abelian)
groups. A G-Tambara functor is a semi-Tambara functor which takes values in (commutative)
rings.

In particular, the group completion of a semi-Mackey functor is a Mackey functor, and the
additive completion of a semi-Tambara functor is a Tambara functor.

There is an equivalent description of Mackey and Tambara functors using only the transitive
G-sets, which we now describe.

Definition 2.3. A G-Mackey functor M consists of the following data:
(a) For each subgroup H ≤ G, an abelian group M(G/H).
(b) For each g ∈ G and H ≤ G, an isomorphism cg : M(G/H) → M(G/gHg−1) (the

dependence on H is supressed in the notation) such that such that ch = id for all
h ∈ H, cgcg′ = cgg′ for all g, g′ ∈ G.

(c) For each subgroup inclusion H ≤ K, group homomorphisms ResKH : M(G/K) →
M(G/H) and TrKH :M(G/H)→M(G/K) such that
(i) ResHH = TrHH = id for all H.
(ii) ResKH ResLK = ResLH and TrLK TrKH = TrLH whenever H ≤ K ≤ L.
(iii) For all g ∈ G,

cg Res
K
H = ResgKg

−1

gHg−1 cg, cg Tr
K
H = TrgKg

−1

gHg−1 cg

whenever H ≤ K.
(iv) (Double coset formula) Whenever H,K ≤ L,

ResLK TrLH =
∑

g∈K\L/H

TrKK∩gHg−1 cg Res
H
H∩g−1Kg .

A semi-Mackey functor is obtained by relaxing the condition that each M(G/H) is an abelian
group, requiring only a commutative monoid instead.

Definition 2.4. A G-Tambara functor T consists of the following data:
(a) For each subgroup H ≤ G, a commutative ring T (G/H).
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(b) For each subgroup inclusion H ≤ K, maps ResKH : T (G/K) → T (G/H), TrKH :
T (G/H) → T (G/K), and NmK

H : T (G/H) → T (G/K), and for each g ∈ G, iso-
morphisms cg : T (G/H)→ T (G/gHg−1) such that
(i) The family of maps ({ResKH}, {TrKH}, {cg}) turns T into a Mackey functor with

respect to the additive group structure.
(ii) The family of maps ({ResKH}, {NmK

H}, {cg}) turns T into a semi-Mackey functor
under the multiplicative monoid structure.

(c) (Exponential formula) For any exponential diagram

X A X ×Y ΠfA

Y ΠfA

of finite G-sets, the following diagram commutes:

T (X) T (A) T (X ×Y ΠfA)

T (Y ) T (ΠfA)

Nm

Tr Res

Nm

Tr

Remark 2.5. The maps ResKH ,Tr
K
H ,Nm

K
H are the maps induced by restriction, transfer, and

norm along the projection G/H → G/K, while cg is the map induced by Cg. Note that the
maps cg induce an action of WH := N(H)/H on T (G/H), where N(H) is the normalizer of
H in G; WH is the Weyl group of H.

Remark 2.6. Only (c) is not expressed precisely in terms of the data we have given, as there
is no succinct way to express the exponential formula using only transitive G-sets. When X
is not transitive, say X =

∐
iG/Hi, we extend T (X) =

∏
i T (G/Hi); there is also a way

to extend the transfer and norm maps using only the data given on the transitive sets. A
consequence of the exponential formula we will use repeatedly is Frobenius reciprocity,

xTrKH(y) = TrKH(ResKH(x)y)

whenever defined.

Remark 2.7. In most examples, we will represent the data of a Mackey or Tambara functor via
its Lewis diagram, a diagram of all the T (X) for transitive X with only the maps ResKH ,Tr

K
H , cg

labeled.

Remark 2.8. We will occasionally reference the notion of a (commutative) Green functor, a
Mackey functor taking values in commutative rings such that the ResKH and cg are ring maps,
and such that transfer and restriction satisfy the Frobenius reciprocity relations above. In
particular, the data of a Green functor does not come with norm maps NmK

H .

3. Free Polynomial Tambara Functors

3.1. Basic Properties of Free Tambara Functors. For any two finite G-sets X,Y , the
set of morphisms PG(X,Y ) has a semiring structure, with addition given by

[X ← A→ B → Y ] + [X ← A′ → B′ → Y ] = [X ← A ⊔A′ → B ⊔B′ → Y ],
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multiplication given by

[X ← A→ B → Y ] · [X ← A′ → B′ → Y ] = [X ← (A×Y B′) ⊔ (A′ ×Y B)→ B ×Y B′ → Y ],

and additive and multiplicative identities given by

[X ← ∅→ ∅→ Y ], [X ← ∅→ Y → Y ]

respectively (see [HMQ22, Theorem 2.14]).

Definition 3.1. Given a finite G-setX, the free polynomial Tambara functor or the polynomial
Tambara functor on X is the additive completion of the representable functor

PG(X,−) : PG → Set.

In particular, we have a natural isomorphism

HomGTamb(A[X], T ) ∼= T (X)

for any G-Tambara functor T and finite G-set X. When X = ∅, A := A[∅] is the Burnside
Tambara functor, the initial object in the category of Tambara functors.

We cite some basic facts about the structure maps in a polynomial Tambara functor.

Lemma 3.2 ([HMQ22, Proposition 3.32]). Let H ≤ G, f : Y → Z be a map of finite G-sets.
Then Tf sends

[G/H ← A→ B
r−→ Y ] 7→ [G/H ← A→ B

f◦r−−→ Z],

while Rf sends

[G/H ← A→ B → Z] 7→ [G/H ← A×Z Y → B ×Z Y → Y ].

Let H be a subgroup of G. In order to understand A[G/H], it suffices to understand the
structure of A[G/H](G/L) = PG(G/H,G/L) for L ≤ G. By splitting up the direct summands
of a polynomial G/H → G/L, we see that every element of A[G/H](G/L) is uniquely a sum
of (isomorphism classes of) polynomials of the form

G/H ←
∐
i

G/Hi → G/K → G/L,

i.e. a polynomial G/H ← A→ B → G/L where B is transitive. We will call such a polynomial
irreducible. It is clear that isomorphism classes of irreducible polynomials form a Z-basis for
PG(G/H,G/L).

Recall the following definition:

Definition 3.3. A finite group G is said to be a Dedekind group if all subgroups are normal.

The only facts about Dedekind groups which will be relevant to us are the following.
(a) There exists a G-equivariant map G/H → G/K iffH ≤ K. In this case, the equivariant

map G/H → G/K sending H to gK is well-defined for all g ∈ G.
(b) For any two subgroups H,K ≤ G, HK = KH is also a subgroup.
(c) All double cosets H\G/K are the same as the one-sided cosets G/HK = HK\G.

When G is a Dedekind group, any irreducible polynomial of the form

G/H ←
∐
i

G/Hi → G/K → G/L
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must satisfy Hi ≤ K ≤ L and Hi ≤ H. Furthermore, by composing appropriate elements of G
to G/K and each factor of G/Hi, we can arrange for the representative for the isomorphism
class of the diagram above to be of the form

G/H
∐
iG/Hi G/K G/L

⊔ifi ⊔i pr pr

where pr is generic notation for the natural projection G/S → G/T whenever S ≤ T are
subgroups and f : G/H → G/K denotes the equivariant map sending H to fK. Thus, an
element A[G/H](G/L) can be represented by some tuple ((H1, f1), . . . , (Hn, fn))K , where fi
are elements of G/H which keep track of the image of Hi under the component G/Hi → G/H.
Note here that the order of the (Hi, fi) does not matter, as shuffling the order gives an
isomorphic polynomial.

Lemma 3.4. Two tuples ((H1, f1), . . . , (Hn, fn))K and ((H ′
1, g1), . . . , (H

′
m, gn))K yield iso-

morphic polynomials iff K = K ′, m = n, we have H ′
i = Hi up to reordering, and the following

condition is true: there exists some ℓ ∈ L/K and lifts ℓ1, . . . , ℓn ∈ L such that

ℓifi = gi

up to reordering.

Proof. The condition that K = K ′ and {Hi} = {H ′
i} is obvious, since G/K ∼= G/K ′ as G-

sets iff K = K ′. Thus we want to determine when there exists an isomorphism of irreducible
polynomials ∐

iG/Hi G/K

G/H G/L

∐
iG/Hi G/K

⊔ifi

⊔ri

⊔i pr

pr

s

⊔igi

⊔i pr

pr

We see that in order for the diagram to commute, we must have s ∈ L/K, ri ∈ L/Hi must
lift s ∈ L/K, and fi = rigi. □

Remark 3.5. This equivalence relation is hard to describe cleanly and is a source of difficulty
for tracking the combinatorics involved in analyzing the ring structure of A[G/H]. We will
later isolate some special cases for which this task is easier.

3.2. A Levelwise Grading for Polynomials. The polynomial Tambara functors admit a
levelwise N-grading for arbitrary finiteG; whenG is a Dedekind group, an explicit computation
offers a slight refinement.

Definition 3.6. For any finite group G, let OwG consist of the pairs

(n,K)

where K ≤ G and n ∈ Z≥0 is a nonnegative integer. OwG assembles into a commutative monoid
under the operation

(n,K) + (m,L) = (n+m,K ∩ L).
In other words, OwG ∼= N × OG as a monoid, where OG is the monoid of subsets of G under
intersection.
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Definition 3.7. Let G be a finite group and b = [G/H ← A→ B → G/L] be an irreducible
polynomial, i.e. one where B is transitive. We define the degree of b to be the degree of A→ B
as a map of G-sets.

Definition 3.8. When G is Dedekind, define the degree of an irreducible polynomial

((H1, f1), . . . , (Hn, fn))K

to be (∑
i

|K|
|Hi|

,K

)
∈ OwL ⊆ OwG.

Here, the integer
∑

i|K|/|Hi| is again the degree of the map∐
i

G/Hi → G/K.

For the rest of this section, we will assume by default that G is Dedekind; however, most
of the results are analogous in the general case and can be obtained by simply dropping the
non-numerical component of OwL .

It follows immediately from definition that

A[G/H](G/L) ∼=
⊕
d∈Ow

L

Sd,

as groups, where Sd is the group generated by the irreducible polynomials of degree d ∈ OwL .
This also gives a description of A[G/H]/(G/L) as a graded ring.

Lemma 3.9. ((H1, f1), . . . , (Hn, fn))K · ((H ′
1, g1), . . . , (H

′
m, gm))K′ is a homogeneous element

of degree

deg((H1, f1), . . . , (Hn, fn))K + deg((H ′
1, g1), . . . , (H

′
m, gm))K′

=

∑
i

|K|
|Hi|

+
∑
j

|K ′|
|H ′

j |
,K ∩K ′


Proof. Recall that multiplication on polynomials is given by

[X ← A→ B → Y ] · [X ← A′ → B′ → Y ] = [X ← (A×Y B′) ⊔ (A′ ×Y B)→ B ×Y B′ → Y ].

If A→ B is of degree n, then so is A×Y B′ → B×Y B′, as pullback preserves degrees; the same
holds for A′ → B′. Hence (A×Y B′) ⊔ (A′ ×Y B)→ B ×Y B′ is of degree n+m, and the fact
that the associated subgroup is K ∩K ′ follows from G/K ×G/L G/K ′ ∼=

∐
G/(K ∩K ′). □

Remark 3.10. Note that the elements of degree (0,−) form a subring which we temporarily
denote by A0[G/H](G/L). This ring is generated by irreducible polynomials of the form

G/H ← ∅→ G/K → G/L,

so we can identify the Z-basis with the poset OL of subgroups K ≤ L.
In particular, A0[G/H](G/L) has finite Z-rank. Note moreover that since polynomials of

the form
G/H ← ∅→ X → G/L

where X → G/L is an equivariant map of finite G-sets are in bijection with polynomials ∅→
G/L, we have an isomorphism between A0[G/H](G/L) and A(G/L), where A is the Burnside
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ring A = A[∅] = P(∅,−). In other words, the sub-Tambara functor P(∅,−) ↪→ P(G/H,−)
has as levelwise image the elements of degree (0,−).

Remark 3.11. The elements of degree (−, L) also form a subring of A[G/H](G/L), which
we denote by A0[G/H](G/L). This ring is generated by irreducible polynomials of the form

G/H ←
∐
i

G/Hi → G/L→ G/L.

In particular, the elements of degree (−, L) forms an N-graded subring, since

(n,L) + (m,L) = (n+m,L)

in OwL . It is easy to describe the multiplication of such irreducible polynomials: we have

((Hi, fi)i∈I)L · ((H ′
j , gj)j∈J)L = ((Hi, fi)i∈I , (H

′
j , gj)j∈J)L.

In particular, we see that A0(G/L) is a finite type Z-algebra. The equivalence relation in
Lemma 3.4 is also simple; the set of representatives for the equivalence is given by orbits of
collections ((H1, f1), . . . , (Hn, fn))L under the Ln-action

((H1, f1), . . . , (Hn, fn))L 7→ ((H1, ℓ1f1), . . . , (Hn, ℓnfn)),

so each of the fi is a well-defined element of G/HL. While A0 is preserved by restriction and
norm maps, it is not preserved by transfer, so it is not a sub-Tambara functor.

Example 3.12. For G = Cp, we have A0[Cp/Cp](Cp/Cp)
∼= Z[t]/(t2− pt), where here t is the

element corresponding to the polynomial

Cp/Cp ← ∅→ Cp/e→ Cp/Cp

while A0[Cp/Cp](Cp/e)
∼= Z. On the other hand, we have A0[Cp/Cp](Cp/e) = Z[x], where

here x is the element corresponding to the polynomial

Cp/Cp ← Cp/e→ Cp/e→ Cp/e.

A0[Cp/Cp](Cp/Cp) = Z[x], where x is the element corresponding to the polynomial

Cp/Cp ← Cp/Cp → Cp/Cp → Cp/Cp

Lemma 3.13. The Weyl group action on A[G/H](G/L) preserves degrees.

Proof. Obvious. □

Lemma 3.14. Let L ≤ L′. Tr : A[G/H](G/L)→ A[G/H](G/L′) and Res : A[G/H](G/L′)→
A[G/H](G/L) are graded homomorphisms, in the sense that there are monoid homomorphisms
ϕ : OwL → OwL′ and ψ : OwL′ → OwL such that

Tr (A[G/H](G/L)d) ⊆ A[G/H](G/L)ϕ(d), Res
(
A[G/H](G/L′)d′

)
⊆ A[G/H](G/L)ψ(d′)

for any d ∈ OwL , d′ ∈ OwL′ . Explicitly,

ϕ(n,K) = (n,K), ψ(n,K) = (n,K ∩ L) .

Proof. Observe that ϕ, ψ indeed define monoid homomorphisms. The fact that Res and Tr are
graded in this way more or less follows immediately from the explicit description of transfer
and restriction in Lemma 3.2, the fact that pullback preserves degrees, and the fact that
G/K ×G/L′ G/L =

∐
G/(K ∩ L). □

We summarize these observations in the following, more general lemma.
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Lemma 3.15. Let F be a collection of subgroups of L and let OwL,F be the subset of OwL
consisting of all pairs of the form (n,K) where K ∈ F .

(a) If L ∈ F and F is closed under intersections, then the elements of degree in OwL,F form
a subring of A[G/H](G/L).

(b) If for every K ∈ F and K ′ ≤ L, K ∩ K ′ ∈ F , then the elements of degree in OwL,F
form an ideal of A[G/H](G/L). In particular, any family of subgroups F which is
“downwards closed” in the sense that K ′ ∈ F whenever K ′ ≤ K and K ∈ F defines an
ideal of A[G/H](G/L).

(c) For L ≤ L′, the image of transfer Tr : A[G/H](G/L) → A[G/H](G/L′) is the ideal
corresponding to the family F = {K ≤ L}.

Proof. Obvious. □

Remark 3.16. The subring A0[G/H](G/L) can be identified with the quotient of A[G/H](G/L)
by the ideal corresponding to the family F = {K ⪇ L}.

Remark 3.17. NmL′
L : A[G/H](G/L)→ A[G/H](G/L′) is not generally graded.

Remark 3.18. None of the results on the grading of A[G/H](G/L) depend on the transitivity
of X = G/H. In particular, for any finite G-set X, the ring A[X](G/L) is graded over OwL in
the way described: an irreducible polynomial

X ←
∐
i

G/Hi → G/K → G/L

has degree (
∑

i|K|/|Hi|,K), which turns A[X](G/L) into a graded ring for each L ≤ G.
Restriction and transfer maps for A[X] are also graded in the same way. For now, we call this
the naive grading on A[X]. In §6, we will show that the gradings on A[G/H] for transitive
G/H induce a grading on A[X] for arbitrary G-sets X, which coincides with the naive grading.

4. Finite Generation for Dedekind Groups

4.1. Finiteness Results for General G. The main goal of this section is to prove that the
polynomial Tambara functors A[G/H] are levelwise finitely generated for Dedekind G and
relatively finite-dimensional for general G. First, some definitions.

Definition 4.1. Let T be a G-Tambara functor and let R be a T -algebra, i.e. R is a G-
Tambara functor equipped with a morphism f : T → R. We say that R is levelwise finitely
generated over T if each R(G/H) is a finite type T (G/H)-algebra. When T = A = A[∅] is
the Burnside Tambara functor, we simply say that R is levelwise finitely generated.

Remark 4.2. Since A is levelwise a finite Z-module, R is levelwise finitely generated iff each
R(G/H) is a finite type Z-algebra.

Definition 4.3 ([CW25, Definition 3.30]). A Green or Tambara functor R is relatively finite-
dimensional if for all H ≤ K ≤ G, the restriction map ResKH : R(G/K)→ R(G/H) is a finite
ring map. Equivalently, ResGH : R(G/G)→ R(G/H) is a finite ring map for all H ≤ G.

Relative finite-dimensionality is a well-behaved finiteness condition on Green and Tambara
functors which imposes many niceties on their category of modules (see [CW25, §3] for more
details); we will use it extensively in §6. Next, we make some remarks on finite generation for
general finite groups G.
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Theorem 4.4 ([Bru05, Theorem A]). Let G be a finite group, X a finite G-set. Then A[X](G/e)
is a free polynomial ring over Z on |X| generators.

In particular, A[X](G/e) is a finite type Z-algebra. We also cite a fact about Tambara
functors we will use repeatedly.

Lemma 4.5 ([SSW25], Lemma 3.3). Let G be a finite group and T a G-Tambara functor. For
all H ≤ K, restriction ResKH : T (G/K)→ T (G/H) is an integral ring map.

Definition 4.6. Let G be a finite group, H,L ≤ G. Let A0[G/H](G/L) denote the subring
of A[G/H](G/L) generated by those irreducible polynomials

G/H ← A→ B → G/L

such that B → G/L is an isomorphism.

This is indeed a subring, since if B → G/L and B′ → G/L are isomorphisms, then so is
B ×G/L B′ → G/L. Note that for Dedekind G, this coincides with our previous definition of
A0.

Lemma 4.7. A0[G/H](G/L) is a finitely generated Z-algebra.

Proof. An irreducible polynomial in A0[G/H](G/L) is of the form

G/H ←
∐
i

G/Hi → G/g−1Lg → G/L.

By replacing the G/Hi with isomorphic G-sets, we may assume that all Hi ≤ g−1Lg, so that
it has a representative of the form

G/H
⊔ifi←−−

∐
i

G/Hi → G/g−1Lg
g−1

−−→ G/L,

where fi : G/Hi → G/H is the unique G-map sending Hi ∈ G/Hi to fiH ∈ G/H (here
Hi ≤ fiHf

−1
i ) and each G/Hi → G/g−1Lg is the natural projection. Multiplication of two

such polynomials gives

[G/H
⊔ifi←−−

∐
i

G/Hi → G/g−1Lg
g−1

−−→ G/L]

· [G/H
⊔jgj←−−−

∐
j

G/H ′
j → G/g−1Lg

g−1

−−→ G/L]

= [G/H
⊔ifi⊔jgj←−−−−−

∐
i,j

G/Hi ⊔G/H ′
j → G/g−1Lg

g−1

−−→ G/L],

where we are using the fact that G/g−1Lg ×G/L G/g−1Lg = G/g−1Lg and G/Hi ×G/L
G/g−1Lg = G/Hi ×G/g−1Lg G/g

−1Lg = G/Hi. Hence, we can take as a set of generators
all irreducible polynomials of the form

G/H ← G/H ′ → G/g−1Lg → G/L

for varying g ∈ G and H ′ ≤ g−1Lg. □

Lemma 4.8. A[G/H] is relatively finite-dimensional.
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Proof. Write T = A[G/H] and T 0(G/L) = A0[G/H](G/L) for brevity. We prove that ResGL
is a finite ring map by induction on the size of L. Since T (G/e) is a finite type Z-algebra by
Theorem 4.4, ResGe is a finite type ring map, hence a finite ring map since all restrictions maps
are integral (Lemma 4.5).

Now suppose L ≤ G. It is clear from definition that every irreducible polynomial in T (G/L)
is either in T 0(G/L) or is of the form TrLK(x) for some x ∈ T (G/K), K ⪇ L. By Frobenius
reciprocity, ResGL (y) where y ∈ T (G/G) acts by multiplication on TrLK(x) via

ResGL (y) Tr
L
K(x) = TrLK(ResGK(y)x),

so it follows that as a T (G/G)-module, T (G/L) is generated by T 0(G/L) and modules isomor-
phic to quotients of T (G/K) for K ⪇ L. By assumption, the T (G/K) are all finite T (G/G)-
modules, so it suffices to show that the T (G/G)-module generated by T 0(G/L) in T (G/L) is
contained in some finite T (G/G)-module as well. But T 0(G/L) is a finite type Z-algebra, so
it generates a finite type subalgebra over T (G/G) in T (G/L). Since this subalgebra is integral
over T (G/G) by Lemma 4.5 again, it must be finite over T (G/G), completing the proof. □

Corollary 4.9. A[G/H] is levelwise finitely generated over Z iff A[G/H](G/G) is a finite
type Z-algebra.

Proof. The only if direction is obvious. The converse follows from the fact that any algebra
which is module-finite over a finite type Z-algebra is also a finite type Z-algebra. □

4.2. Dedekind G, Transitive Case. We introduce some auxiliary terms on levelwise finite
generation.

Definition 4.10. Let G be a finite group. We say that G is Tambara finite if A[X] is levelwise
finitely generated for all finite G-sets X, and transitively Tambara finite or just transitively
finite if A[X] is levelwise finitely generated for all transitive finite G-sets X.

We will show in §6 that transitively Tambara finite groups are Tambara finite. For the rest
of this section, assume that G is a finite Dedekind group; our goal now is to show (Theorem
4.14) that G is transitively finite.

Lemma 4.11. Let H ≤ H ′. The morphism of Tambara functors A[G/H]→ A[G/H ′] induced
by restriction along the projection morphism G/H → G/H ′ contains in its levelwise image the
set of irreducible polynomials ((Hi, fi)i∈I)K where Hi ≤ H.

Proof. This follows because the composition of the polynomials

G/H ′ pr←− G/H → G/H → G/H, G/H
⊔fi←−−

∐
i

G/Hi → G/K → G/L

is the polynomial
G/H ′ pr ◦⊔fi←−−−−

∐
i

G/Hi → G/K → G/L. □

The punchline is that for G Dedekind, the Hi must all collectively factor through H ∩K—
thus, for the finite generation of A[G/H](G/L), we only need to consider (by induction on the
size of H) those irreducible polynomials with H ≤ K ≤ L (so in particular, H ≤ L).

Lemma 4.12. When H ≤ K ≤ L, the isomorphism class of the polynomial ((Hi, fi)i∈I)K in
A[G/H](G/L) is determined by the reduction of the fi mod K/H.

Proof. Apply Lemma 3.4 with s = 1. □
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Thus, we can view our polynomials ((Hi, fi)i∈I)K as having fi ∈ G/K.

Lemma 4.13. Let H ≤ K ≤ K ′ ≤ L. Then

((Hi, fi)i∈I)K · ((H ′
j , gj)j∈J)K′ =

∑
s∈L/K′

(Hi, fi)i∈I ⊔
∐
j∈J

r∈L/K
r 7→s

(H ′
j , rgj)


K

in A[G/H](G/L), where here ((H1, f1) ⊔ (H2, f2)) just means the pair ((H1, f1), (H2, f2)).

Proof. We will unravel the multiplication rule

[X ← A→ B → Y ] · [X ← A′ → B′ → Y ] = [X ← (A×Y B′) ⊔ (A′ ×Y B)→ B ×Y B′ → Y ]

in this case. Here
B ×Y B′ = G/K ×G/L G/K ′ ∼=

∐
s∈L/K′

G/K,

where the identification is given by noting that G/K ×G/L G/K ′ is the union of orbits of the
form

G/K ×G/L G/K ′ =
∐

s∈L/KK′

G · (K, sK ′) =
∐

s∈L/K′

G

K
· (K, sK ′).

We also have

A×Y B′ =

(∐
i

G/Hi

)
×G/L G/K ′ =

∐
i

G/Hi ×G/L G/K ′

=
∐
i

∐
r∈L/K′

G

Hi
· (Hi, rK

′),

A′ ×Y B =

∐
j

G/H ′
j

×G/L G/K =
∐
j

G/H ′
j ×G/L ×G/K

=
∐
j

∐
r∈L/K

G

H ′
j

· (rH ′
j ,K).

Which components of A×Y B′ and A′ ×Y B lie over the component G/K corresponding to a
given s ∈ L/K ′? These are the components of A×Y B′ with

(Hi, rK
′) 7→ (K, sK ′)

and the components of A′ ×Y B with

(rH ′
j ,K) 7→ (K, sK ′).

In the first case we need r ∈ L/K ′ to map to s ∈ L/K ′ and in the second case we need
r ∈ L/K to map to s ∈ L/K ′.



EMORY SUN 15

Under this identification, we then see that the product is a sum of irreducible polynomials,
indexed over s ∈ L/K ′, of the form

G/H ←

(∐
i∈I

G/Hi

)
⊔

 ∐
i∈I

r∈L/K
r 7→s

G/H ′
j

→ G/K → G/L.

Now we analyze each component G/Hi → G/H and G/H ′
j → G/H. For a given i ∈ I and

s ∈ L/K ′, the element in the component G/Hi of A ×Y B′ lying above the s piece G/K
corresponding to Hi ∈ G/Hi is (Hi, rK

′). The map to G/H is then projection onto the
first coordinate followed by fi, so we see that G/Hi ∋ Hi 7→ fiH ∈ G/H. Similarly, for a
given j ∈ J and r ∈ L/K mapping to s ∈ L/K ′, the element in A′ ×Y B corresponding to
H ′
j ∈ G/H ′

j is (rH ′
j ,K). The map to G/H is projection onto the first coordinate followed by

gi, so G/H ′
j ∋ H ′

j 7→ rgiH ∈ G/H. This completes the proof. □

Theorem 4.14. Let G be a finite Dedekind group. Then G is transitively finite, i.e. A[G/H]
is levelwise finitely generated for any H ≤ G.

Proof. By Corollary 4.9, it suffices to show that A[G/H](G/G) is finitely generated. Now fix an
N large enough so that for any polynomial ((Hi, fi)i∈I)K , whereH ≤ K and deg((Hi, fi)i∈I)K =
(n,K) with n > N , there exists someH0 ∈ {Hi}i∈I which appears more than 1+2+· · ·+|G/K|
times in the tuple above. We take as generators the set of all polynomials with degree (n,K)
such that n ≤ N , as well as the all the polynomials of the form ((Hi, fi)i∈I)K′ where K ≤ K ′

and |I| ≤ |G/K|. (Because these polynomials have degree (n,K ′) with n bounded, we can
forget about this extra class of generators when N is sufficiently large.) We show that any
polynomial with degree (n,K) with n > N can be written as a combination of the generators
above and polynomials of degree (n′,K) with n′ < n, which suffices by induction on n (and
our remarks above on the reduction to the case H ≤ K).

Let b = ((Hi, fi)i∈I)K be any such polynomial and let H0 be as above. Writing (H0, f1),
. . ., (H0, fm) for all the pairs in our collection associated to H0, we have m > |G/K| by
assumption. Fix this H0 for the rest of the proof.

Now let’s fix some notation. Given any polynomial b and f ∈ G/K, let mf (b) denote the
number of times that (H0, f) appears in b. Let v⃗(b) ∈ NG/K (here NG/K is the set of N-valued
vectors indexed in elements of G/K) denote the vector whose f coordinate has value mf (b).
Similarly, given any vector v⃗ ∈ NG/K , let mf (v⃗) denote the value of v⃗ at the f coordinate.
Furthermore, there is an G/K action on NG/K given by mf (g · v⃗) = mg−1f (v⃗).

If w⃗ ∈ NG/K with w⃗ ≤ v⃗(b) (mf (w⃗) ≤ mf (b) for all f ∈ G/K), write b/w⃗ for the polynomial
obtained by deleting mf (w⃗) copies of (H0, f) from b for each f ∈ G/K. If w⃗ ∈ NG/K , we let
bK′(w⃗) denote the irreducible polynomial

bK′(w⃗) =

 ∐
f∈G/K

∐
mf (w⃗)

(H0, f)


K′

i.e. (H0, f) appears in bK′(w⃗) exactly mf (w⃗) times.
Our proof strategy is a generalization of the corresponding proof for G = Cp in [4DS]. We

adopt analogous notation: for any j ≥ 0 let

Sj(v⃗) = {f ∈ G/K : mf (v⃗) = j}
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and define Sj(b) = Sj(v⃗(b)). Similarly define

Tj(v⃗) =
⋃
i≥j

Si(v⃗), Tj(b) = Tj(v⃗(b)).

Given any subset A ⊆ G/K, let e⃗(A) ∈ NG/K be the vector with

mf (e⃗(A)) =

{
1 f ∈ A,
0 otherwise.

We use a nested induction argument. First, we induct on |S0(b)|. The base case |S0(b)| = 0
follows from the fact that

b = (b/e⃗(G/K)) · bG(e⃗({1}))
by the formula given in Lemma 4.13. We then have the inductive hypothesis

(0) Suppose there is an m0 > 0 such that b is a combination of lower-degree terms and
generators whenever |S0(b)| < m0.

We prove the inductive step for |S0(b)| = m0 by induction on |S1(b)|. At the base case |S1(b)| =
0, we have G/K = T1(b) ⊔ S0(b) = T2(b) ⊔ S0(b). Let K ′/K be the stabilizer of T2(b) under
the action of G/K, so that T2(b) is the union of cosets

T2(b) = (g1K
′/K) ⊔ · · · ⊔ (gtK

′/K).

Note that by assumption S0 ̸= ∅ so K ′/K ̸= G/K. Then we have

b = (b/e⃗(T2(b))) · bK′(e⃗({g1, . . . , gt}))

−
∑

0̸=s∈G/K′

b

v⃗(b)− e⃗(T2(b)) + ∑
r∈G/K
r 7→s

r · e⃗({g1, . . . , gt})


= (b/e⃗(T2(b))) · bK′(e⃗({g1, . . . , gt}))

−
∑

0̸=s∈G/K′

b (v⃗(b)− e⃗(T2(b)) + r · e⃗(T2(b)))

again from the formula in Lemma 4.13, and where on the last line we simply choose for each
s ∈ G/K ′ an element r ∈ G/K mapping to s. Since no nonzero element of s ∈ G/K ′ stabilizes
T2(b) and T2(b)∩S0 = ∅, any r ∈ G/K mapping to nonzero s ∈ G/K ′ has (r·T2(b))∩S0(b) ̸= ∅,
so we must have

|S0 (v⃗(b)− e⃗(T2(b)) + r · e⃗(T2(b)))| < |S0(b)| = m0

for each such r. Thus by the inductive hypothesis (0) we have established the base case for
|S1(b)|. We now have the inductive hypothesis

(1) Suppose there is an m1 > 0 such that b is a combination of lower degree terms and
generators whenever |S1(b)| < m1.

We prove the inductive step for |S1(b)| = m1 by induction on |S2(b)|. At the base case
|S2(b)| = 0, we have G/K = T2(b) ⊔ S1(b) ⊔ S0(b) = T3(b) ⊔ S1(b) ⊔ S0(b). Again let K ′/K be
the stabilizer of T3(b) under the G/K action, so that T3(b) is the union

T3(b) = (g1K
′/K) ⊔ · · · ⊔ (gtK

′/K).
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By assumption S1, S0 ̸= ∅, so K ′/K ̸= G/K and

b = (b/e⃗(T3(b))) · bK′(e⃗({g1, . . . , gt}))

−
∑

0̸=s∈G/K′

b (v⃗(b)− e⃗(T3(b)) + r · e⃗(T3(b)))

Since no nonzero element of s ∈ G/K ′ stabilizes T3(b), any r ∈ G/K mapping to a nonzero
element in G/K ′ has (r · T3(b)) ∩ (S1 ⊔ S0) ̸= ∅, so the vector

|v⃗(b)− e⃗(T3(b)) + r · e⃗(T3(b))|
either has |S1| < m1 or |S0| < m0. We continue with the inductive hypothesis

(2) Suppose there is an m2 > 0 such that b is a combination of lower degree terms and
generators whenever |S2(b)| < m2.

Continue in this way; the base case for the inductive hypothesis (i) is implied by the inductive
hypotheses for (j) with j < i. Proving the inductive step for any (i) establishes the inductive
step for (0) and thus completes the proof.

Eventually, we arrive at the inductive hypothesis for (M), where M = (
∑

f∈G/K mf (b))+1.
The base case is proved by the inductive hypotheses for (j), j < M , so we prove the inductive
step: if mM > 0 and |SM (b)| = mM , then b is a combination of lower degree terms and
generators. But mM > 0 and |SM (b)| = mM cannot both be true at the same time, so the
inductive step is vacuous; hence only the base case matters and the theorem is proved. □

We remark that the proof of this theorem actually gives us a little bit more:

Lemma 4.15. Let G be a finite group, and let H ≤ K ≤ G be normal subgroups of G. There
exist a finite set S of polynomials in R = A[G/H](G/G) such that every irreducible polynomial
of the form

G/H ←
∐

G/Hi → G/K → G/G

has an algebraic expression by elements of S.

Most of the notation from the proof carries over; in particular, we can again represent all
irreducible bispans of the above form via

G/H
⊔fi←−−

∐
i

G/Hi → G/K → G/G,

where the fi assmeble into some vector v⃗ ∈ NG/K . The main point in the proof where some
care needs to be taken is in the decomposition of Tn(b) into right cosets

Tn(b) = (K ′/K)g1 ⊔ · · · ⊔ (K ′/K)gt,

since the stabilizer K ′/K of Tn(b) under the G/K-action need not be a normal subgroup of
G/K, and the observation that the multiplication formula in Lemma 4.13

bK(v⃗) · bK′(w⃗) =
∑

s∈G/K′

b

v⃗ + ∑
r∈G/K
r 7→s

r · w⃗


has the effect of adding all elements of the form s(K ′/K)gj to the tuple given by v⃗, where here
the elements gj ∈ G/K are specified by the vector w⃗ ∈ NG/K . We will use this more general
lemma in §5, when we prove finite generation in special cases.
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5. Finite Generation in Special Cases

5.1. A Strong Constraint on G. Consider the following condition on a finite group G:
(∗) Every proper, nontrivial subgroup ofG is maximal, and every subgroup is either normal

or satisfies NG(H) = H.
In particular, any two proper subgroups have trivial intersection. In this section, we prove
directly that G is transitively Tambara finite when G satisfies (∗) or when G ∼= D8, the
dihedral group of order 8. The following lemma gives a class of groups which satisfy (∗) (in
particular, these include the dihedral groups D2p of order 2p for p > 2 a prime).

Proposition 5.1. Let p > q be primes and suppose ϕ : Cq → Aut(Cp) is a faithful Cq-action
on Cp. Then G = Cp ⋊ϕ Cq satisfies (∗).

Proof. Write ϕy = ϕ(y) for any y ∈ Cq. It is clear that every proper nontrivial subgroup is
maximal for order reasons. For e ̸= y ∈ Cq and x ∈ Cp, we have

xkyx−k = xkϕy(x
−k)y = xk(1−t)y,

where ϕy(x) = xt, t ̸≡ 1 mod p. In particular, taking k = n/(1 − t) mod p, we see that the
elements xny and y are conjugate. From this, we find that the only proper nontrivial subgroups
of G are Cp (which is normal) and those generated by ⟨xny⟩, e ̸= y ∈ Cq, which are all non-
normal of order q. Furthermore, the computation above shows that NG(⟨y⟩) = ⟨y⟩ and thus
NG(⟨xny⟩) = ⟨xny⟩, since the two subgroups are conjugate. Hence G satisfies (∗). □

First, we remark that the finite generation of A[X] for a top-level generator X is known in
general:

Theorem 5.2 ([SSW25, Proposition 3.12]). Let G be a finite group. A[G/G](G/H) is a finitely
generated ring for all H ≤ G.

Proposition 5.3. Let G be a finite group satisfying (∗). Then G is transitively Tambara finite.

Proof. We wish to show that A[G/H] is levelwise finitely generated for all H ≤ G. Recall by
Corollary 4.9 that it suffices to show that R = A[G/H](G/G) is a finite type Z-algebra. In
general, we will say that an irreducible polynomial of the form

G/H ← A→ G/K → G/G = ∗

is “of type K.” We will say that type K polynomials are finitely generated if there exists a finite
set S of polynomials in R such that every irreducible polynomial of type K can be expressed
as some combination of polynomials in S.

Suppose first that H = e. The type K polynomials for K normal are all finitely generated
by Lemma 4.15. If K is not normal, then we compute

[G/e
⊔fi←−−

∐
G/e→ G/K → ∗] · [G/e

⊔gj←−−
∐

G/e→ G/K → ∗]

= [G/e
⊔fi⊔gj←−−−−

∐
G/e→ G/K → ∗] + type e,

where here we use the fact that

G/K ×G/K ∼= G/K ⊔
∐

e̸=g∈K\G/K

G/(K ∩ gKg−1) ∼= G/K ⊔
∐

G/e,
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since K ∩ gKg−1 = e for any g ̸∈ K. Thus, we need only take as additional type K generators
(when K is not normal) those polynomials of the form

[G/e
f←− G/e→ G/K → ∗].

Now suppose H ̸= e is a proper subgroup. If H is normal, then a type K polynomial

[G/H
⊔fi←−−

∐
G/Hi → G/K → ∗]

must satisfy Hi ≤ K ∩H for all i. If H ̸≤ K, then this implies all the Hi = e and hence all
such polynomials lie in the image of the map A[G/e]→ A[G/H] induced by restriction, from
which we are done by the H = e case. If H ≤ K, then K is normal and we are done by Lemma
4.15.

If H is not normal, then we again have two cases. A type K polynomial

[G/H
⊔fi←−−

∐
G/Hi → G/K → ∗]

with K normal must have Hi ≤ K and Hi ≤ gHg−1 for some g ∈ G. This can only occur
if Hi = e or K = G; in the first case, these lie in the image of A[G/e] → A[G/H] and we
are done. In the second case, these are elements of A0[G/H](G/G), which we know is finitely
generated by Lemma 4.7.

Thus, suppose K is non-normal. If K is not conjugate to H, then for all i, we have Hi ≤
K∩gHg−1 = e for some g ∈ G, in which case these lie in the image of A[G/e]→ A[G/H] and
we are done. Thus, we can assume K is conjugate to H, from which we may assume K = H,
since type K polynomials are isomorphic to type H polynomials. In this case we must have
all the Hi = e, or Hi = H with the corresponding map G/Hi → G/H equal to the identity.
Thus all type H polynomials look like

G/H
⊔fi⊔prj←−−−−−

∐
G/e ⊔

∐
G/H → G/H → ∗,

in which case we have an analogous computation

[G/H
⊔fi⊔prj←−−−−−

∐
i

G/e ⊔
∐
j

G/H → G/H → ∗]

·G/H ⊔gk⊔prl←−−−−−
∐
k

G/e ⊔
∐
l

G/H → G/H → ∗

= [G/H
⊔fi⊔gk⊔prj ⊔ prl←−−−−−−−−−−

∐
i,k

G/e ⊔
∐
j,l

G/H → G/H → ∗] + type e,

where we again have used the fact that G/H ×G/H ∼= G/H ⊔
∐
G/e. From this we see that

we can take as additional type H generators those of the form

[G/H
f←− G/e→ G/H → ∗], [G/H ← G/H → G/H → ∗]

Lastly, we note that if H = G, then we are done by Theorem 5.2. □

5.2. G ∼= D8, Transitive Case. Now we give a proof of transitive finiteness for D8. Neither
of the conditions imposed in (∗) are true for D8.

We use the presentation

D8
∼= ⟨a, x | a4 = x2 = e, ax = xa−1⟩.
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There are three subgroups of D8 of order 4, ⟨a2, x⟩, ⟨a2, ax⟩, and ⟨a⟩. All three are normal; the
third is characteristic. There are five subgroups of order 2: ⟨x⟩, ⟨a2x⟩ are conjugate, ⟨ax⟩, ⟨a3x⟩
are conjugate, and ⟨a2⟩ is the center of the group. Note in particular that ⟨x⟩ has normalizer
ND8(⟨x⟩) = ⟨a2, x⟩ ⪇ D8.

Proposition 5.4. A[D8/e] is levelwise finitely generated.

Proof. By Lemma 4.15, the only types of irreducible polynomials which may cause issues are
(a)

D8/e
⊔fi←−− D8/e→

∐
D8/⟨x⟩ → ∗

(b)

D8/e
⊔fi←−−

∐
D8/e→ D8/⟨ax⟩ → ∗

Call all other types of irreducible polynomials “type (c).” We will only do the computation for
type (a) since the argument for type (b) polynomials is identical.

Note that in the irreducible polynomials of type (a), the fi are well-defined up to a coset
representative ⟨x⟩\D8. Thus, we can assume that the fi are of the form ak for some 0 ≤ k ≤ 3.
Represent the fi via some vector v⃗ ∈ N4, where (n0, n1, n2, n3) means ak appears nk times.
Note that C4 = ⟨a⟩ acts on these vectors via a · (n0, n1, n2, n3) = (n3, n0, n1, n2). We compute

[D8/e
⊔fi←−−

∐
D8/e→ D8/⟨x⟩ → ∗] · [D8/e

g←− D8/e→ D8/⟨x⟩ → ∗]

= [D8/e
⊔fi⊔g←−−−−

∐
D8/e→ D8/⟨x⟩ → ∗]

+ [D8/e
⊔fi⊔a2g←−−−−−

∐
D8/e→ D8/⟨x⟩ → ∗] + type (c),

[D8/e
⊔fi←−−

∐
D8/e→ D8/⟨x⟩ → ∗] · [D8/e

g←− D8/e→ D8/⟨a2, x⟩ → ∗]

= [D8/e
⊔fi⊔g⊔a2g←−−−−−−−

∐
D8/e→ D8/⟨x⟩ → ∗]

+ [D8/e
⊔fi⊔ag⊔a3g←−−−−−−−

∐
D8/e→ D8/⟨x⟩ → ∗] + type (c),

[D8/e
⊔fi←−−

∐
D8/e→ D8/⟨x⟩ → ∗] · [D8/e← D8/e→ ∗ → ∗]

= [D8/e
⊔fi⊔e⊔a⊔a2⊔a3←−−−−−−−−−−

∐
D8/e→ D8/⟨x⟩ → ∗]

From this and a simple induction argument (reminiscent of Theorem 4.14), we need only take
as additional generators those corresponding to vectors v⃗ ∈ N4 with n0+n1+n2+n3 ≤ 4. □

Proposition 5.5. A[D8/⟨x⟩] is levelwise finitely generated.

Proof. Again by Lemma 4.15, the only types of irreducible polynomials which may cause issues
are

(a)

D8/⟨x⟩
⊔fi⊔gj←−−−−

∐
D8/e ⊔

∐
D8/⟨x⟩ → D8/⟨x⟩ → ∗

(b)

D8/⟨x⟩
⊔fi⊔gj⊔hk←−−−−−−−

∐
D8/e ⊔

∐
D8/⟨x⟩ ⊔

∐
D8/⟨a2x⟩ → D8/⟨a2, x⟩ → ∗
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Call all other “type (c).” In the type (a) polynomials, we can view the fi as taking values in
D8/⟨x⟩ = {e⟨x⟩, a⟨x⟩, a2⟨x⟩, a3⟨x⟩}, while the gj take values in ND8(⟨x⟩)/⟨x⟩ = ⟨a2, x⟩/⟨x⟩, so
we can take them to be e or a2. We compute

[D8/⟨x⟩
⊔fi⊔gj←−−−−

∐
D8/e ⊔

∐
D8/⟨x⟩ → D8/⟨x⟩ → ∗]

· [D8/⟨x⟩ ← D8/e→ ∗ → ∗]

= [D8/⟨x⟩
(⊔fi⊔e⊔a⊔a2⊔a3)⊔gj←−−−−−−−−−−−−−

∐
D8/e ⊔

∐
D8/⟨x⟩ → D8/⟨x⟩ → ∗],

[D8/⟨x⟩
⊔fi⊔gj←−−−−

∐
D8/e ⊔

∐
D8/⟨x⟩ → D8/⟨x⟩ → ∗]

· [D8/⟨x⟩
f←− D8/e→ D8/⟨x⟩ → ∗]

= [D8/⟨x⟩
(⊔fi⊔f)⊔gj←−−−−−−−

∐
D8/e ⊔

∐
D8/⟨x⟩ → D8/⟨x⟩ → ∗]

+ [D8/⟨x⟩
(⊔fi⊔a2f)⊔gj←−−−−−−−−

∐
D8/e ⊔

∐
D8/⟨x⟩ → D8/⟨x⟩ → ∗]

+ type (c)

[D8/⟨x⟩
⊔fi⊔gj←−−−−

∐
D8/e ⊔

∐
D8/⟨x⟩ → D8/⟨x⟩ → ∗]

· [D8/⟨x⟩
f←− D8/e→ D8/⟨a2, x⟩ → ∗]

= [D8/⟨x⟩
(⊔fi⊔f⊔a2f)⊔gj←−−−−−−−−−−

∐
D8/e ⊔

∐
D8/⟨x⟩ → D8/⟨x⟩ → ∗]

+ [D8/⟨x⟩
(⊔fi⊔af⊔a3f)⊔gj←−−−−−−−−−−−

∐
D8/e ⊔

∐
D8/⟨x⟩ → D8/⟨x⟩ → ∗]

In addition, we have

[D8/⟨x⟩
⊔fi⊔gj←−−−−

∐
D8/e ⊔

∐
D8/⟨x⟩ → D8/⟨x⟩ → ∗]

· [D8/⟨x⟩ ← D8/⟨x⟩ → D8/⟨x⟩ → ∗]

= [D8/⟨x⟩
⊔fi(⊔gj⊔e)←−−−−−−−

∐
D8/e ⊔

∐
D8/⟨x⟩ → D8/⟨x⟩ → ∗]

+ [D8/⟨x⟩
⊔fi(⊔gj⊔a2)←−−−−−−−−

∐
D8/e ⊔

∐
D8/⟨x⟩ → D8/⟨x⟩ → ∗]

+ type (c).

[D8/⟨x⟩
⊔fi⊔gj←−−−−

∐
D8/e ⊔

∐
D8/⟨x⟩ → D8/⟨x⟩ → ∗]

· [D8/⟨x⟩
g←− D8/⟨x⟩ → D8/⟨a2, x⟩ → ∗]

= [D8/⟨x⟩
⊔fi(⊔gj⊔e⊔a2)←−−−−−−−−−

∐
D8/e ⊔

∐
D8/⟨x⟩ → D8/⟨x⟩ → ∗]

+ [D8/⟨x⟩
(⊔fi⊔ag)⊔gj←−−−−−−−−

∐
D8/e ⊔

∐
D8/⟨x⟩ → D8/⟨x⟩ → ∗].

Using the last two identities, we can arrange for any polynomial of type (a) to be a combination
of type (a) polynomials where the number of gj is ≤ 2 and type (c) polynomials. Then using
the first three identities and an inductive argument as in Theorem 4.14, we can arrange for
these polynomials to be combinations of type (c) polynomials and type (a) polynomials where
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the number of fi is ≤ 4 and where the number of gj is ≤ 2. Hence the type (a) polynomials
are finitely generated.

For the type (b) polynomials, we note that in the polynomial

D8/⟨x⟩
⊔fi⊔gj⊔hk←−−−−−−−

∐
D8/e ⊔

∐
D8/⟨x⟩ ⊔

∐
D8/⟨a2x⟩ → D8/⟨a2, x⟩ → ∗

the fi, gj , hk are all well-defined as cosets D8/⟨a2, x⟩ = {e⟨a2, x⟩, a⟨a2, x⟩}. Observe that

[D8/⟨x⟩
⊔fi⊔gj⊔hk←−−−−−−−

∐
D8/e ⊔

∐
D8/⟨x⟩ ⊔

∐
D8/⟨a2x⟩ → D8/⟨a2, x⟩ → ∗]

· [D8/⟨x⟩ ← D8/e→ ∗ → ∗]

= [D8/⟨x⟩
(⊔fi⊔e⊔a)⊔gj⊔hk←−−−−−−−−−−−

∐
D8/e ⊔

∐
D8/⟨x⟩ ⊔

∐
D8/⟨a2x⟩ → D8/⟨a2, x⟩ → ∗],

and similarly with multiplication by [D8/⟨x⟩ ← D8/⟨x⟩ → ∗ → ∗] and [D8/⟨x⟩ ← D8/⟨a2x⟩ →
∗ → ∗], with contributions of e and a to the gj and hk instead in those cases. In addition,

[D8/⟨x⟩
⊔fi⊔gj⊔hk←−−−−−−−

∐
D8/e ⊔

∐
D8/⟨x⟩ ⊔

∐
D8/⟨a2x⟩ → D8/⟨a2, x⟩ → ∗]

· [D8/⟨x⟩ ← D8/e→ D8/⟨a2, x⟩ → ∗]

= [D8/⟨x⟩
(⊔fi⊔e)⊔gj⊔hk←−−−−−−−−−

∐
D8/e ⊔

∐
D8/⟨x⟩ ⊔

∐
D8/⟨a2x⟩ → D8/⟨a2, x⟩ → ∗]

+ [D8/⟨x⟩
(⊔fi⊔a)⊔gj⊔hk←−−−−−−−−−

∐
D8/e ⊔

∐
D8/⟨x⟩ ⊔

∐
D8/⟨a2x⟩ → D8/⟨a2, x⟩ → ∗],

again with similar expressions when [D8/⟨x⟩ ← D8/e → D8/⟨a2, x⟩ → ∗] is replaced by
[D8/⟨x⟩ ← D8/⟨x⟩ → D8/⟨a2, x⟩ → ∗] and [D8/⟨x⟩ ← D8/⟨a2x⟩ → D8/⟨a2, x⟩ → ∗]. From
this we see that we can take as additional type (b) generators those in which there are ≤ 2 of
the fi, gj , hk. □

Proposition 5.6. A[D8/⟨a2⟩] is levelwise finitely generated.

Proof. Since all irreducible polynomials

D8/⟨a2⟩ ←
∐

D8/Hi → D8/H → ∗

must have Hi ≤ ⟨a2⟩ ∩H, these lie in the image of previously-computed cases unless ⟨a2⟩ ≤
H, in which case they are covered by Lemma 4.15, since all subgroups containing ⟨a2⟩ are
normal. □

Proposition 5.7. A[D8/H] is levelwise finitely generated, where H is any normal subgroup
of order 4.

Proof. All irreducible polynomials

D8/H ←
∐

D8/Hi → D8/K → ∗

must again have Hi ≤ H ∩ K, in which case they either lie in the image of previously-
computed cases or H ≤ K, in which case they are covered by Lemma 4.15 since all such H
are maximal. □

Proposition 5.8. A[D8/D8] is levelwise finitely generated.

Proof. Follows from Theorem 5.2. □
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Remark 5.9. Note that the difference in the computation for D8 (as opposed to the (∗) case
or the Dedekind case) arose from the fact that there were terms arising from the double coset
formula

D8/⟨x⟩ ×D8/⟨x⟩ ∼= D8/⟨x⟩ ⊔D8/e ⊔D8/⟨x⟩
(corresponding to the double cosets ⟨x⟩e⟨x⟩, ⟨x⟩a⟨x⟩, and ⟨x⟩a2⟨x⟩) which either (1) did not
immediately reduce to lower-level computations or (2) created complications in the

∐
iG/Hi

piece of the polynomial

G/H ←
∐
i

G/Hi → G/K → G/G,

causing the various Hi to change under multiplication.

We thus conclude:

Theorem 5.10. Let G be a finite group satisfying (∗) or G ∼= D8. Then G is transitively
Tambara finite.

6. Extension to Non-Transitive Sets

6.1. A General Formula for the Box Product. Our goal for this section is to show that
the levelwise grading and finite generation results can be extended to A[X] when X is not
transitive—in particular, that transitively finite groups are Tambara finite. We review the
construction of the box product and its relation with Dress pairings. Let G be a finite group.
The category of finite G-sets is symmetric monoidal with respect to the product A×B of two
G-sets—this induces a symmetric monoidal product on the categories PG and P+

G . The box
product of two Mackey functors M,N is defined to be the Day convolution of M and N with
respect to this monoidal structure, i.e. M ⊠N is the left Kan extension

P+
G × P

+
G Set

P+
G

M×N

⊗
⇓

M⊠N

More concretely, there exist for any finite G-sets X,Y maps

M(X)×N(Y )→ (M ⊠N)(X × Y )

natural in X and Y , and moreover M⊠N is initial with respect to this property. The universal
property of M ⊠N can also be described using Dress pairings:

Lemma 6.1 ([Lew81]). A morphism M ⊠N → P is equivalent to the following data: for each
subgroup H ≤ G, a bilinear map fH :M(G/H)⊗N(G/H)→ P (G/H) such that the following
are satisfied:

(a) fH ◦ (ResKH ⊗ResKH) = ResKH ◦fK whenever H ≤ K.
(b) fH ◦ (cg ⊗ cg) = cg ◦ fH for all g ∈ G and H ≤ G.
(c) For any H ≤ K,

TrKH ◦fH ◦ (ResKH ⊗ id) = fK ◦ (id⊗TrKH), TrKH ◦fH ◦ (id⊗ResKH) = fK ◦ (TrKH ⊗ id).

The box product of two Tambara functors is again Tambara functor in a canonical way:



24 THE LEVELWISE FINITE GENERATION OF FREE TAMBARA FUNCTORS

Lemma 6.2 ([Str12]). If T,R are Tambara functors, there is a unique Tambara functor struc-
ture for the Mackey functor T ⊠R such that the Dress pairings

fH : T (G/H)⊗R(G/H)→ (T ⊠R)(G/H)

are ring maps and satisfy fK(NmK
H(x) ⊗ NmK

H(y)) = NmK
H(fH(x ⊗ y)) whenever x ⊗ y ∈

T (G/H)⊗R(G/H) and H ≤ K. Such defined, ⊠ is the coproduct in the category of Tambara
functors.

A slight generalization of the Dress pairing conditions can be formulated for an n-fold box
product.

Lemma 6.3. A morphism M1 ⊠ · · · ⊠MN → P is equivalent to the following data: for each
subgroup H ≤ G, a multilinear map fH : M1(G/H) ⊗ · · · ⊗MN (G/H) → P (G/H) such that
the following are satisfied:

(a) fH ◦ (ResKH ⊗ · · · ⊗ ResKH) = ResKH ◦fK whenever H ≤ K.
(b) fH ◦ (cg ⊗ · · · ⊗ cg) = cg ◦ fH for all g ∈ G and H ≤ G.
(c) For any i = 1, . . . , N and H ≤ K,

TrKH ◦fH ◦ (ResKH ⊗ · · · ⊗ ResKH ⊗ idi⊗ResKH ⊗ · · · ⊗ ResKH)

= fK ◦ (id1⊗ · · · ⊗ idi−1⊗TrKH ⊗ idi+1⊗ · · · ⊗ idN ),

where idi means that on the ith factor, id is being applied.

Proof Sketch. Given natural morphisms

M1(X1)× · · · ×MN (XN )→ P (X1 × · · · ×XN ),

the multilinear map fH is defined via the composition

M1(G/H)× · · · ×MN (G/H)→ P (G/H × · · · ×G/H)
Rδ−−→ P (G/H),

where Rδ is restriction along the diagonal map δ : G/H → G/H × · · · ×G/H.
Conversely, given multilinear maps fH : M1(G/H) ⊗ · · · ⊗ MN (G/H) → P (G/H), we

extend these to multilinear maps fX : M1(X) × · · · ×M1(X) → P (X) for a nontransitive
G-set X = G/H1 ⊔ · · · ⊔G/Hm, using the fact that

Mj(⊔iG/Hi) ∼=
∏

Mj(G/Hi)

and setting

fX(x1, . . . , xN ) =

{
fHj (x1, . . . , xN ) if xi ∈Mi(G/Hj) for all i,
0 otherwise.

Then the maps M1(X1)× · · · ×MN (XN )→ P (X1 × · · · ×XN ) are given by

M1(X1)× · · · ×MN (XN )
Rpri−−−→

N∏
i=1

Mi

 j∏
j=1

Xj

 f∏N
j=1

Xj

−−−−−−→ P

 N∏
j=1

Xj

 . □

We describe a formula for the n-fold box product of two Mackey functors over an arbitrary
finite group G. First, a lemma.

Lemma 6.4. Let G be a group and let H,K,L,M be subgroups, with H ≤ K ≤ L and M ≤ L.
Then the double coset representatives of H\L/M are in bijection with the elements {yx · x},
where the x range over the double coset representatives of K\L/M and the yx, for each fixed
x, range over the double coset representatives of H\K/(xMx−1 ∩K).
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Proof. Suppose yxx and yx′x′ represent the same double coset H\L/M . Then yx′x′ = hyxxm
for h ∈ H and m ∈ M , which implies x and x′ represent the same K\L/M coset, so x = x′.
Now if y′xx = hyxxm for h ∈ H and m ∈ M , then y′x = hyx(xmx

−1); since yx, y′x ∈ K,
xmx−1 ∈ xMx−1 ∩ K and thus y′x, yx represent the same H\K/(xMx−1 ∩ K) coset. This
shows injectivity of the map {yxx} → H\L/M .

For surjectivity, note that for fixed x, changing the representative of yx does not affect the
double coset HyxxM . Indeed, if y′x = hyxκ, then κ = xmx−1 and Hy′xxM = HyxxM .

Thus, what we have shown is this: the set of double cosets {HyxxM} where x varies over
K\L/M and y varies over H\K/M is equal to the set of double cosets {HyxM} where y
varies over K and x varies over K\L/M . This is just the set of double cosets {HyxM} where
x, y vary arbitrarily in L,K, so we obtain surjectivity. □

Theorem 6.5. Let G be a finite group, M1, . . . ,MN be a collection of G-Mackey functors and
write M =M1 ⊠ · · ·⊠MN . Fix a subgroup L ≤ G. For any subgroup H ≤ L, define

SLH =M1(G/H)⊗ · · · ⊗MN (G/H).

Then we have

M(G/L) =

⊕
H≤L

SLH

 /F,

where F is the submodule generated by the Frobenius relations

SLK ∋ x1 ⊗ · · · ⊗ xi−1 ⊗ TrKH(xi)⊗ xi+1 ⊗ · · · ⊗ xN
= ResKH(x1)⊗ · · · ⊗ ResKH(xi−1)⊗ xi ⊗ ResKH(xi+1)⊗ · · · ⊗ ResKH(xN ) ∈ SLH

for all H ≤ K ≤ L, and the Weyl relations

SLH ∋ x1 ⊗ · · · ⊗ xN = cℓ(x1)⊗ · · · ⊗ cℓ(xN ) ∈ SLℓHℓ−1

for all ℓ ∈ L.
The isomorphisms cg :M(G/L)→M(G/gLg−1) are induced on each SLH by the maps

SLH ∋ x1 ⊗ · · · ⊗ xN 7→ cg(x1)⊗ · · · ⊗ cg(xN ) ∈ SgLg
−1

gHg−1 .

The transfer maps TrL
′

L : M(G/L) → M(G/L′) are induced by the obvious isomorphisms
SLH → SL

′
H . The restriction maps ResL

′
L :M(G/L′)→M(G/L) are defined on each component

SL
′

H by the formula

ResL
′

L (x1 ⊗ · · · ⊗ xN ) =
∑

g∈L\L′/H

cg

(
ResHH∩g−1Lg(x1)

)
⊗ · · · ⊗ cg

(
ResHH∩g−1Lg(xN )

)
,

where each ResHH∩g−1Lg(x1)⊗ · · · ⊗ ResHH∩g−1Lg(xN ) lies in SLgHg−1∩L. The Dress pairing fL :

M1(G/L)⊗ · · · ⊗MN (G/L)→M(G/L) is induced by the obvious map

M1(G/L)⊗ · · · ⊗MN (G/L)→ SLL .

Proof. For notational simplicity, we give the proof when N = 2, but the proof for arbitrary N
is exactly the same. There is a long chain of straightforward but necessary verifications which
need to be performed.

(1) Tr, Res, and cg are well-defined.
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This is obvious for TrL
′

L and straightforward for cg. The only nontrivial part is proving that
ResL

′
L preserves Frobenius relations. Let H ≤ K ≤ L′. By definition,

ResL
′

L (x⊗ TrKH(y)) =
∑

g∈L\L′/K

cg

(
ResKK∩g−1Lg(x)

)
⊗ cg

(
ResKK∩g−1Lg Tr

K
H(y)

)
.

On the other hand,

ResL
′

L (ResKH(x)⊗ y) =
∑

g∈L\L′/H

cg

(
ResKH∩g−1Lg(x)

)
⊗ cg

(
ResHH∩g−1Lg(y)

)
.

By Lemma 6.4, this is equal to∑
s∈L\L′/K

∑
t∈(s−1Ls∩K)\K/H

csct

(
ResKH∩(st)−1L(st)(x)

)
⊗ csct

(
ResHH∩(st)−1L(st)(y)

)
=

∑
s∈L\L′/K

∑
t∈(s−1Ls∩K)\K/H

cs
(
ResKtHt−1∩s−1Ls(x)

)
⊗ cs

(
ctRes

H
H∩(st)−1L(st)(y)

)
=

∑
s∈L\L′/K

∑
t∈(s−1Ls∩K)\K/H

cs
(
ResKK∩s−1Ls(x)

)
⊗ cs

(
TrK∩s−1Ls

tHt−1∩sLs−1 ctRes
H
H∩(st)−1L(st)(y)

)
=

∑
s∈L\L′/K

cs
(
ResKK∩s−1Ls(x)

)
⊗ cs

(
ResKK∩s−1LsTr

K
H(y)

)
which by the above is equal to ResL

′
L (x⊗ TrKH(y)). Here we have used Frobenius relations on

the second-to-last line and the fact that

ResKK∩g−1Lg Tr
K
H =

∑
t∈(g−1Lg∩K)\K/H

TrK∩s−1Ls
tHt−1∩sLs−1 ctRes

H
H∩(gt)−1L(gt)

by the double coset formula.
(2) Tr, Res, cg are functorial.

This is again more or less obvious by definition for Tr and cg. For Res, let L ≤ L′ ≤ L′′,
H ≤ L′′, and suppose x1 ⊗ · · · ⊗ xN ∈ SL

′′
H . By definition,

ResL
′

L ResL
′′

L′ (x⊗ y)

= ResL
′

L

 ∑
g∈L′\L′′/H

cg

(
ResHH∩g−1L′g(x)

)
⊗ cg

(
ResHH∩g−1L′g(y)

)
=

∑
g∈L′\L′′/H

∑
t∈L\L′/(gHg−1∩L′)

ct

(
ResL

′∩gHg−1

t−1Lt∩gHg−1 cg Res
H
H∩g−1L′g(x)

⊗ ResL
′∩gHg−1

t−1Lt∩gHg−1 cg Res
H
H∩g−1L′g(y)

)
=

∑
g∈L′\L′′/H

∑
t∈L\L′/(gHg−1∩L′)

ctg

(
ResHH∩(tg)−1L(tg)(x)⊗ ResHH∩(tg)−1L(tg)(y)

)
=

∑
g∈L\L′′/H

cg

(
ResHH∩g−1Lg(x)⊗ ResHH∩g−1Lg(y)

)
= ResL

′′
L (x⊗ y),

where we have used Lemma 6.4 in the last line.
(3) M assembles into a Mackey functor via Tr,Res, cg.
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It is clear that cg commutes with Tr. furthermore, cℓ = id on M(G/L) by definition. For
commutation with Res, let x1 ⊗ · · · ⊗ xN ∈ SL

′
H ; we have

cg Res
L′
L (x1 ⊗ · · · ⊗ xN ) =

∑
t∈L\L′/H

cgct
(
ResHH∩t−1Lt(x1)⊗ · · · ⊗ ResHH∩t−1Lt(xN )

)
,

while on the other hand

ResgL
′g−1

gLg−1 (cg(x1)⊗ · · · ⊗ cg(xN ))

=
∑

t∈L\L′/H

cgtg−1

(
ResgHg

−1

gHg−1∩gt−1Ltg−1(cg(x1))⊗ · · · ⊗ ResgHg
−1

gHg−1∩gt−1Ltg−1(cg(xN ))
)

=
∑

t∈L\L′/H

cgct
(
ResHH∩t−1Lt(x1)⊗ · · · ⊗ ResHH∩t−1Lt(xN )

)
as desired. Thus, it remains to verify the double coset formula. Let L,L′ ≤ L′′ and x1 ⊗ · · · ⊗
xN ∈ SL

′
H .

ResL
′′

L TrL
′′

L′ (x1 ⊗ · · · ⊗ xN ) =
∑

g∈L\L′′/L′

cg

(
ResHH∩g−1Lg(x1)⊗ · · · ⊗ ResHH∩g−1Lg(xN )

)
,

while on the other hand∑
g∈L\L′′/L′

TrLL∩gL′g−1 cg Res
L′

g−1Lg∩L′(x1 ⊗ · · · ⊗ xN )

=
∑

g∈L\L′′/L′

∑
t∈(g−1Lg∩L′)\L′/H

cgct

(
ResH(gt)−1L(gt)∩H(x1)⊗ · · · ⊗ ResH(gt)−1L(gt)∩H(xN )

)
=

∑
g∈L\L′′/H

cg

(
ResHg−1Lg∩H(x1)⊗ · · · ⊗ ResHg−1Lg∩H(xN )

)
,

using Lemma 6.4 again. Thus, M assembles into a Mackey functor.
(4) M ∼=M1 ⊠ · · ·⊠MN .

We verify that M has the universal property of M1⊠ · · ·⊠MN with respect to the proposed
pairing fL :M1(G/L)⊗· · ·⊗MN (G/L)→M(G/L). The fact that the fL do indeed assemble
into a Dress pairing is enforced by the Frobenius and Weyl relations. Given any Dress pairing
gL :M1(G/L)⊗ · · · ⊗MN (G/L)→ P (G/L), we define hL :M(G/L)→ P (G/L) by setting

hL(x1 ⊗ · · · ⊗ xN ) = TrLH(gH(x1 ⊗ · · · ⊗ xN ))

whenever x1 ⊗ · · · ⊗ xN ∈ SLH . Conversely, given a morphism of Mackey functors h :M → P ,
the Dress pairing gL :M1(G/L)⊗· · ·⊗MN (G/L)→ P (G/L) is recovered via the composition
gL = hL ◦ fL, where hL :M(G/L)→ P (G/L) is the L-level of h. □

The formula simplifies slightly in the abelian case:

Corollary 6.6. Let G be a finite abelian group, M1, . . . ,MN be a collection of G-Mackey
functors and write M = M1 ⊠ · · · ⊠MN . Fix a subgroup L ≤ G. For any subgroup H ≤ L,
define

SLH = (M1(G/H)⊗ · · · ⊗MN (G/H))/(L/H).
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Then we have

M(G/L) =

⊕
H≤L

SLH

 /F,

where F is the submodule generated by the Frobenius relations

SLK ∋ x1 ⊗ · · · ⊗ xi−1 ⊗ TrKH(xi)⊗ xi+1 ⊗ · · · ⊗ xN
= ResKH(x1)⊗ · · · ⊗ ResKH(xi−1)⊗ xi ⊗ ResKH(xi+1)⊗ · · · ⊗ ResKH(xN ) ∈ SLH

For all H ≤ K ≤ L. The transfer, restriction, and conjugation homomorphisms are defined
analogously.

Remark 6.7. The formula of Theorem 6.5 generalizes the inductive description of T ⊠ R
for two Cpn-Tambara functors given in [Maz13] to all finite G. Intuitively, each SLH should
be thought of as the set of formal expressions TrLH(x1 ⊗ · · · ⊗ xN ) where H ≤ L and each
xi ∈Mi(G/H).

Remark 6.8. When T1, . . . , TN are Tambara functors, the universal morphisms Ti → T =
T1 ⊠ · · ·⊠ TN exhibiting T as a coproduct of the Ti are given by the compositions

Ti(G/L)
gi−→ T1(G/L)⊗ · · · ⊗ TN (G/L)

fL−→ T (G/L),

where gi : Ti(G/L)→ T1(G/L)⊗· · ·⊗TN (G/L) is the map sending x to 1⊗· · ·⊗1⊗x⊗1⊗· · ·⊗1,
i.e. inclusion into the ith factor. In the special case that Ti = A[G/Hi] and T = ⊠N

i=1A[G/Hi] =
A[X], the universal morphisms Ti → T are induced by Rgi ∈ PG(X,G/Hi), where gi : G/Hi →
X is the canonical inclusion (follows from an application of the Yoneda lemma).

Remark 6.9. Let T be a Tambara functor and let R,S be T -algebras. The box product
R⊠T S is given by modifying the definition of each SLH to be tensor products over T (G/H).

6.2. Extending Finiteness Criteria to Non-Transitive Sets.

Proposition 6.10. Let G be a finite group. If T,R are levelwise finitely generated G-Tambara
functors, then so is T ⊠R.

Proof. Fix an L ≤ G. We claim that the image of each SLH in (T ⊠ R)(G/L) is a finitely
generated SLL -module. Since SLL ∼= T (G/L) ⊗ R(G/L) as a ring, which is finitely generated,
this will imply (T ⊠ R)(G/L) is finitely generated. Indeed, the elements of SLH are all of the
form TrLH(x⊗ y) where x⊗ y ∈ SHH . SLL acts by

(x′ ⊗ y′) · TrLH(x⊗ y) = TrLH(Res
L
H(x

′ ⊗ y′) · (x⊗ y)) = TrLH(Res
L
H(x

′)x⊗ ResLH(y
′)y).

In other words, the image of SLH is a quotient of the SLL -module T (G/H) ⊗ R(G/H), with
SLL -action given by the restriction map

ResLH ⊗ResLH : T (G/L)⊗ T (G/L)→ T (G/H)⊗R(G/H).

Since T,R are levelwise finitely generated and the maps ResLH : T (G/L) → T (G/H) are
integral (Lemma 4.5), they are finite ring maps, whence T (G/L) ⊗ T (G/L) → T (G/H) ⊗
R(G/H) is a finite ring map and thus T (G/H)⊗R(G/H) is a finite SLL -module, from which
the result follows. □

Remark 6.11. The same proof can be extended to show that if S is a G-Tambara functor
and T,R are S-algebras, levelwise finitely generated over S, then so is T ⊠S R.
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Corollary 6.12. Let G be a transitively Tambara finite group. Then G is also Tambara finite.

Proof. This follows from Proposition 6.10 and the isomorphism A[X ⊔Y ] ∼= A[X]⊠A[Y ]. □

Example 6.13. We remark that Proposition 6.10 is not immediate from the formula in The-
orem 6.5, since it is is false for Green functors. Let R be the Cp-Green functor given by the
Lewis diagram

Fp

Fp[x]

Res
Cp
e Tr

Cp
e

id

where Res
Cp
e : Fp → Fp[x] is the standard inclusion and Tr

Cp
e = 0. Clearly R is a levelwise

finite type Z-algebra. R⊠R is given by

(Fp ⊕ Fp[x, y])/F

Fp[x, y]

Res
Cp
e Tr

Cp
e

id

The Frobenius relations enforce 0 = c⊗Tr(yk) = Tr(c⊗ yk) and 0 = Tr(xk)⊗ c = Tr(xk ⊗ c)
for k ≥ 0, and multiplication

Tr(xn1 ⊗ ym1) Tr(xn2 ⊗ ym2) = Tr ((xn1 ⊗ ym1)ResTr(xn2 ⊗ ym2)) = 0

Hence the top level (R⊠R)(Cp/Cp) is the ring consisting of elements

(n, p(x, y))

where n ∈ Fp and p(x, y) is a polynomial with Fp-coefficients having no terms of the form
cxk, cyk, k ≥ 0. Multiplication is given by (n, p(x, y))(m, q(x, y)) = (nm, nq(x, y) +mp(x, y)).
In particular, the top level (R⊠R)(Cp/Cp) is not a finitely generated ring.

While levelwise finite generation is too much to ask for a box product of levelwise finitely
generated Green functors (see Example 6.13), relative finite-dimensionality is not:

Lemma 6.14. Let T,R be relatively finite dimensional Green functors. Then T ⊠ R is also
relatively finite-dimensional.

Proof. Let L ≤ L′. As in the proof of Proposition 6.10, each SLH is a finite module over
SLL = T (G/L) ⊗ R(G/L), since the SLL -module structure on SLH = T (G/H) ⊗ R(G/H) is
induced by ResLH ⊗ResLH : T (G/L) ⊗ R(G/L) → T (G/H) ⊗ R(G/H) which is a finite ring
map by assumption. Thus, (T ⊠R)(G/L) is a finite T (G/L)⊗R(G/L)-module. Since ResL

′
L :

T (G/L′) ⊗ R(G/L′) → T (G/L) ⊗ R(G/L) is a finite ring map, we therefore see that ResL
′

L :

T (G/L′)⊗R(G/L′)→ (T ⊠R)(G/L) is a finite ring map, and hence ResL
′

L : (T ⊠R)(G/L′)→
(T ⊠R)(G/L) is as well. □

We also remark that with relative finite-dimensionality hypotheses, “levelwise finite gener-
ation” is stable under base change:
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Lemma 6.15. Let T be a relatively finite-dimensional Tambara functor, and suppose R is
levelwise finitely generated (over A). Then T ⊠R is levelwise finitely generated over T .

Proof. Let L ≤ G. For each H ≤ L, we have that the ring map ResLH ⊗ResLH : T (G/L) ⊗
R(G/L)→ T (G/H)⊗R(G/H) is finite, from which we deduce (as in the proof of Proposition
6.10) that the ring map T (G/L)⊗R(G/L)→ (T ⊠R)(G/L) is finite. Since R(G/L) is a finite
type Z-algebra, T (G/L)⊗R(G/L) is a finite type T (G/L)-algebra, hence (T ⊠R)(G/L) is a
finite type T (G/L)-algebra. □

Theorem 6.16. Let G be a finite group and let X be a finite G-set. Then A[X] is relatively
finite-dimensional.

Proof. Follows from Lemma 6.14, Lemma 4.8, and the fact that A[X⊔Y ] ∼= A[X]⊠A[Y ]. □

Consider the following condition on a finite group G.
(†) G satisfies at least one of the following conditions:

(a) G is a Dedekind group.
(b) Every proper, nontrivial subgroup of G is maximal, and every subgroup is either

normal or satisfies NG(H) = H.
(c) G ∼= D8, the dihedral group of order 8.

We showed that all finite groups satisfying (†) are transitively finite in §4 and §5. We now put
these facts to use.

Theorem 6.17. Let G be a finite group satisfying (†). Then G is Tambara finite. In particular,
since A[X] is a levelwise finitely generated Tambara functor for any G-set X, it is also levelwise
Noetherian and relatively finite-dimensional.

Proof. Follows from Corollary 6.12. □

Theorem 6.18. Let G be a Tambara finite and let X be a finite G-set. Then A[X] is module-
Noetherian, in the sense that every submodule of a finitely generated module over A[X] is
finitely generated. In particular, this holds for all finite groups satisfying (†).

This is a consequence of Theorem 6.17 and a more general fact about relatively finite-
dimensional Green functors:

Lemma 6.19 ([CW25, Corollary 3.35]). Let R be a relatively finite-dimensional Green functor.
Then R is module-Noetherian iff R(G/G) is Noetherian iff R(G/H) is Noetherian for all
H ≤ G.

Tambara finite groups also satisfy a weak Hilbert basis theorem:

Theorem 6.20 (Weak Hilbert Basis Theorem). Let G be a Tambara finite group, and sup-
pose T is levelwise Noetherian and relatively finite-dimensional. Then T [X] is also levelwise
Noetherian and relatively finite-dimensional for all finite G-sets X. If T is levelwise finitely
generated, then so is T [X].

Proof. T [X] is relatively finite-dimensional by Lemma 6.14. For the levelwise Noetherian state-
ment, observe as in the proof of Proposition 6.10 that each ring map T (G/L)⊗A[X](G/L)→
T [X](G/L) is finite; since T (G/L)⊗A[X](G/L) is a finite type T (G/L)-algebra by Theorem
6.17, so is T [X](G/L), whence T [X](G/L) is Noetherian. The levelwise finitely generated part
of the statement follows from Theorem 6.17 and Proposition 6.10. □
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6.3. Stability of the Grading. To conclude this section, we provide proofs to some earlier
remarks about the stability of the grading we have introduced on polynomials under box
products.

Corollary 6.21. Let G be a finite group. The gradings on A[G/H] for H ≤ G induce a grading
on A[X] for arbitrary finite G-sets X via the box product; for now, we call this grading the
box grading.

Proof. We explain this for the Dedekind case; the nonabelian case is obtained by dropping the
nonnumerical component of the degree. For each i, let Ti = A[G/Hi] and T = A[X] = ⊠N

i=1Ti.
We adopt the same notation for the SLH in Theorem 6.5. Note that each SLH has a grading over
OwH induced from the grading on each Ti(G/H); by identifying OwH as a subset of OwL , this
induces a grading of SLH over OwL . We claim that this endows T (G/L) with the structure of a
graded ring overOwL , for which it suffices to show that the Frobenius relations are homogeneous.

Indeed, supposeH ≤ K and xi, i = 1, . . . , ĵ, . . . N are elements of degree (ni, Ji) in Ti(G/K),
while xj is an element of degree (nj , Jj) in Tj(G/H). Then TrKH(xj) is also an element of degree
(nj , Jj) in Tj(G/K) by Lemma 3.14, so x1⊗ · · ·⊗TrKH(xj)⊗ · · ·⊗xN is of degree (

∑
ni,
⋂
Ji)

in SLK . On the other hand, ResKH(x1)⊗ · · ·⊗xj ⊗ · · ·⊗ResKH(xN ) is of degree (
∑
ni,
⋂
Ji ∩H)

in SLK . Since Jj ≤ H by assumption, these two degrees coincide and A[X] is graded. □

Remark 6.22. We note that the natural isomorphism A[X]→ A[X ⊔∅] ∼= A[X]⊗A[∅] ∼=
A[X] is graded by inspection (when A[X ⊔∅] is given the box grading), since all elements of
A[∅](G/L) have degree (0, L). Hence the box grading is well-defined.

Lemma 6.23. The box grading on A[X] coincides with the naive grading of Remark 3.18.

Proof. Again, we explain this for the Dedekind case; the nonabelian case is obtained by
dropping the nonnumerical component of the degree. Write X = ⊔iG/Hi, T = A[X], and
Ti = A[G/Hi]. We want to show that the grading coincides on A[X](G/L). Since the transfer
homomorphisms TrL

′
L are graded in the same way for both gradings, it suffices by induction

to show that the grading coincides on elements of A[X](G/L) which do not lie in the im-
age of transfer from lower levels, i.e. it suffices to show this for elements in the image of the
Dress pairing fL : T1(G/L) ⊗ · · · ⊗ TN (G/L) → T (G/L). This is a graded ring homomor-
phism for the box grading (essentially by definition), so it suffices to show that the elements
fL(1⊗ · · · ⊗ 1⊗ xi⊗ 1⊗ · · · ⊗ 1) have the same degree with respect to both the box and naive
gradings. Now fL(1⊗· · ·⊗ 1⊗xi⊗ 1⊗· · ·⊗ 1) is the image of xi ∈ Ti(G/L) under the natural
map Ti → T , which is given by

[G/Hi
f←− A→ B → G/L] 7→ [X

j◦f←−− A→ B → G/L],

where j : G/Hi → X is the natural inclusion. Thus, if xi has degree (n,K) with respect to
the naive grading, then it also has degree (n,K) with respect to the box grading. □

Corollary 6.24. Let f : X → Y be a map of finite G-sets. The induced map R∗
f : A[X] →

A[Y ] is levelwise graded with respect to the identity homomorphism OwL → OwL . If moreover f
has a well-defined degree, e.g. if Y is transitive, then N∗

f : A[Y ] → A[X] is levelwise graded
with respect to the monoid homomorphism ϕ : OwL → OwL given by

ϕ(n,K) = (deg(f)n,K).

Proof. R∗
f is given by

[X
p←− A→ B → G/L] 7→ [Y

f◦p←−− A→ B → G/L],



32 THE LEVELWISE FINITE GENERATION OF FREE TAMBARA FUNCTORS

which evidently preserves the degree of A→ B. N∗
f is given by

[Y ← A→ B → G/L] 7→ [X ← A×Y X → B → G/L],

which changes the degree by a multiplicative factor of deg(f). □

Remark 6.25. The corresponding result for general G is obtained by dropping the non-
numerical component.

Lemma 6.26. Let X be a finite G-set and T a Tambara functor. The free T -algebra T [X] ∼=
T ⊠A[X] inherits a levelwise grading from A[X] over N.

Proof. We again adopt the notation of Theorem 6.5. Each T (G/L) is trivially graded over N
by giving every element degree 0. Hence, each SLH is graded over N. It remains to verify that
the Frobenius relations are homogeneous. But this is obvious by inspection, since ResKH and
TrKH on A[X] do not alter the numerical component of the degree. □

7. Applications to Norm Functors

Let G be a finite group and suppose H ≤ G. The functor IndGH sending an H-set X to its
induced G-set G×HX is left adjoint to the functor ResGH which sends a G-set to its underlying
H-set. This induces an adjunction on the polynomial categories PH and PG, which further
induces an adjunction on the categories HTamb and GTamb. More precisely, defining for
any Tambara functor ResGH T = T ◦ IndGH and CoindGH T = T ◦ ResGH , we have

HomHTamb(Res
G
H T,R)

∼= HomGTamb(T,Coind
G
H R).

The functor ResGH has a left adjoint, denoted nGH : HTamb → GTamb, which is defined
pointwise by the left Kan extension

PH Set

PG

T

IndGH

⇓
nG
HT

and thus given by the formula

nGHT (Y ) =

∫ X∈PH

PG(G×H X,Y )× T (Y ).

In particular, we see from this formula that nGH preserves quotients (levelwise surjections)
T → R. See [Hoy14] or [HM19] for more details on the functor nGH .

If X is an H-set, we compute

HomGTamb(n
G
HA[X], T ) ∼= HomHTamb(A[X],ResGH T )

∼= (ResGH T )(X)

∼= T (G×H X),

so there is a natural isomorphism nGHA[X] ∼= A[G×H X].

Lemma 7.1. Let G be a finite group. The following are equivalent:
(a) The norm functors nKH preserve levelwise finite generation over Z for all finite groups

H ≤ K ≤ G.
(b) Every subgroup H ≤ G is Tambara finite.
(c) Every subgroup H ≤ G is transitively Tambara finite.
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Proof. The equivalence of (b) and (c) follows from our work in §6. Assume (a); in light of the
isomorphism nKHA[H/H] ∼= A[K/H] and the levelwise finite generation of A[H/H] established
in [SSW25], A[K/H] is finitely generated and thus (a) implies (c). Now assume (b) and let T
be a levelwise finitely generated H-Tambara functor. Then T receives a (levelwise) surjection
from A[X] for some finite H-set X: the (finite) collection of generators xi in the T (H/Hi)
for Hi ≤ H induce a morphism ⊠iA[H/Hi] → T which includes all the xi in its image, so
⊠iA[H/Hi]→ T is a surjection. In our situation, the surjection A[X]→ T induces a surjection
A[K ×H X] ∼= nKHA[X]→ nKHT , so nKHT is levelwise finitely generated. □

Corollary 7.2. The norm functors nGH preserve levelwise finite generation over Z for all finite
H ≤ G iff all finite groups G are Tambara finite.

Adopting the notation of §6, we again consider the following hypothesis on a finite group
G:

(†) G satisfies at least one of the following conditions:
(a) G is a Dedekind group.
(b) Every proper, nontrivial subgroup of G is maximal, and every subgroup is either

normal or satisfies NG(H) = H.
(c) G ∼= D8, the dihedral group of order 8.

Theorem 7.3. Let H ≤ G, where G is a finite group satisfying (†). Then nGH preserves
levelwise finite generation.
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