
CLIQUE NUMBER AND RANDOM GRAPHS

DYLAN SPARROW

Abstract. This paper investigates the behavior of the clique number of ran-

dom graphs. It begins by presenting a famous result of the probabilistic

method, whose proof utilizes independence number and random graphs. Then,
the paper presents two proofs of the two-point concentration theorem, the lat-

ter of which employing The Janson Inequality.
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1. Introduction to Clique Number

A clique with k vertices, denoted Kk, is a graph with the property that all of
its vertices are adjacent to each other. The clique number of a graph G, denoted
ω(G), is the number of vertices in the largest clique that is a sub-graph of G.
The independence number of G, denoted α(G), is the number of vertices in the
largest independent set (a set of vertices where no two vertices are adjacent) of
G. The complement of a graph G, denoted G, is a graph with the same vertices
as G defined as follows: two vertices of G are adjacent if and only if they are
nonadjacent in G. The clique number and independence number of a graph are
closely related: α(G) = ω(G). We define G (n, p) as the probability space produced
by constructing a graph of n vertices by choosing to add an edge between each pair of
vertices independently with probability p (this is the Erdős-Renyi model). We will
conclude this paper by using two different proofs to show that, for G ∈ G (n, 1/2),
the probability that ω(G) will be one of two values approaches 1 as n approaches
infinity. This is known as the two-point concentration of the clique number.

A legal vertex coloring of a graph is an assignment of each vertex to a color such
that no adjacent vertices are assigned the same color. The chromatic number of
a graph G, denoted by χ(G), is the minimum number of colors needed to legally
color G.

A trail of length j ≥ 3 is a sequence of vertices v1v2v3 . . . vj of a graph G such
that every member is distinct and every pair of adjacent members of the sequence
are adjacent in G. A cycle of size j is a trail with the property that v1 and vj share
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an edge. The girth of a graph, denoted girth(G), is the length of the smallest cycle
in G. By convention, if G does not have any cycles, it has infinite girth.

Note that since a graph with large girth has no cycles of small length, graphs with
large girth often have lower chromatic number as the graph is less “interconnected.”
An interesting question is thus whether we can find graphs with both large girth
and large chromatic number.

We will prove that this is in fact possible in our first theorem, which utilizes the
independence number of random graphs to show that there actually does exist a
graph with any choice of arbitrarily large girth and chromatic number. Before we
get to the first theorem, we must prove some facts about chromatic number and
cycles.

Proposition 1.1. For any graph G,

χ(G) ≥ n

α(G)
.

Proof. Let χ(G) = k. Let ϕ denote any k-coloring of G, and for each i, let Si denote
the set of vertices colored by the ith color. Every Si must be independent; if two
vertices shared an edge, it would not be a legal coloring. Therefore, α(G) ≥ |Si|
for all i. Hence,

n =

∣∣∣∣∣
k⋃

i=1

Si

∣∣∣∣∣ ≤ α(G)k ⇒ n

α(G)
≤ k.

□

Proposition 1.2. The number of possible cycles with i vertices that are subgraphs

of a graph G with n vertices is (n)i
2i , where (n)i := n(n− 1) . . . (n− i+ 1).

Proof. Let A be the set of orderings of any i vertices of G from left to right in a

straight line. Note that |A| = (n)i
2i . For a ∈ A, let f(a) be the cycle of length i

formed by the edges connecting any two adjacent members a, and the edge con-
necting the right-most and left-most members of a. We claim that f is a 2i-to-1
map.

Let a′ ∈ A be a translation of each member of a left or right some number of
times. Notice that f(a) is the same cycle as f(a′). For each a, there exist i such
a′’s (including a itself).

Let us denote a in more detail as v1v2v3v4 . . . v⌈ i+1
2 ⌉ . . . vi−2vi−1vi. Let a′′ ∈ A

be the ordering v1vivi−1vi−2 . . . v⌈ i+1
2 ⌉ . . . v4v3v2. Notice that f(a) and f(a′′) are

the same cycle. Therefore, f is a 2i-to-1 map. Hence, there are (n)i
2i possible cycles

of length i.
□

Proposition 1.3. Let G ∈ G (n, p). The expected number of cycles of length i in
G is

(n)i
2i

pi.

Proof. Let S be the set of possible cycles of length i in G and assign it an arbitrary

ordering. By Proposition 1.2, we have |S| = (n)i
2i . Let Xk be a random variable

whose value is 1 if the kth cycle in S is present in G, and 0 otherwise (called an
“indicator variable”). The expected number of cycles of size i is therefore
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E

 |S|∑
k=1

Xk

 =

|S|∑
k=1

E[Xk] =

|S|∑
k=1

P[the kth cycle in S is present in G] =
(n)i
2i

pi.

□

Lemma 1.4 (Union Bound). For any finite probability space Ω, and events {Ai}ni=1

in Ω,

P

[
n⋃

i=1

Ai

]
≤

n∑
i=1

P[Ai].

Now we are equipped with the tools needed to prove that there exists a graph
with any choice of arbitrarily large girth and chromatic number. The proof famously
demonstrates the utility of the probabilistic method—the technique of proving the
existence of something by showing it has positive probability.

Theorem 1.5 (Erdős 1959). There exists a graph G such that χ(G) > j and
girth(G) > k for any j, k.

Proof. The general strategy for this proof will be to prove the existence of a graph
with sufficiently low independence number and sufficiently few cycles of length k or
less. We will then remove a vertex from each such cycle, ensuring that the girth of
the modified graph is greater than k. Since we removed sufficiently few vertices and
since the original graph had sufficiently low independence number, we can apply
Proposition 1.1 to show that the chromatic number of the modified graph can be
made arbitrarily large.

Let θ > 0 be such that θk < 1 and let G ∈ G (n, nθ−1). By Proposition 1.3 the
expected number of cycles whose lengths are less than or equal to k is

E[X] =

k∑
i=3

(n)i
2i

nθi−i ≤
k∑

i=3

nθi

2i
≤

k∑
i=3

nθk

2i
≤ knθk.

Because θk < 1, we have that E[X] = o(n). Therefore, we have that

n

2
· P

[
X ≥ n

2

]
≤ E[X] = o(n)

P
[
X ≥ n

2

]
= o(1).

Let x =
⌈
3n1−θ lnn

⌉
. There are

(
n
x

)
distinct sets of size x in G. Any such set is

an independent set if and only if each of the
(
n
x

)
pairs of vertices are nonadjacent.

This has probability (1− nθ−1)(
x
2). Therefore, by the Union Bound

P[α(G) ≥ x] ≤
(
n

x

)(
1− nθ−1

)(x2) .
Since 1− nθ−1 ≤ e−nθ−1

, and
(
n
x

)
≤ nx, we have

P[α(G) ≥ x] ≤
(
ne−nθ−1(x−1)/2

)x

∼
(
n− 1

2 e
nθ−1

2

)3n1−θ lnn

= o(1).

Let A be the event that X > n
2 and B be the event that α(G) ≥ x. Let n0 be chosen

arbitrarily among the integers large enough such that P[A] < 1
2 and P[B] < 1

2 . By
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the Union Bound P[A∪B] < 1, which means that P[A∩B] > 0 (where A and B are
the complements of A and B respectively). Since A ∩ B has positive probability,
there must exist a graph G with n0 vertices where X < n0

2 and α(G) < x. Remove
a vertex from each cycle of length at most k to produce the graph G′. Notice that
girth(G′) > k. By Proposition 1.1,

χ(G′) ≥ |V (G′)|
α(G′)

.

Two vertices in V (G′) are adjacent in G′ if and only if they are adjacent in G.
Therefore, every independent set of G′ is an independent set of G. Hence, α(G) ≥
α(G′). We removed fewer than n0

2 vertices; hence, |V (G′)| > n0

2 . Thus,

χ(G′) ≥ n0

2α(G)
=

nθ
0

6 lnn0

The right-hand side tends to infinity as n0 → ∞. Since we chose n0 arbitrarily, we
can choose n0 large enough so that χ(G′) > j. □

2. An Important Statistical Theorem

Before progressing further with cliques, we must take a detour and prove The-
orem 2.7, a statistical theorem vital to the proofs to come. The results presented
after this section will investigate events whose probabilities change as n, the num-
ber of vertices in the random graph in question, tends to infinity. If, for an event
A where P[A] depends on n, we have limn→∞ P[A] = 1, then we say it occurs with
high probability with respect to n. Theorem 2.7 will be valuable because it pro-
vides us with conditions on a random variable X—which, in these results, counts
the number of occurrences of something important in a random graph—that, if are
fulfilled, yields X > 0 with high probability. In other words, that important thing
exists in the random graph with high probability.

Definition 2.1. The variance of a random variable X, denoted Var[X], is defined
as

Var[X] := E[X2]− E[X]2.

Definition 2.2. The covariance of two random variablesX and Y , denoted Cov[X,Y ],
is defined as

Cov[X,Y ] := E[XY ]− E[X]E[Y ].

Definition 2.3. Let X be a nonnegative random variable. Let X = X1+ · · ·+Xn,
where Xi is the indicator variable for the event Ai, and {Ai}ni=1 are symmetric
events. For i ̸= k, we say that i ∼ k if Ai and Ak are not independent. Define
S(X) as

S(X) :=
∑
i∼1

P[Ai|A1].

Proposition 2.4. Let X = X1 + · · ·+Xn, as in Definition 2.3. Then

Var[X] ≤ E[X] +
∑
i ̸=k

Cov[Xi, Xk].



CLIQUE NUMBER AND RANDOM GRAPHS 5

Proof. We have

Var[X] =
∑
i

E[X2
i ] +

∑
i ̸=k

E[XiXk]−
∑
i

E[Xi]
2 −

∑
i ̸=k

E[Xi]E[Xk]

=
∑
i

E[X2
i ]− E[Xi]

2 +
∑
i ̸=k

E[XiXk]− E[Xi]E[Xk]

=
∑
i

Var[Xi] +
∑
i ̸=k

Cov[Xi, Xk].

Notice that Var[Xi] = P[Ai]− P[Ai]
2 ≤ P[Ai]. Hence

Var[X] ≤ E[X] +
∑
i ̸=k

Cov[Xi, Xk].

□

Proposition 2.5. Var[X] ≤ E[X] + E[X]S(X).

Proof. We will show that
∑

i̸=k Cov[Xi, Xk] ≤ E[X]S(X) and then apply Proposi-
tion 2.4. We have that

E[X]S(x) =

n∑
i=1

P[Ai] ·
∑
k∼1

P[Ak|A1] =

n∑
i=1

P[Ai]
∑
k∼1

P[Ak|A1].

Since all Ai are symmetric,
∑

k∼1 P[Ak|A1] =
∑

k∼i P[Ak|Ai] for all fixed i. Thus,

E[X]S(x) =

n∑
i=1

P[Ai]
∑
k∼i

P[Ak|Ai]

=

n∑
i=1

∑
k∼i

P[Ai]P[Ak|Ai]

=

n∑
i=1

∑
k∼i

P[Ak ∩Ai]

=
∑
k∼i

P[Ak ∩Ai]

=
∑
k∼i

E[XkXi]

where the sum ranges over all possible i and k (neither are fixed). Now let’s analyze∑
i ̸=k Cov[Xi, Xk]. IfXi andXk are independent, then Cov[Xi, Xk] = 0. Therefore,

∑
i ̸=k

Cov[Xi, Xk] =
∑
i∼k

Cov[Xi, Xk] =
∑
i∼k

E[XiXk]− E[Xi]E[Xk] ≤
∑
k∼i

E[XkXi].

Applying Proposition 2.4 gives

Var[X] ≤ E[X] + E[X]S(X).

□
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The last tool we need to prove Theorem 2.7 is Chebyshev’s Inequality. We omit
the proof here, but a proof can be found in section 7.10 of [3].

Lemma 2.6 (Chebyshev’s Inequality). For any a > 0,

P[|X − E[X]|≥ a] ≤ Var[X]

a2
.

Theorem 2.7. If all Xi are symmetric, limn→∞ E[X] = ∞, and S(X) = o(E[X]),
then X > 0 with high probability with respect to n.

Proof. Dividing Proposition 2.5 through by E[X]2, we have that

(2.8)
Var[X]

E[X]2
≤ 1

E[X]
+

S(X)

E[X]
.

By Chebyshev’s Inequality,

(2.9) P[|X − E[X]| ≤ E[X]] ≤ Var[X]

E[X]2
.

Notice that P[X = 0] ≤ P[|X − E[X]| ≥ E[X]]. Combining (2.6) and (2.7),

P[X = 0] ≤ 1

E[X]
+

S(X)

E[X]
.

As n → ∞, P[X = 0] → 0. Hence, P[X > 0] → 1.
□

3. First Proof of Two-Point Concentration of Clique Number

With Theorem 2.7 in our repertoire, we return to the clique number of random
graphs and provide our first proof of the two-point concentration. That proof will
rely on knowledge of the expected number of k-cliques in a random graph of n
vertices.

Proposition 3.1. Let G ∈ G (n, p). The expected number of k-cliques in G is(
n

k

)
p(

k
2).

Proof. Let S be the set of k-sets of the vertices of G. Notice that |S| =
(
n
k

)
. For

each k-set, the probability that their induced graph is a clique is p(
k
2), as Kk has(

k
2

)
edges and each one is selected with probability p. Using an indicator variable

argument similar to that in the proof of Proposition 1.3, the expected number of
k-cliques in G is (

n

k

)
p(

k
2).

□

The following theorem investigates the clique number of a random graph G ∈
G (n, 1/2) when the expected number of kn-cliques tends to infinity as n tends to
infinity, where kn ∼ 2 log2 n. It is instrumental in our first proof of the two-point
concentration because it gives the clique number of G a lower bound: ω(G) ≥ kn
with high probability.
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Theorem 3.2. Let G ∈ G (n, 1/2). If kn is a sequence with limn→∞

(
n
kn

)
2(

kn
2 )

= ∞

and kn ∼ 2 log2 n, then ω(G) ≥ kn with high probability with respect to n.

Proof. We will use k to represent kn for efficiency. Let X be the random variable
whose value is the number k-cliques in G. Let A be the set of k-sets of the vertices
of G. Assign an ordering to S, and let Si denote the ith element of S. Let Ai be
the event that the k-clique whose vertices are Si is present in G, and let Xi be its
indicator variable. Then,

X =

(nk)∑
i=1

Xi.

Let us compute S(X). For i ∼ 1, it must be that Ai and A1 share j vertices,
where 2 ≤ j ≤ n − 1. If they shared fewer than 2 vertices, Ai and A1 would be
independent, and if they shared more than n− 1 vertices, they would be identical.

If Si and S1 share j vertices, P[Ai|A1] =
1

2(
k
2)−(

j
2)
. This is because, since A1 is

given, out of the 2(
k
2) edges needed for the k-clique on Si,

(
j
2

)
are already chosen.

Now, let’s count the number of possible Si which share j vertices with S1. There
are

(
k
j

)
vertices they could share, and

(
n−k
k−j

)
ways to choose the remaining k − j

vertices of Si (since they cannot be any of the k vertices in S1). Hence,

S(X) =

k−1∑
j=2

(
k

j

)(
n− k

k − j

)
1

2(
k
2)−(

j
2)
.

We intend to show that S(X) = o(E[X]). Let us, then, analyze S(X)
E[X] . We have

S(X)

E[X]
=

k−1∑
j=2

(
k
j

)(
n−k
k−j

)(
n
k

) 2(
j
2)

This sum is dominated by the terms produced by j = 2 and j = k−1. When j = 2,

S(X)

E[X]
=

k−1∑
j=2

2

(
k
2

)(
n−k
k−2

)(
n
k

) ∼
k2nk−2

(k−2)!

nk

k!

∼ k4

n2
∼ 16(log2 n)

4

n2
= o(1)

because k ∼ 2 log2 n. When j = k − 1,

S(X)

E[X]
=

2k(n− k)2−k(
n
k

)
1

2(
k
2)

∼ 2kn2−k

E[X]
∼ 4 log2 n

n
· 1

E[X]
= o(1)

since limn→∞ E[X] = ∞. Therefore, S(X) = o(E[X]). We can use Theorem 2.7
because all Ai are symmetric. Hence, X > 0 with high probability with respect to
n. Thus, there exists a k-clique with high probability. Therefore, ω(G) ≥ k with
high probability.

□

Now we are ready for the first proof of the two-point concentration.

Theorem 3.3 (Two-Point Concentration). There exists a sequence kn such that
ω(G) = kn or ω(G) = kn + 1 with high probability with respect to n.
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Proof. For any n ≥ 5, the expected number of 3-cliques is greater than 1, and the
expected number of n-cliques is less than 1. Thus, for any n ≥ 5, there exists a
unique jn such that (

n
jn

)
2(

jn
2 )

≥ 1 >

(
n

jn+1

)
2(

jn+1
2 )

.

For convenience, we will refer to jn as j. By Stirling’s Formula, which states

n! ∼
(n
e

)n √
2πn.

(proven in [5]), we have that

jn ∼ 2 log2 n.

Therefore, the ratio of the expected number j + 1-cliques to the expected number
of j-cliques is

(3.4)
n− j

j + 1
2−j ∼ n− 2 log2 n

2 log2 n+ 1
· 1

n2
=

1

n1+o(1)
.

We claim that

kn =


j − 1 if

(
n

j+1

)
2(

j+1
2 )

≤ 1√
n

j if

(
n

j+1

)
2(

j+1
2 )

>
1√
n
.

Let n be sufficiently large so that n
3
4 ≤ n1+o(1) from (3.4). Consider if

(
n

j+1

)
2(

j+1
2 )

≤ 1√
n
.

Then,

1√
n
≥ P[There exists a clique of size j + 1] = P[ω(G) ≥ j + 1].

Hence P[ω(G) ≥ j + 1] → 0. By the definition of j, we have

(
n
j

)
2(

j
2)

≥ 1. Hence,(
n

j−1

)
2(

j−1
2 )

≥ n
3
4 .

Therefore,

(
n

j−1

)
2(

j−1
2 )

→ ∞. Thus, Theorem 3.2 tells us that ω(G) ≥ j − 1 with

high probability with respect to n. Hence, ω(G) = j − 1 or ω(G) = j with high
probability.

Now consider the case

(
n

j+1

)
2(

j+1
2 )

>
1√
n
. In this case:(
n
j

)
2(

j
2)

> n
1
4 ,
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which means

(
n
j

)
2(

j
2)

→ ∞. Therefore, Theorem 3.2 tells us that ω(G) ≥ j with high

probability. By the definition of j, we have 1 ≥
(

n
j+1

)
2(

j+1
2 )

. Hence,

1

n
3
4

≥
(

n
j+2

)
2(

j+2
2 )

,

which means P[ω(G) ≥ j + 2] → 0. Thus, ω(G) = j or ω(G) = j + 1 with high
probability.

□

4. Second Proof of Two-Point Concentration of Clique Number

This second proof of the two-point concentration relies on The Janson Inequality.
We omit the proof here, but a proof can be found in chapter 8 of [1].

Lemma 4.1 (The Janson Inequality). Let S be set. Let A = {A1, . . . , An} be
a collection of subsets of S. Let R be a random subset of S, with ps being the
probability that an arbitrary s ∈ S is chosen to be in R. For any Ai ⊆ S, let Bi be
the event that Ai ̸⊆ R. Let the random variable X be number of elements of A in
R. Then

n∏
i=1

P[Bi] ≤ P

[
n⋂

i=1

Bi

]
≤ exp

(
−E[X] +

E[X]S(X)

2

)
.

Furthermore, if P[Ai ⊂ R] ≤ ϵ = o(1) for all Ai ∈ A,

n∏
i=1

P[Bi] ∼ e−E[X].

Finally, now equipped with The Janson Inequality, we provide the second proof
of the two-point concentration theorem. This proof offers more insight into the two
values on which the clique number concentrates.

Proof. Let m′
k be the real number such that(

m′
k

k

)
2(

k
2)

= 1.

Let mk be the least integer such that(
mk

k

)
2(

k
2)

≥ 1.

Notice that mk ≥ m′
k ≥ mk − 1, which means m′

k ∼ mk. Hence(
mk

k

)
2(

k
2)

∼ 1,

so (
mk

k

)
2(

k
2)

= 1 + o(1).
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Let

nk = mk

(
1 +

λ+ o(1)

k

)
where λ is some real number. We have that

(
nk

k

)
2(

k
2)

∼
mk

k

(
1 + λ+o(1)

k

)k

k!2(
k
2)

∼
(
mk

k

)
2(

k
2)

(
1 +

λ+ o(1)

k

)k

∼
(
1 +

λ+ o(1)

k

)k

because

(
mk

k

)
2(

m
2 )

= 1 + o(1). Therefore,(
nk

k

)
2(

k
2)

= (1 + o(1))

(
1 +

λ+ o(1)

k

)k

=

[
(1 + o(1))

1
k

(
1 +

λ+ o(1)

k

)]k

=

[
(1 + o(1))

(
1 +

λ+ o(1)

k

)]k

=

(
1 +

λ+ o(1)

k

)k

= eλ + o(1)

Therefore, as k approaches infinity, the expected number of k-cliques in a random
graph G with nk vertices and edge probability 1/2 approaches eλ. Let us apply
The Janson Inequality. Let C be the set of all k-sets of V (G) and assign C an
arbitrary ordering, where Ci denotes the ith member of C. In this situation, S
from The Janson Inequality is the set of all possible edges of G, R is the set of
edges chosen with probability 1/2, and a particular Ai is the set of all possible
edges produced by the vertices in Ci; that is, the edges of the k-clique whose
vertices are Ci. Additionally, X is the number of k-cliques in the random graph.

Hence, E[X] =
(nk

k )

2(
k
2)

→ eλ which means that k ∼ 2 log2 n. Therefore, we see from

the proof of Theorem 3.2 that S(X) = o(E[X]) = o(eλ+o(1)). Hence, S(X) = o(1).
Since

P[Ai] =
1

2(
k
2)

= o(1)

for all i, The Janson Inequality tells us that

lim
k→∞

(nk
k )∏

i=1

P(Bi) = e−eλ .

Thus, The Janson Inequality further tells us that
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e−eλ + o(1) ≤ P

(
nk
k )⋂

i=1

Bi

 ≤ exp

(
E[X] +

E[X]S(X)

2

)
.

We know from the proof of Theorem 3.2 that S(X) = o(1). Since E[X] approaches
a constant,

e−eλ + o(1) ≤ P

(
nk
k )⋂

i=1

Bi

 ≤ e−eλ+o(1).

Thus, P
[⋂(nk

k )
i=1 Bi

]
= e−eλ + o(1). Therefore,

(4.2) P [ω (G (nk, 1/2)) < k] = e−eλ + o(1).

Fix K > 0 arbitrarily. Let

Ik =

[
mk

(
1− K

k

)
,mk

(
1 +

K

k

)]
.

Since (
mk

k

)
2(

k
2)

∼ 1,

Stirling’s Formula tells us that

mk
k

√
2
k−k2

∼
(
k

e

)k √
2πk

mk ∼ k

e
√
2

√
2
k
.

Hence, mk+1

mk
∼

√
2. Thus, for any fixed K, there exists a jK such that for all

k ≥ jK , mk+1

mk
is sufficiently large and K

k is sufficiently small so that the intervals

{Ii}∞i=k−2 are disjoint. Consider any n ≥ mjk . Let k′ be the smallest k such that
mk ≥ n. Thenmk′ ≥ mjK , which means k′ ≥ jK since the sequencemk is monoton-
ically increasing. Therefore, the intervals Ik′−2, Ik′−1, Ik′ , Ik′+1 are disjoint. Since
mk′ ≥ n ≥ mk′−1, either n ∈ Ik′ , n ∈ Ik′−1, or n lies between Ik′ and Ik′−1.

If n ∈ Ik′ , then

mk′−1

(
1 +

K

k′ − 1

)
≤ n ≤ mk′+1

(
1− K

k′ + 1

)
.

By (4.2), we have that

P
[
ω

(
G

(
mk′−1

(
1 +

K

k′ − 1

)
,
1

2

))
< k′ − 1

]
= e−eK + o(1).

Because mk′−1

(
1 + K

k′−1

)
≤ n, we have

P [ω (G (n, 1/2)) < k′ − 1] ≤ e−eK + o(1).
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Since k′ → ∞ as n → ∞, we see that the o(1) term goes to 0 as n → ∞. More-

over, K can be made arbitrarily large, making e−eK arbitrarily small. Hence,
ω((G (n, 1/2)) ≥ k′ − 1 with high probability with respect to n.

Using similar logic, we have

P [ω (G (n, 1/2)) < k′ + 1] ≥ e−e−K

+ o(1)

which implies that ω((G (n, 1/2)) < k′ + 1 with high probability with respect to n.
Therefore, ω((G (n, 1/2)) = k′ − 1 or ω((G (n, 1/2)) = k′ with high probability.

Analogously, if n ∈ Ik′−1, we have that ω((G (n, 1/2)) = k′ − 2 or ω((G (n, 1/2)) =
k′ − 1 with high probability.

Now consider if n lies between Ik′−1 and Ik′ . Then,

mk′−1

(
1 +

K

k′ − 1

)
≤ n ≤ mk′

(
1− K

k′

)
.

Hence,

P [ω (G (n, 1/2)) < k′ − 1] ≤ e−eK + o(1)

and
P [ω (G (n, 1/2)) < k′] ≥ e−e−K

+ o(1)

which means that ω (G (n, 1/2)) = k′ − 1 with high probability with respect to
n. □

Remark 4.3. It turns out that n falls between Ik′−1 and Ik′ more often than it
falls in Ik′−1 or Ik′ . Thus, ω(G) is concentrated on a single value for most n.
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