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ABSTRACT. In this paper we discuss how cohomology rings with Poincaré duality
have a Frobenius algebra structure. We first introduce the definitions of Frobenius
algebras and cohomology rings with Poincaré duality before showing that the lat-
ter is in fact an example of the former.
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1. INTRODUCTION

The notion of Poincaré duality comes from the idea of “holes” on manifolds.
Specifically, the number of k-dimensional holes and the number of (n− k)-dimen-
sional holes on a closed (that is, compact and without boundary) orientable
n-manifold are equal. This idea was further developed with the advent of
homology and cohomology. The modern form of Poincaré duality states that for
a closed (that is, compact and without boundary) orientable n-manifold M, its kth
cohomology group is isomorphic to its (n− k)th homology group.

On the other hand, Frobenius algebras are a type of algebraic structure that
has popped up in a variety of places from physics to computer science. In short,
a Frobenius algebra is a finite-dimensional algebra equipped with an associative
nondegenerate pairing. Frobenius algebras carry a deep connection to topology.

This paper shall show that the duality provided by Poincaré duality gives rise
to an associative nondegenerate pairing on the cohomology ring, thus giving the
cohomology ring the structure of a Frobenius algebra.
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2. FROBENIUS ALGEBRAS

We will review some algebraic preliminaries and establish the notation used
in this paper. First, recall the universal property of tensor product: there exists a
bilinear map τ : V ×W → V ⊗W such that for every bilinear map f : V ×W → T
there exists a unique linear map f̃ : V ⊗W → T such that f = f̃ ◦ τ.

V ×W V ⊗W

T

τ

f
! f̃

Thus, having a linear map V ⊗W → T is equivalent to having a bilinear map
V ×W → T. This paper will generally use the notation of tensor products.

Definition 2.1. Given a vector space V over a field K, the dual space V∗ is an-
other vector space whose elements are the linear forms on V. Given a linear map
f : V →W, the dual map is f ∗ : W∗ → V∗ by ψ 7→ ψ ◦ f .

If V is finite dimensional with a basis {e1, · · · , en}, then the basis of V∗ is
{e1, · · · , en} where ei(ei) = δi

j. Thus, we see dim(V) = dim(V∗) and V ∼= V∗,
however, there is no canonical isomorphism between a vector space and its dual.

Remark 2.2. The linear map V → V∗∗ by v 7→ [ψ 7→ ψ(v)] is injective, and it’s an
isomorphism if V is finite dimensional.

Lemma 2.3. If f : V → W is injective, then f ∗ : W∗ → V∗ is surjective; and
if f : V →W is surjective, then f ∗ : W∗ → V∗ is injective.

Proof. Say f is injective. Then f has a left inverse g where g ◦ f = 1V . Then,
we have (g ◦ f )∗ = f ∗ ◦ g∗ = 1V∗ . Since f ∗ has a right inverse, it is surjective.
Now, say f is surjective. Then, if f ∗(ψ) = ψ ◦ f = 0, it must be that ψ = 0, so
f ∗ is injective. □

Definition 2.4. A pairing of two vector spaces V and W is a linear map
β : V ⊗W → K, denoted v⊗ w 7→ β(v, w).

Remark 2.5. For a pairing β : V ⊗W → K, we can define the linear maps
βL : W → V∗ by w 7→ [v 7→ β(v, w)] and βR : V → W∗ by v 7→ [w 7→ β(v, w)].
And if we have a map of the form V →W∗ where V and W have finite dimension,
then we have a paring β : V ⊗W → K.

Lemma 2.6. In the case that V and W are of finite dimension, βR is the dual map of

βL (identifying V
∼=−→ V∗∗) and βL is the dual map of βR (identifying W

∼=−→ W∗∗).

Proof. By definition, we have β∗L : V∗∗ →W∗ by ω 7→ ω ◦ βL. Composing with the
isomorphism v 7→ [ψ 7→ ψ(v)] from Remark 2.2, we have a map V → V∗∗ → W∗

by v 7→ [ψ 7→ ψ(v)] ◦ [w 7→ [v 7→ β(v, w)]]. Observe that this resulting map is the
one that sends w to β(v, w), which is βR.

Similarly, we can see βL is the dual map of βR. □

Definition 2.7. The pairing β : V ⊗W → K is nondegenerate in the variable
V if V is finite-dimensional and the induced map βR is injective. Similarly, β is
nondegenerate in the variable W if W is finite-dimensional and βL is injective. β is
simply called nondegenerate if it is nondegenerate in both V and W.
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Lemma 2.8. Given a pairing β : V ⊗W → K between finite dimensional vector
spaces, the following are equivalent:

(i). β is nondegenerate,
(ii). The induced linear map βR : V →W∗ is an isomorphism,

(iii). The induced linear map βL : W → V∗ is an isomorphism.
If we know dim(V) = dim(W), then nondegeneracy can also be characterised by:

(ii′). β(v, w) = 0 for all v ∈ V implies w = 0,
(iii′). β(v, w) = 0 for all w ∈W implies v = 0.

Proof. If β is nondegenerate, then both βL and βR are injective. By the duality of
βL and βR, they are also both surjective. Thus, βL and βR are isomorphisms. On
the other hand, if either βL or βR is an isomorphism, the other will also be an an
isomorphism by duality. Thus, β will be nondegenerate. □

Definition 2.9. Let K be a field. A K-algebra is a K-vector space A together with
two K-linear maps multiplication µ : A⊗ A → A, written x ⊗ y 7→ xy, and unit
η : K → A, such that for all x, y, z ∈ A, (xy)z = x(yz) and Ix = x = xI where
I = η(1K).

This definition implies that A is a ring. In fact, we can also define a K-algebra
as a ring A equipped with a ring homomorphism η : K → A.

Definition 2.10. A right A-module is a vector space M with a K-linear map
M⊗ A → M, written x ⊗ a 7→ x · a, such that for all x ∈ M and for all a, b ∈ A,
(x · a) · b = x · (ab) and x · 1 = x. A left A-module is a vector space N with a
K-linear map A⊗ N → N, written a⊗ x 7→ a · x, such that for all x ∈ N and for all
a, b ∈ A, a · (b · x) = (ab) · x and 1 · x = x.

Definition 2.11. A K-linear map ϕ : M → P between two right A-modules M
and P is called a right A-homomorphism if for all x ∈ M and for all a ∈ A,
ϕ(x · a) = ϕ(x) · a. A K-linear map ψ : N → Q between two left A-modules
N and Q is called a left A-homomorphism if for all x ∈ N and for all a ∈ A,
ψ(a · x) = a · ψ(x).

Definition 2.12. For a right A-module M and a left A-module N, a pairing
β : M ⊗ N → K is called associative if for all x ∈ M, for all y ∈ N, and for all
a ∈ A, β(x · a, y) = β(x, a · y).

Definition 2.13. A Frobenius algebra is a K-algebra A of finite dimension, with
any of the following equivalent structures:

(1). a linear form ε : A→ K whose nullspace contains no nontrivial left ideals,
called the Frobenius form,

(2). an associative nondegenerate pairing β : A⊗ A→ K, called the Frobenius
pairing,

(3). a left A-isomorphism to its dual,
(4). a right A-isomorphism to its dual.

3. COHOMOLOGY AND POINCARÉ DUALITY

3.1. Singular Homology and Cohomology. Poincaré duality is a relation between
the homology and cohomology groups of manifolds. First, we will need to define
homology and cohomology.
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Definition 3.1.1. A singular n-simplex in a topological space X is a continuous
map σ : ∆n → X, where ∆n is the standard n-simplex:

∆n = {(t0, · · · , tn) ∈ ℝn+1|Σiti = 1 and ti ≥ 0 for all i}.

The map σ need not be a nice embedding and it can have “singularities”.

We may designate σ by its vertices by writing [v0, · · · , vn] = [σ(e0), · · · , σ(en)]
where [e0, · · · , en] are the vertices of the standard n-simplex. The faces of an
n-simplex are the (n − 1)-simplices σ|[v0,···,v̂i ,···,vn ] where v̂i denotes that the ver-
tex vi is removed. The boundary map ∂n sends an n-simplex to a sum of its faces:

∂n(σ) = ∑
i
(−1)iσ|[v0,···,v̂i ,···,vn ].

The signs are inserted so the faces have a coherent orientation.
Let Cn(X) be the free abelian group with a basis of the set of all possible n-

simplices in X. Elements of Cn(X) are called singular n-chains. The boundary
map ∂ may be extended to n-chains, in fact, ∂n : Cn(X)→ Cn−1(X) is a homomor-
phism. Thus, we have a singular chain complex:

· · · → Cn+1(X)
∂n+1−−→ Cn(X)

∂n−→ Cn−1(X)→ · · ·

Elements in the kernal of ∂ are called the cycles. Elements in the image of ∂ are
called the boundaries.

Definition 3.1.2. The nth singular homology group is the quotient group Hn(X) =
ker(∂n)/im(∂n+1).

In the previous definition, the n-chains are in the form ∑i niσi where each ni
is an integer and each σi is a singular n-simplex. We can extend the definition
by allowing the coefficients ni to come from some other fixed abelian group G
rather than ℤ. The groups of these n-chains are denoted Cn(X; G). The boundary
maps ∂ still work for arbitrary G, thus, we can also form chain complexes with
Cn(X; G). The resulting homology groups Hn(X; G) are called homology groups
with coefficients in G.

Given a space X with a subspace A ⊂ X, we denote the quotient group
Cn(X)/Cn(A) as Cn(X, A). The boundary map ∂n : Cn(X) → Cn−1(X) induces
a quotient boundary map ∂′n : Cn(X, A) → Cn−1(X, A). Thus, we have a chain
complex

· · · → Cn+1(X, A)
∂′n+1−−→ Cn(X, A)

∂′n−→ Cn−1(X, A)→ · · ·

from which we get the relative homology group Hn(X, A) := ker(∂′n)/im(∂′n+1).
We can also form relative homology groups with coefficients in G, denoted

Hn(X, A; G), by forming a complex with Cn(X, A; G) = Cn(X; G)/Cn(A; G).
Now, we shall move on to cohomology. Previously we defined dual vector

spaces in Definition 2.1. Similarly, we can define the dual of a group G with respect
to some other group H as Hom(G, H). Dual groups are key to the definition of
singular cohomolgy.

Fixing an abelian group G, we define the group Cn(X; G) of singular n-cochains
with coefficients in G as Hom(Cn(X), G), the dual group of Cn(X). We define the
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coboundary map dn : Cn(X; G) → Cn+1(X; G) as the dual map of ∂n. Thus, we
have a singular cochain complex:

· · · ← Cn+1 dn←− Cn dn−1←−− Cn−1 ← · · ·

Elements in the kernal of d are called the cocycles. Elements in the image of d are
called the coboundaries.

Definition 3.1.3. The nth singular cohomology group with coefficients in G is the
quotient group Hn(X; G) = ker(dn)/im(dn−1).

Example 3.1.4. Consider a space A = {a} with a single point. Clearly, there exists
only one singular n-simplex for any n — namely the map σn : ∆n → A by x 7→ a.
Observe that ∂n(σn) = ∑i(−1)iσn−1 is the zero map when n is odd and σn−1 when
n is even. Thus, we have the following chain complex:

· · · 0−→ ℤ
∼=−→ ℤ 0−→ ℤ

∼=−→ · · · 0−→ ℤ
∼=−→ ℤ 0−→ ℤ 0−→ 0

And the homology groups are{
Hn(A) = 0 if n > 0
H0(A) = ℤ if n = 0.

Now consider the cohomology. Let’s fix ℤ as our abelian group for example,
then, Hn(A;ℤ) = Hom(ℤ,ℤ) = ℤ; the dual maps of the isomophisms are still
isomorphisms and the dual maps of the zero maps are still the zero maps. Thus,
we have the following cochain complex:

· · · 0←− ℤ
∼=←− ℤ 0←− ℤ

∼=←− · · · 0←− ℤ
∼=←− ℤ 0←− ℤ 0←− 0

And the cohomology groups are{
Hn(A;ℤ) = 0 if n > 0
H0(A;ℤ) = ℤ if n = 0.

For another example, let’s fix ℤ/2ℤ as our abelian group, then, Hn(A;ℤ/2ℤ) =
Hom(ℤ,ℤ/2ℤ) = ℤ/2ℤ; once again the dual maps of the isomophisms are iso-
morphisms and the dual maps of the zero maps are zero maps. Thus, we have the
following cochain complex:

· · · 0←− ℤ/2ℤ
∼=←− ℤ/2ℤ 0←− ℤ/2ℤ

∼=←− · · · 0←− ℤ/2ℤ 0←− 0

And the cohomology groups are{
Hn(A;ℤ/2) = 0 if n > 0
H0(A;ℤ/2) = ℤ/2ℤ if n = 0.

Example 3.1.5. We shall compute the homology and cohomology groups of a torus
T. However, while singular homology and cohomology are useful for theoretical
proofs, they are unwieldy for doing computations. It turns out that there is a
related theory to singular homology and cohomology — simplicial homology and
cohomology — which is isomorphic to the former (see [3]). Consider the following
∆-complex:
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v0 v1

v2 v3

a a

b

b

c

U

L

Note that v0, v1, v2, v3 are identified with the same 0-simplex which we shall de-
note v, they are ordered so as to make the ∆-complex well defined. We have:

C0(T;ℤ) = ⟨v⟩
C1(T;ℤ) = ⟨a, b, c⟩
C2(T;ℤ) = ⟨U, L⟩

Thus,

ker(∂1) = ⟨a, b, c⟩ ker(∂2) = ⟨U − L⟩
im(∂1) = 0 im(∂2) = ⟨a + b− c⟩

Thus,

H0(T) = ⟨v⟩ ∼= ℤ

H1(T) = ⟨a, b, c⟩/⟨a + b− c⟩ ∼= ℤ2

H2(T) = ⟨U − L⟩ ∼= ℤ

Now we consider the cohomology. We use the ∗ to denote the duals, e.g. a∗ is
the map that sends a to 1 and b and c to 0. We have:

C0(T;ℤ) = ⟨v∗⟩
C1(T;ℤ) = ⟨a∗, b∗, c∗⟩
C2(T;ℤ) = ⟨U∗, L∗⟩

Thus,

ker(d0) = ⟨v∗⟩ ker(d1) = ⟨a∗ + c∗, b∗ + c∗⟩
im(d0) = 0 im(d1) = ⟨U∗ − L∗⟩

Thus,

H0(T;ℤ) = ⟨v∗⟩ ∼= ℤ

H1(T;ℤ) = ⟨a∗ + c∗, b∗ + c∗⟩ ∼= ℤ2

H2(T;ℤ) = ⟨U∗, L∗⟩/⟨U∗ − L∗⟩ = ⟨U∗⟩ ∼= ℤ

3.2. Cohomology Rings. Singular cohomology is defined using singular homol-
ogy. In this section we shall see that singular cohomology in fact has some addi-
tional structure than singular homology if the group of coefficients is a ring.
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Definition 3.2.1. For a space X and a ring R, for the cochains ϕ ∈ Cp(X; R) and
ψ ∈ Cq(X; R), the cup product ϕ ⌣ ψ ∈ Cp+q(X; R) is defined as follows:

(ϕ ⌣ ψ)(σ) = ϕ(σ|[v0,···,vp ])ψ(σ|[vp ,···,vp+q ]).

The coboundary of a cup product is given by:

d(ϕ ⌣ ψ) = dϕ ⌣ ψ + (−1)pϕ ⌣ dψ.

We can see that the cup product of two cocycles is another cocycle, and the cup
product of a cocycle and a coboundary is a coboundary. By construction, the cup
product is bilinear. Thus, this induces a tensor product on cohomology groups:

⌣: Hp(X; R)⊗ Hq(X; R)→ Hp+q(X; R).

Definition 3.2.2. The direct sum H∗(X; R) =
⊕

i Hi(X; R) together with the cup
product is a graded ring, called the cohomology ring of X.

Example 3.2.3. The cohomology ring of a space A with one point from Example
3.1.4 is ℤ concentrated in the zeroth degree. More specifically, it’s the free group
generated by the cochain ϕ : C0(A) → ℤ where σ0 7→ 1. For the cup product, we
have ϕ ⌣ ϕ = ϕ.

Example 3.2.4. Consider the cohomology groups of the torus from 3.1.5. Observe
that if ϕ is any cochain, then v∗ ⌣ ϕ = ϕ ⌣ v∗ = ϕ.

Now, we can calculate the cup product of two elements in H1(T,ℤ):

((a∗ + c∗) ⌣ (b∗ + c∗))(U) = (a∗ + c∗)(a)(b∗ + c∗)(b) = 1

((a∗ + c∗) ⌣ (b∗ + c∗))(L) = (a∗ + c∗)(b)(b∗ + c∗)(a) = 0

Thus, we have (a∗ + c∗) ⌣ (b∗ + c∗) = U∗.

3.3. Poincaré Duality. Under certain conditions, which we will now explain, the
structure of the homology and cohomology groups of orientable closed manifolds
present an interesting symmetry.

Definition 3.3.1. An n-dimensional manifold without boundary, or n-manifold,
is a Hausdorff space M which is locally homeomorphic to ℝn. A compact manifold
without boundary is called closed.

For any point p in a manifold M, there is a neighborhood U of p and a home-
omorphism ϕ : U → ϕ(U) ∈ ℝn called a coordinate chart. We denote the
chart by (U, ϕ). A family of charts {(Uα, ϕα)} which covers M is called an at-
las. For two charts (U, ϕ) and (V, ψ) that overlap, there is a transition function
ψ ◦ ϕ−1 : ϕ(U ∩V)→ ψ(U ∩V) which is a homeomorphism.

Definition 3.3.2. A local orientation of an n-manifold M at a point p is a choice of
generator for the group Hn(M, M \ {p}) ∼= ℤ.

A transition function ψ ◦ ϕ−1 : ϕ(U ∩ V) → ψ(U ∩ V) is said to be orientation
preserving if for each p in U ∩V, it fixes the generators of HN(U ∩V, U ∩V \ {p})
which is isomorphic to Hn(M, M \ {p}) by excision.

Definition 3.3.3. A manifold M is called orientable if it admits an atlas for which
all the transition functions are orientation preserving. An orientation for M is a
choice of atlas which satisfies the previous condition.
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More generally, we can consider Hn(M, M \ {p}; R) ∼= R for any commutative
ring R with identity. Then, an R-orientation is a choice of atlas for M where all
the transition functions fix the generators of Hn(M, M \ {p}; R), and M is called
R-orientable if it admits such an atlas. It can be shown that M is R-orientable if
and only if for all p ∈ M, the map Hn(M; R) → Hn(M, M \ {p}; R) ∼= R is an
isomorphism. An element of Hn(M; R) whose image in Hn(M, M \ {p}; R) is a
generator for all p is called a fundamental class of M.

Definition 3.3.4. For a space X and a ring R, for the chain σ ∈ Cp(X; R) and
cochain ϕ ∈ Cq(X; R), the cap product σ ⌢ ϕ ∈ Cp−q(X; R) is defined as follows:

σ ⌢ ϕ = ϕ(σ|[v0,···,vq ])σ|[vq ,···,vp ].

The boundary of a cap product is given by:

∂(σ ⌢ ϕ) = (−1)q(∂σ ⌢ ϕ− σ ⌢ dϕ).

We can see that the cap product of a cycle and a cocycle is a cycle, the cap product
of a cycle and a coboundary is a boundary, and the cap product of a boundary and
a cocycle is a boundary. Thus, this induces a product:

⌢: Hp(X; R)⊗ Hq(X; R)→ Hp−q(X; R).

Theorem 3.3.5. (Poincaré duality). If M is an R-orientable closed n-manifold, with
a fundemental class [M] ∈ Hn(M; R), the map

D : Hp(M; R)→ Hn−p(M; R)

ϕ 7→ [M] ⌢ ϕ
(1)

is an isomorphism for all p.

The universal coefficient theorem (see [3]) provides a stronger duality if R is a
field, in that case, we have (Hn(X; R))∗ = Hom(Hn(X; R), R) ∼= Hn(X; R).

4. FROBENIUS ALGEBRA STRUCTURE OF COHOMOLOGY RINGS

Finally, we shall show that cohomology rings with Poincaré duality are exam-
ples of Frobenius algebras. We will take K to be a field. First, we shall define some
useful isomorphisms.

The Kronecker index is the map

⟨−,−⟩ : H∗(M; K)⊗ H∗(M; K)→ K

where ⟨σ, ϕ⟩ := ϕ(σ) if σ ∈ Hp(M; K) and ϕ ∈ Hq(M; K) where p = q, and
⟨σ, ϕ⟩ := 0 otherwise. By Remark 2.2, We have the isomorphism

∗∗ : Hn−p(M; K)→ (Hn−p(M; K))∗∗

σ 7→ ⟨σ,−⟩.
(2)

We also note that the cap product, cup product, and evaluation pairing are re-
lated by the identity

⟨ϕ ⌢ σ, ψ⟩ = ⟨σ, ϕ ⌣ ψ⟩
where σ is a chain and ϕ and ψ are cochains, i.e. the cap and cup products are
adjoint. Thus, we can define an isomorphism

ad : (Hn−p(M; K))∗∗ → (Hn−p(M; K))∗

⟨ϕ ⌢ [M],−⟩ 7→ ⟨[M], ϕ ⌣ −⟩
(3)
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Finally, we can prove the main theorem:

Theorem 4.1. Cohomology rings with Poincaré duality are Frobenius algebras.

Proof. We can compose the isomorphisms (1), (2), and (3) to get an isomorphism

ad ◦ ∗∗ ◦ D : Hp(M; K)→ (Hn−p(M; K))∗

ϕ 7→ ⟨[M], ϕ ⌣ −⟩.
By Remark 2.5, we have a pairing

β : Hp(M; K)⊗ Hn−p(M; K)→ K

ϕ⊗ ψ 7→ ⟨[M], ϕ ⌣ ψ⟩.
Thus, we have a pairing on the cohomology ring

β : H∗(M; K)⊗ H∗(M; K)→ K

ϕ⊗ ψ 7→ ⟨[M], ϕ ⌣ ψ⟩.
Bilinearity and associativity of β follow from the fact that the cup product is bilin-
ear and associative:

β(ϕ ⌣ ψ, ω) = ⟨[M], ϕ ⌣ ψ ⌣ ω⟩ = β(ϕ, ψ ⌣ ω).

Since ad ◦ ∗∗ ◦ D = βR is an isomorphism, β is nondegenerate by Lemma 2.8.
Thus, cohomology rings with Poincaré duality are Frobenius algebras. □

ACKNOWLEDGEMENTS

I would like to thank Professor Carmen Rovi, Yuqin Kewang, and Professor
Peter May for their guidence though this REU. I would especially like to thank
Professor Rovi for originally introducing the idea of Frobenius algebras to me in
her talks, and for her support in putting the project together. I would also like to
thank Professor May in organising the REU. Finally, I would like to thank all my
mentors for putting up with me in a rather difficult time in my life.

REFERENCES

[1] Joachim Kock. Frobenius Algebras and 2D Topological Quantum Field Theories. Cambridge University
Press. 2003.

[2] J. P. May. A Concise Course in Algebraic Topology.
[3] Allen Hatcher. Algebraic Topology. Cambridge University Press. 2002.


	1. Introduction
	2. Frobenius algebras
	3. Cohomology and Poincaré Duality
	3.1. Singular Homology and Cohomology
	3.2. Cohomology Rings
	3.3. Poincaré Duality

	4. Frobenius Algebra structure of cohomology rings
	Acknowledgements
	References

