
AN INTRODUCTION TO THE MODULARITY THEOREM

DESMOND SAUNDERS

Abstract. The aim of this paper is to state one of the most important results

of modern number theory: the modularity theorem. In fact, we will state it

three times, all following [1]. Our particular aim is to make this presenta-
tion accessible with minimal background knowledge. No prior knowledge of

modular forms, elliptic curves, or algebraic curves is necessary.
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1. Introduction

2025 marks the 30th anniversary of the publication of the remarkable paper
“Modular elliptic curves and Fermat’s Last Theorem” by Andrew Wiles, which fi-
nally proved Fermat’s Last Theorem, over 300 years after it was conjectured. He did
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so by proving a very different and much less accessible result: the modularity the-
orem, also known as the Taniyama–Shimura–Weil conjecture before it was proven.
This result connects two structures of utmost importance to modern number the-
ory: elliptic curves and modular forms. Our goal is to provide an accessible but
rigorous introduction to the machinery necessary to state three different versions
of the modularity theorem, with increasing structure and specificity:

Theorem (Modularity Theorem, Version I). For every complex elliptic curve E
with j(E) ∈ Q, there is some N ∈ N such that there exists a surjective holomorphic
map from X0(N) to E.

Theorem (Modularity Theorem, Version II). For every complex elliptic curve E
with j(E) ∈ Q, there is some N ∈ N such that there exists a surjective holomorphic
homomorphism of complex tori from J0(N) to E.

Theorem (Modularity Theorem, Version III). For every complex elliptic curve E
with j(E) ∈ Q, there is some N ∈ N and a newform f ∈ S2(Γ0(N)) such that there
exists a surjective holomorphic homomorphism of complex tori from Af to E.

As stated, the goal of this paper is to be accessible, but the theory of modular
forms does use results from many areas of mathematics. This paper should be
understandable to anyone who has taken undergraduate courses in analysis (in-
cluding differential forms), complex analysis, linear algebra, and abstract algebra.
We attempt to prove everything necessary for the statements of the modularity
theorems, however in certain places where the proofs would become too tedious or
require too much background from topology or Riemann surface theory we may
just sketch them in brief. Around the ends of Section 3 and Section 4 we allow
ourselves to make some statements without proof in order to give the geometric
structures J0(N) and Af a complex analytic structure and show the equivalence of
our three versions of the modularity theorem.

1.1. Basic Ideas and Notation. Let H = {z ∈ C : Im(z) > 0} denote the
complex upper half plane. Of fundamental interest to us is the action of GL2(R)
(or more often the subgroup SL2(Z)) on H:

Definition 1.1. Let γ =
[
a b
c d

]
∈M2×2(R) be nonsingular and τ ∈ C∪{∞}. Then

γ(τ) =
aτ + b

cτ + d
.

If c = 0 then ∞ is fixed and otherwise ∞ is sent to a
c and −d

c is sent to ∞. Since
γ is nonsingular we don’t have to worry about both numerator and denominator
being equal to zero.

One can check by computation that this action respects matrix multiplication.
Note that −I acts as the identity. For this reason some authors choose to quotient
out by the subgroup {±I} and consider the action of PSL2(Z), but we will find it
more convenient to use SL2(Z).

Proposition 1.2. Im(γ(τ)) = det(γ)
Im(τ)

|cτ + d|2
.
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Proof. A simple manipulation shows

Im

(
aτ + b

cτ + d

)
= Im

(
(aτ + b)(cτ + d)

(cτ + d)(cτ + d)

)

=
Im(ac|τ |2 + bcτ + adτ + bd)

|cτ + d|2

=
0 + (ad− bc) Im(τ) + 0

|cτ + d|2

= det(γ)
Im(τ)

|cτ + d|2

as desired. □

Corollary 1.3. The action of SL2(Z) on C sends H to itself.

So we have established the action of SL2(Z) on H. It will also be useful for us
to note that the derivative of γ ∈M2×2(R) is

γ′(τ) =
det(γ)

(cτ + d)2
(1.4)

or for γ ∈ SL2(Z) we have γ′(τ) = 1
(cτ+d)2 .

For some intuition for what this action looks like, consider the following result
from algebra:

Proposition 1.5. SL2(Z) is generated by the matrices

T =

[
1 1
0 1

]
and S =

[
0 −1
1 0

]
These matrices correspond to the functions

τ 7→ τ + 1 and τ 7→ −1

τ

so the action of SL2(Z) on τ either shifts τ to the left or right by 1, or reflects τ
across the unit circle and then the imaginary axis, or any combination of these two.

We will also provide the basic definition of a Riemann surface, both for the
unfamiliar reader and to introduce notation:

Definition 1.6. Let X be a Hausdorff topological space. A complex atlas is an
open cover {Ui}i∈I of X where each open set has an associated homeomorphism
(called a chart) φi : Ui → Vi where Vi is an open subset of C. These charts must
be compatible, i.e. if we let

Vi,j = φi(Ui ∩ Uj), Vj,i = φj(Ui ∩ Uj), and φj,i : Vi,j → Vj,i = φj ◦ φ−1
i ,

then φj,i is biholomorphic for all i, j ∈ I. The map φj,i is called the transition map.
A connected Hausdorff topological space X with a complex atlas is called a

Riemann surface.

Local properties related to the complex numbers can easily be translated to
Riemann surfaces via the charts. For example, whether a function is holomorphic
at a point is perfectly well-defined on Riemann surfaces.

Proposition 1.7. Let X and Y be compact Riemann surfaces and let f : X → Y
be holomorphic. Then f is either constant or surjective.
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Proof. We know f(X) is compact, and so closed. By the open mapping theorem of
complex analysis, if f is non-constant then f(X) is also open. Since Y is connected,
Y is the only non-empty subset of itself that is both closed and open. □

Finally, since we will be using ∗ for the pullback, we will use the slightly unusual
notation V ∧ to denote the dual of a vector space V .

2. Version (I)

2.1. Complex Elliptic Curves. Although our main focus is on developing the
modular forms part of the modularity theorem, we start with a brief discussion of
elliptic curves, which will also serve as motivation for some of the later ideas.

Definition 2.1. A lattice Λ in C is given by Λ = ω1Z ⊕ ω2Z where ω1, ω2 form
a basis for C over R. A complex elliptic curve or complex torus E is the quotient
E = C/Λ for some lattice Λ.

Different choices of ω1 and ω2 can create the same lattice and so the same torus.
For example, by possibly switching one for its negative, we can choose ω1 and ω2

such that ω1

ω2
∈ H. Assuming this convention, we can obtain a more complete

characterization:

Lemma 2.2. Let Λ = ω1Z⊕ ω2Z and Λ′ = ω′
1Z⊕ ω′

2Z be lattices. Then Λ = Λ′ if
and only if there exists a γ ∈ SL2(Z) such that[

ω′
1

ω′
2

]
= γ

[
ω1

ω2

]
Proof. First suppose that Λ = Λ′, so that there exist a, b, c, d ∈ Z such that ω′

1 =
aω1 + bω2 and ω′

2 = cω1 + dω2. Let γ =
[
a b
c d

]
so that[

ω′
1

ω′
2

]
= γ

[
ω1

ω2

]
.

Since the situation is entirely symmetrical, we could have exchanged the roles of Λ
and Λ′, resulting in some matrix γ′, also with integer entries. Since {ω1, ω2} and
{ω′

1, ω
′
2} are both bases for C over R, we conclude that γ′ = γ−1. Thus γ and

γ−1 both have integer entries and in particular det(γ) and det(γ−1) are integers.
Therefore det(γ) = ±1. Using the normalizing convention from above, we can
further conclude that det(γ) = 1, and so indeed γ ∈ SL2(Z).

For the other direction, suppose[
ω′
1

ω′
2

]
= γ

[
ω1

ω2

]
.

Then ω′
1 and ω′

2 can be expressed as integer sums of ω1 and ω2, and so Λ′ ⊂ Λ.
Multiplying both sides by γ−1 then shows that Λ ⊂ Λ′. □

Such elliptic curves are Riemann surfaces which also inherit an abelian group
structure from addition in C. We would like to categorize when two such curves are
equivalent as Riemann surfaces and groups, i.e. when there exists a holomorphic
group isomorphism between them.

Proposition 2.3. Let C/Λ and C/Λ′ be two complex elliptic curves. There exists
a holomorphic group isomorphism between them if and only if there exists some
m ∈ C such that mΛ = Λ′.
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Proof. If such an m exists, then it is easy to show φ : C/Λ → C/Λ′ sending z + Λ
to mz + Λ′ is a holomorphic group isomorphism.

Conversely, suppose such a φ exists. Let π : C → C/Λ and π′ : C → C/Λ′ be
projection maps. The key step is to construct a holomorphic function φ̃ : C → C
such that the diagram

C C

C/Λ C/Λ′

φ̃

π π′

φ

commutes. This uses some basic topology, but it is not hard to see how such a
map is constructed. Let Λ = ω1Z ⊕ ω2Z and Λ′ = ω′

1Z ⊕ ω′
2Z. Let z be in the

parallelogram defined by ω1 and ω2 and suppose φ(z+Λ) = w+Λ′. Then we send
φ̃(z) to the coset representative for w + Λ′ which lies in the parallelogram defined
by ω′

1 and ω′
2. Passing into adjacent parallelograms, we know π′ ◦ φ̃ = φ ◦ π and

so φ̃ is defined up to a constant in Λ′. We can choose this constant inductively,
passing from parallelogram to parallelogram, so that φ̃ is holomorphic on C.

By this construction, for any λ ∈ Λ, we have φ̃(λ + z) = φ̃(z) + λ′ for some
λ′ ∈ Λ′. Thus φ̃(λ+z)− φ̃(z) is a continuous function which maps into the discrete
set Λ′, so it must be constant. Differentiating both sides we get

φ̃′(λ+ z) = φ̃′(z).

In other words, φ̃′ is Λ periodic, so bounded, so constant by Liouville’s theorem.
Therefore φ̃(z) = mz+b and φ(z+Λ) = mz+b+Λ′. Since φ is a homomorphism,

we know φ(0) = 0, which implies b+Λ′ = 0+Λ′ and mΛ+Λ′ = Λ′ =⇒ mΛ ⊂ Λ′.
Since φ is invertible, we equally conclude that 1

mΛ′ ⊂ Λ and so indeedmΛ = Λ′. □

If mΛ = Λ′, we say that Λ and Λ′ are homothetic, with the map sending z to
mz being a homothety. Thus we have shown that holomorphic isomorphism of
complex elliptic curves is equivalent to homothety of their respective lattices. To
characterize elliptic curves modulo isomorphism it suffices to characterize lattices
modulo homothety:

Theorem 2.4. The set of lattices modulo homothety is in bijection with H modulo
the action of SL2(Z). The bijection is given by

SL2(Z)τ 7→ [τZ⊕ Z].

The lattice τZ⊕ Z is denoted Λτ .

Proof. The action of SL2(Z) splits H into orbits, and we denote the set of these
orbits SL2(Z)\H. Let τ ∈ H and let γ(τ) be another point in the same orbit. Then
γ(τ) maps to

aτ + b

cτ + d
Z⊕ Z

which is homothetic to (aτ + b)Z ⊕ (cτ + d)Z, and by Lemma 2.2 this lattice
is equivalent to τZ ⊕ Z. This shows the map is well-defined, and the argument
for injectivity follows similarly. By Proposition 2.3, this also characterizes elliptic
curves up to isomorphism. □
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If f : H → C is a function such that f(γ(τ)) = f(τ) for all γ ∈ SL2(Z) (i.e. f
is SL2(Z) invariant), then we can consider f as a function on equivalence classes of
elliptic curves by composing f with the inverse map from Theorem 2.4.

2.2. The Curve SL2(Z)\H. We have shown that the set of equivalence classes of
complex elliptic curves is parametrized by the orbit space

SL2(Z)\H.
In other words, SL2(Z)\H is the moduli space for complex elliptic curves. This is
the origin of the word modular in modular curves and modular forms. We now
turn our attention to studying these quotients and related objects.

The first goal is to understand SL2(Z)\H as a geometric object. A natural start-
ing point is to try and find a subset of H that contains exactly one representative
of each SL2(Z) orbit. It turns out that we can find such a set that is closed and
connected, up to a certain boundary identification.

Definition 2.5. Let Γ be a group acting on H. A fundamental domain for a
quotient Γ\H is a closed set D ⊂ H such that no two points in the interior of D
are Γ-equivalent and every point in H is Γ-equivalent to some point in D.1

Proposition 2.6. Let

D =

{
τ ∈ H : |Re(τ)| ≤ 1

2
and |τ | ≥ 1

}
.

Then D is a fundamental domain of SL2(Z)\H. Points on the boundary are iden-
tified by reflection across the imaginary axis.

Proof. First we show that every τ ∈ H is SL2(Z)-equivalent to some point in D.
Consider the lattice Λτ = τZ ⊕ Z. This lattice must have some point cτ + d of
minimal absolute value. Clearly c and d are co-prime, otherwise we could scale
down by their common factor. Therefore, by the Euclidean algorithm, there exist
a, b ∈ Z such that ad− bc = 1, and in particular the matrix γ =

[
a b
c d

]
is in SL2(Z).

By Proposition 1.2 we know that

Im(γ(τ)) =
Im(τ)

|cτ + d|2

and by the minimality of |cτ + d|, we know that this is less than or equal to
Im(α(τ)) for all α ∈ SL2(Z). Using T from Proposition 1.5 some integer n ∈ Z
times, we can shift γ(τ) such that its real part is between ± 1

2 . Let γ′ = Tnγ so
that γ′(τ) = γ(τ) + n. Since we only changed the real part, the imaginary part is
still maximal. Applying S we get

Im(γ′(τ)) ≥ Im(Sγ′(τ)) =
Im(γ′(τ))

|γ′(τ)|2

and so |γ′(τ)| ≥ 1. Since |Re(γ′(τ))| ≤ 1
2 indeed we have γ′(τ) ∈ D.

To show the other direction, suppose that τ1 and τ2 are distinct points of D
and there exists some γ ∈ SL2(Z) such that τ1 = γτ2. We want to show that
either |Re(τ1)| = 1

2 and τ2 = τ1 ± 1 (the identification of the two half-lines of the
boundary) or |τ1| = |τ2| = 1 and they have opposite real part (the identification of
the two halves of the circular arc of the boundary). Let γ =

[
a b
c d

]
. Without loss

1Precise definitions of fundamental domain vary, but this definition gives the general idea.
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Figure 1. D with some
SL2(Z) translates. From
[5].

Figure 2.
Stereographic projection
of D. From [4].

of generality, suppose Im(τ2) ≥ Im(τ1) and so applying Proposition 1.2 it must be

that |cτ1 + d|2 ≤ 1. Since all points of D have imaginary part greater than
√
3
2 ,

√
3

2
|c| ≤ |c| Im(τ1) = Im(cτ1) = Im(cτ1 + d) ≤ |cτ1 + d| ≤ 1

and so |c| ≤ 2√
3
, and since c ∈ Z, we know |c| ∈ {0, 1}. If c = 0 then in order for

det(γ) = 1 to hold, we know that a = d = ±1 so γ = ±[ 1 b
0 1 ] and τ2 = γ(τ1) = τ1+b.

It must be that b = ±1 and we are in the first case.
Now suppose that c = 1. Then we can show a similar constraint on |d|. We have

1 ≥ |τ1 + d|2 = |(Re(τ1) + d) + Im(τ1)i|2 = (Re(τ1) + d)2 + Im(τ1)
2

which implies

(Re(τ1) + d)2 ≤ 1− Im(τ1)
2 ≤ 1− 3

4
=⇒ |Re(τ1) + d| ≤ 1

2

and so |d| ≤ 1. The same argument also works if c = −1.
If |d| = 1, then the only way for the above inequalities to be satisfied is if they

are equalities, i.e. |Re(τ1)| = 1
2 and Im(τ1) =

√
3
2 , so τ1 is the point ρ or ρ + 1 in

Figure 1. Thus √
3

2
≤ Im(τ2) =

Im(τ1)

| ± τ1 ± 1|2
≤

√
3

2

so τ2 must be the only other point of D with this minimal imaginary part, namely
τ1 ± 1.

Finally if |c| = 1 and d = 0, then the condition |cτ1+d| ≤ 1 becomes |τ1| ≤ 1 and
indeed |τ1| = 1. By our formula from Proposition 1.2, Im(τ1) = Im(τ2). Therefore
we could have taken Im(τ2) ≤ Im(τ1), flipped all of these calculations, and shown
that either one of the above cases holds or |τ2| = 1 as well. Then τ1 and τ2 have
magnitude 1 and the same imaginary part, so they have opposite real parts. □

Acting on D by any γ ∈ SL2(Z) gives an equally valid fundamental domain
(although it may not be closed), some of which are pictured in Figure 1. While
it is nice that D is closed and connected, we would really like it to be compact.
Indeed, the stereographic projection of D in Figure 2 suggests that, under the right
topology, D could be compactified by adding a single point at infinity. To make
this precise, note that the SL2(Z) orbit of ∞ is Q∪{∞}. So let H∗ = H∪Q∪{∞},
which is sent to itself by the action of SL2(Z), and let D∗ = D ∪ {∞} be the



8 DESMOND SAUNDERS

fundamental domain for SL2(Z)\H∗. To show that D∗ is compact, we need to
define an appropriate topology for H∗:

Definition 2.7. The topology on H∗ is is the smallest topology which contains:

(1) The standard Euclidean topology on H,
(2) The sets

NM = {τ ∈ H : Im(τ) > M} ∪ {∞}

for all M ∈ R+,
(3) All SL2(Z) images of these sets NM (which are either sets of the same form

or circles tangent to the real axis containing a single rational number).

Proposition 2.8. D∗ is compact under the above topology.

Proof. Let G be an arbitrary open cover of D∗. Then G must contain a neighbor-
hood of ∞. The only open sets which contain ∞ are of the form NM ∪ G where
M ∈ R+ and G is an open set in the Euclidean topology (plus maybe some rational
points). The points in D not covered by this open set are some closed subset of
{τ ∈ D : Im(τ) ≤ M}, which is compact under the Euclidean topology and so
compact under our topology as well. Thus adding NM ∪G to some finite subcover
of this set, we get a finite subcover for all of D. □

2.3. Congruence Subgroups and Modular Curves. We do not want to only
study the curve SL2(Z)\H, but a family of related curves. In particular, by quo-
tienting out by smaller groups or subgroups of SL2(Z), we get a curve which is in
some sense ‘larger’ and can encode additional information. Indeed, although we
will not show it, the curves we will define below encode information such as an
elliptic curve plus a particular cyclic subgroup or a point of interest.

Definition 2.9. The principle congruence subgroup of level N is the subgroup

Γ(N) =

{[
a b
c d

]
∈ SL2(Z) : a ≡ d ≡ 1 and b ≡ c ≡ 0 (mod N)

}
.

and we define Γ(1) = SL2(Z).

Proposition 2.10. Γ(N) is normal and of finite index in SL2(Z).

Proof. Consider the natural homomorphism from SL2(Z) to SL2(Z/NZ) which re-
duces each entry mod N . Then Γ(N) is the kernel of the homomorphism, so it is
normal. Furthermore, SL2(Z)/Γ(N) is isomorphic to the image of this homomor-
phism, some subgroup of SL2(Z/NZ).2 Since SL2(Z/NZ) is finite (it has at most
N4 elements), so is this subgroup. Thus indeed [SL2(Z) : Γ(N)] is finite. □

Definition 2.11. A congruence subgroup of level N is a subgroup Γ ≤ SL2(Z) such
that Γ(N) ⊂ Γ. In particular let

Γ0(N) =

{[
a b
c d

]
∈ SL2(Z) : c ≡ 0 (mod N)

}
and

Γ1(N) =

{[
a b
c d

]
∈ SL2(Z) : a ≡ d ≡ 1 and c ≡ 0 (mod N)

}
.

2In fact, the homomorphism is surjective, so this quotient is isomorphic to all of SL2(Z/NZ).
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By Proposition 2.10, we immediately get that all congruence subgroups have
finite index in SL2(Z). It is not hard to describe the fundamental domains of these
congruence subgroups if we allow them to be disconnected, although the boundary
identification becomes more convoluted and so the picture less helpful:

Proposition 2.12. Let Γ be a congruence subgroup and let {αj}dj=1 be coset rep-
resentatives for Γ in SL2(Z). Then a fundamental domain for Γ is

d⋃
j=1

αj(D).

Definition 2.13. Let Γ be a congruence subgroup. Then

Y (Γ) = Γ\H and X(Γ) = Γ\H∗

are called modular curves. The points of X(Γ) not in Y (Γ) (i.e. the Γ orbits in
Q ∪ {∞}) are called the cusps of X(Γ).

We will write Y (N) or X(N) to mean Y (Γ(N)) or X(Γ(N)), and similarly for
Y0(N), X0(N), Y1(N), and X1(N). We want to consider these curves as topological
spaces in their own right (and ultimately as Riemann surfaces). The natural topol-
ogy to use is the quotient topology: if π is the projection map from H to Y (Γ),
then U ⊂ Y (Γ) is open if π−1(U) is open in H, and similarly with H∗ and X(Γ).

Proposition 2.14. For any congruence subgroup Γ, Y (Γ) and X(Γ) are Hausdorff
and connected.

Proof. It is fairly easy to see from the description of the fundamental domain that
Y (1) and X(1) are Hausdorff (Figure 3 may be helpful to see this). Showing the
more general case requires a proof not dissimilar from that of Proposition 2.6, which
we omit.

The fact that these curves are connected comes immediately from the fact that
H and H∗ are connected in their respective topologies, and the projection maps are
continuous by definition of the quotient topology. □

As with the full modular group, adding the cusps is sufficient to make X(Γ)
compact:

Proposition 2.15. For any congruence subgroup Γ, X(Γ) is compact.

Proof. Let π be the projection map from H∗ to X(Γ). Let {αj}dj=1 be the coset
representatives for Γ in SL2(Z), which there are finitely many of since Γ has finite
index. By Proposition 2.12 we have

X(Γ) = π

 d⋃
j=1

αj(D)

 =

d⋃
j=1

π(αj(D)).

The maps αj are continuous from H∗ to H∗, and by the definition of the quo-
tient topology π is continuous to X(Γ). The continuous image of a compact set is
compact, so we have written X(Γ) as a finite union of compact sets. □
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Figure 3. D with some charts and elliptic points.

2.4. Modular Curves as Riemann Surfaces. To show that these modular
curves are Riemann surfaces, we need to find the charts as in Definition 1.6. In
this section we will give formulas and some motivation for these charts but will not
prove their compatibility or that they are in fact homeomorphisms. Understanding
these formulas is not necessary for our purposes, although they will be referenced
later.

Figure 3 shows that around most points of X(1), the projection map restricted
to a small enough open neighborhood is injective, so a local inverse can serve as
the necessary chart. See Proposition 2.17. However, this injectivity fails at i and
µ3. This motivates the following definition:

Definition 2.16. Let Γ be a congruence subgroup. For any τ ∈ H, let Γτ denote
the stabilizer of τ in Γ. Then τ is an elliptic point for Γ if Γτ is non-trivial, i.e.

Γτ ̸⊂ {±I}.
The period of τ is the order of this stabilizer, up to the equivalent actions of ±I:

hτ = |{±I}Γτ/{±I}|.

Proposition 2.17. Let τ be a non-elliptic point of Γ. Then for some open neigh-
borhood U of τ the restriction of the projection map π|U is a homeomorphism. The
local inverse is the necessary chart around τ .3

Proposition 2.18. Let τ be an elliptic point for Γ. Let ρτ (z) = zhτ and let

δτ =

[
1 −τ
1 −τ

]
∈ GL2(Z).

For a sufficiently small open neighborhood U of τ , let ψ : U → V = (ρτ ◦ δτ )|U .
Then the local chart φ : π(U) → V is defined by φ ◦ π = ψ.

Proof (idea). The idea is that ψ mimics the identification of π around τ , but going
from C to C. In particular, δτ takes τ to 0 and does some straightening, then ρτ
wraps around 0 in the same manner as π. See Figure 4. □

3Sometimes it is convenient to have the local coordinates centered at 0, in which case we can
compose with δτ from Proposition 2.18.
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Figure 4.
Elliptic point charts.
From [1].

Figure 5.
Cusp charts. From [1].

Finally, for X(Γ) we need to put charts around the cusps. The process is similar
to the elliptic points.

Definition 2.19. Let s ∈ Q ∪ {∞} and let δs ∈ SL2(Z) take s to ∞. Then the
width of s is

hs = |SL2(Z)∞/({±I}δΓδ−1)∞|

Since δs takes s to ∞ not 0, we use the exponential map rather than the power
map to take it to a neighborhood of 0:

Proposition 2.20. Let s ∈ Q∪ {∞} and let ρs = e2πi/hs . For a sufficiently small
neighborhood U of s, let ψ : U → V = (ρs◦δs)|U . Then the local chart φ : π(U) → V
is defined by φ ◦ π = ψ.

Proof (idea). See Figure 5. □

2.5. Modular Forms, Automorphic Forms, and Cusp Forms. The next nat-
ural objects to study are functions on these modular curves. Since modular curves
are Riemann surfaces, we are particularly interested in holomorphic functions, but
these do not turn out to be interesting objects to study:

Proposition 2.21. Let Γ be a congruence subgroup and let f : X(Γ) → C be
holomorphic. Then f is constant.

Proof (sketch). Since X(Γ) is compact, f must be bounded. It is not hard to show
that if f is holomorphic on X(Γ), then f ◦ π is holomorphic on H. By Liouville’s
theorem we get that f ◦ π is constant, and therefore so is f . □

In other words, functions on H that are invariant under Γ and sufficiently well-
behaved as they approach the cusps are overly constrained. We will choose to
loosen the invariance constraint by introducing a new operator that does slightly
more than just composition:

Definition 2.22. Let k ∈ Z. Let f : H → C and γ =
[
a b
c d

]
∈ GL+

2 (Q). Then
f [γ]k : H → C is defined by

f [γ]k(τ) = det(γ)k/2(cτ + d)−kf(γ(τ))
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Definition 2.23. Given a set of matrices Γ, a meromorphic function f : H → C is
weakly modular of weight k with respect to Γ if

f [γ]k = f ∀γ ∈ Γ.

If α, β ∈ GL+
2 (Q) then [α]k[β]k = [αβ]k as operators. On H, the function cτ + d

has no poles or zeroes, so if f is holomorphic so too is f [γ]k, and similarly for
meromorphic. Since we will almost always be dealing with γ ∈ SL2(Z), the factor
of det(γ) can usually be ignored.4

By way of motivation, for k = 2 we have f [γ]k = γ′(f ◦ γ) by (1.4), a familiar
formulation from the chain rule (Theorem 3.2 will make this connection precise).
Taking products of weight 2 weakly modular functions, we get weakly modular
functions of all even weights.

With this piece of notation, we can also say what it means for a function to be
sufficiently well-behaved as it approaches ∞. Note that the function e2πiτ/h takes
H to the open unit disk minus 0, which we denote D′.

Definition 2.24. Let γ = [ 1 h
0 1 ] ∈ SL2(Z) and suppose f : H → C is a function

such that f = f [γ]k for some k ∈ Z. Then f(τ) = f(τ + h) so (even though the
complex logarithm is only defined up to 2πiZ) let g : D′ → C be given by

g(q) = f

(
log(q)

h

2πi

)
=⇒ f(τ) = g(qh) where qh = e2πiτ/h.

We say f is holomorphic at ∞ if g has a holomorphic extension to the point 0.
Similarly for meromorphic.

If we know a function f is holomorphic on H (and so g is holomorphic on D′), to
show that f is holomorphic at ∞ it suffices to show that g(q) is bounded as q → 0,
or in other words f(τ) is bounded as Im(τ) → ∞.

Of course, we want to be holomorphic at all the cusps, not just ∞. For all s ∈ Q
there is some α ∈ SL2(Z) that takes ∞ to s, so rather than make a new definition
we use the operator [α]k. Thus we can finally define modular forms:

Definition 2.25. Let Γ be a congruence subgroup and let k ∈ Z. Then f : H → C
is a modular form of weight k with respect to Γ if

(i) f is weakly modular of weight k with respect to Γ, and
(ii) f is holomorphic on H and f [α]k is holomorphic at ∞ for all α ∈ SL2(Z).

The set of such forms is denoted Mk(Γ).

Note that the matrix

TN =

[
1 N
0 1

]
is in any congruence subgroup of level N . Furthermore, it is easy to check that
f [α]k is weakly modular of weight k with respect to α−1Γα, which also contains
TN (since Γ(N) is normal). Thus condition (i) ensures the requirements are met
for condition (ii) to be well-defined.

Although modular forms will be our main focus, we can easily replace holomor-
phy with meromorphy to get:

4Sometimes it can be more convenient to raise the determinant to the power of k − 1, but for
SL2(Z) or k = 2 it does not matter.
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Definition 2.26. Let Γ be a congruence subgroup and let k ∈ Z. Then f : H → C
is a automorphic form of weight k with respect to Γ if

(i) f is weakly modular of weight k with respect to Γ, and
(ii) f is meromorphic on H and f [α]k is meromorphic at ∞ for all α ∈ SL2(Z).

The set of such forms is denoted Ak(Γ).

If f(τ) is a modular form, then g(qh) has a holomorphic continuation to 0, so we
can write a Taylor series expansion of g around qh = 0:

g(qh) =

∞∑
n=0

anq
n
h .

Recalling that qh = e2πiτ/h, we get

f(τ) =

∞∑
n=0

ane
2πniτ/h

which is called the Fourier development of f . Having a Fourier development and
being holomorphic at ∞ are equivalent.

Definition 2.27. Let f ∈ Mk(Γ). Then we say f is a cusp form if it goes to zero
at the cusps, i.e. a0 = 0 in the Fourier development of f [α]k for all α ∈ SL2(Z).

The set of cusp forms of weight k with respect to Γ is denoted Sk(Γ).

The sets Mk(Γ),Ak(Γ), and Sk(Γ) are all vector spaces over C. A crucial feature
of the theory of modular forms (which we will not discuss very much) is that these
spaces are all finite dimensional.

We add one final observation about the [γ]k operator which will be useful later:

Proposition 2.28. Let Γ1 and Γ2 be congruence subgroups such that γΓ1γ
−1 ⊂ Γ2

for some γ ∈ GL+
2 (Q). Then [γ]k takes Mk(Γ2) to Mk(Γ1) and Sk(Γ2) to Sk(Γ1).

Proof. Let f ∈ Mk(Γ2). As we noted above, it is fairly straightforward to show
that f [γ]k is weakly modular of weight k with respect to γ−1Γ2γ, which contains
Γ1. Thus we focus on showing that condition (ii) from Definition 2.25 holds for
f [γ]k. Given α ∈ SL2(Z), γα is in GL+

2 (Q), so to show that f [γ]k[α]k = f [γα]k is
holomorphic at ∞, it suffices to show that f [γ]k is holomorphic at ∞ for a generic
γ ∈ GL+

2 (Q).
Let γ =

[
a b
c d

]
. We would like to find a matrix α ∈ SL2(Z) such that αγ has lower

left entry 0. If c = 0 then α = I. Otherwise let p
q be a

c written in lowest terms,

such that p and q are coprime. Then there exist s, t ∈ Z such that ps− qt = 1. Let

α =

[
−s t
q −p

]
∈ SL2(Z).

Then computation shows that αγ has lower entry 0. Let

γ′ = αγ = r

[
a′ b′

0 c′

]
with r ∈ Q+ and a′, b′, d′ ∈ Z with g.c.d. 1. Changing α for ±α we can ensure
a′, d′ > 0. Then f [γ]k = (f [α−1]k)[γ

′]k and since f is a modular form we know that
f [α−1]k has a Fourier development:

(f [α−1]k)(τ) =

∞∑
n=0

ane
2πinτ/h
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for some period h. Thus

(f [γ]k)(τ) = (f [α−1]k)[γ
′]k(τ) =

det(γ′)k−1

(rd′)k

∞∑
n=0

ane
2πin( a′

d′ τ+
b′
d′ )/h

∝
∞∑

n=0

(
ane

2πin b′
d′h

)
e2πi(na

′)τ/(d′h)

(where the constant multiplier was dropped for simplicity). This is the necessary
Fourier development of f [γ]k with period d′h, so indeed f [γ]k is holomorphic at ∞.

This completes the proof that [γ]k takes Mk(Γ2) to Mk(Γ1). To see that cusp
forms get taken to cusp forms, note that in the proof if a0 = 0 in the initial Fourier
development, that carries through to the Fourier development of f [γ]k. □

We now provide some examples of modular forms. The zero function is a modular
form of every weight with respect to any Γ. Constant functions are the only modular
forms of weight 0, also with respect to any Γ. The following more interesting
examples also happen to be necessary to defining the function j that appears in the
statement of the modularity theorem.

Definition 2.29. Let k ≥ 4 be even, and let Λ be a lattice. Then

Gk(Λ) =
∑′

ω∈Λ

1

ωk
.

where primed summation means without the point (0, 0). In particular, the Eisen-
stein series of weight k is the function

Gk(τ) = Gk(Λτ ) =
∑′

(c,d)∈Z2

1

(cτ + d)k

Proposition 2.30. Gk(τ) converges on all of H and is a modular form of weight
k with respect to SL2(Z).

Proof. Let γ =
[
a b
c d

]
∈ SL2(Z). We want to show that Gk[γ]k = Gk, i.e.

Gk(γ(τ)) = (cτ + d)kGk(τ).

Examining the proof of Theorem 2.4 we see that Λγ(τ) = (cτ + d)−1Λτ . Thus

Gk(γ(τ)) = Gk(Λγ(τ)) =
∑′

ω∈(cτ+d)−1Λτ

1

ωk
=
∑′

ω∈Λτ

(
cτ + d

ω

)k

= (cτ + d)kGk(τ)

as desired. Now we will show that Gk(τ) converges absolutely and is bounded as
Im(τ) → ∞, and so is holomorphic at ∞. Let

D =

{
τ ∈ H : |Re(τ)| ≤ 1

2
and Im(τ) ≥

√
3

2

}
so that D ⊂ D. Since we know Gk is weakly modular, showing convergence on D
shows convergence on all of H. Furthermore, if we can show that Gk is bounded
on D then Gk(τ) = (Gk[T ]k)(τ) = Gk(τ + 1) shows that it is bounded for all

Im(τ) ≥
√
3
2 .
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Our first step is to show that |τ + δ| ≥ 1
3 sup{1, |δ|} for all τ ∈ D and δ ∈ R. If

|δ| < 3
2 then

|τ + δ| ≥ Im(τ) >
1

2
≥ 1

3
sup{1, |δ|}.

If |δ| ≥ 3
2 then

|τ + δ| ≥ |Re(τ) + δ| ≥ |δ| − 1

2
≥ 2

3
|δ| ≥ 1

3
sup{1, |δ|}.

By taking partial sums over expanding squares of radius n, we also find that the
sum ∑′

(c,d)∈Z2

1

sup{|c|, |d|}k
=

∞∑
n=1

(4n+ 4)
1

nk

converges absolutely for k ≥ 4. Finally, the Riemann zeta function ζ(k) =
∑∞

n=1
1
nk

converges for k ≥ 2. Thus for τ ∈ D we have∑′

(c,d)∈Z2

1

|cτ + d|k
= 2ζ(k) +

∑
c̸=0,d∈Z

1

(|c||τ + d
c |)k

≤ 2ζ(k) +
∑

c̸=0,d∈Z

1

(|c| 13 sup{1,
|d|
|c|})k

= 2ζ(k) + 3k
∑

c̸=0,d∈Z

1

sup{|c|, |d|}k

≤ 2ζ(k) + 3k
∑′

(c,d)∈Z2

1

sup{|c|, |d|}k

which we established converges absolutely. Furthermore, this bound is independent
of τ , showing that Gk(τ) is bounded on D and so holomorphic at ∞ as desired.5 □

Of particular importance are the functions

g2(τ) = 60G4(τ) and g3(τ) = 140G6(τ).

since they give the connection between complex tori and curves defined by equations
of the form y2 = 4x3 + ax + b, which the more recognizable definition of elliptic
curves. In particular, a complex torus C/Λ is isomorphic as a group and a Riemann
surface to the curve

y2 = 4x3 + g2(Λ)x+ g3(Λ).

We will not prove this, but it also motivates looking at the discriminant function,

∆ = g32 − 27g23

which is a modular form of weight 12 with respect to SL2(Z) (in fact, it is a cusp
form). Comparing powers also shows:

5The fact that Gk is holomorphic on H follows quickly from the fact that it converges absolutely
on H, although the proof does have to be slightly modified.
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Corollary 2.31. The modular function j : H → C given by

j(τ) = 1728
(g2(τ))

3

∆(τ)

is SL2(Z) invariant.

Since j is not constant, by Proposition 2.21 we know that j cannot be a weight
0 modular form. It does happen to be a weight 0 automorphic form, however the
above corollary is sufficient for defining j(E) for any elliptic curve E, which is what
we need to state the modularity theorem.

2.6. The Modularity Theorem.

Theorem 2.32 (Modularity Theorem, Version I). For every complex elliptic curve
E with j(E) ∈ Q, there is some N ∈ N such that there exists a surjective holomor-
phic map from X0(N) to E.

3. Version (II)

3.1. Holomorphic and Meromorphic Differentials. Riemann surfaces are 1-
dimensional complex manifolds, so we should be able to write differential 1-forms
on them.

Definition 3.1. Let X be a Riemann surface with charts φi : Ui → Vi for i in
some index set I. A meromorphic differential on X (of degree 1) is a collection of
differential 1-forms ωi = fi(z)dz on each Vi, with fi meromorphic, such that these
forms are compatible, i.e.

φ∗
j,i(ωj |Vj,i

) = ωi|Vi,j

where the asterisk denotes the pullback and the other notation comes from Defini-
tion 1.6.

The set of such differential forms, a vector space over C, is denoted Ω1(X). We
can also require the functions fi to be holomorphic, in which case we get the vector
space Ω1

hol(X).

Essentially differential forms are still of the form f(z)dz, just defined locally
with the coordinate maps. It turns out that these differentials on the modular
curves X(Γ) provide a good way of studying modular forms, due to the following
connection:

Theorem 3.2. Let Γ be a congruence subgroup of SL2(Z). Then A2(Γ) and
Ω1(X(Γ)) are isomorphic as complex vector spaces.

Proof (sketch). Given any two Riemann surfaces X and Y and a holomorphic map
h : X → Y there is a corresponding pullback map h∗ : Ω1(Y ) → Ω1(X) which
suitably defines hi : C → C for each coordinate patch Vi and then sends fi(z)dz
to fi(hi(z))h

′
i(z)dz. In particular we can consider the pullback of the projection

map π : H → X(Γ) which sends each ω ∈ Ω1(X(Γ)) to a differential f(τ)dτ on H,
omitting the cusps. Here we will show that for all ω ∈ Ω1(X(Γ)), this f(τ) is weakly
modular of weight 2, and then construct (but not justify) an explicit isomorphism

ω : A2(Γ) → Ω1(X(Γ))
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such that π∗(ω(f)) = f(τ)dτ .6

Let γ ∈ Γ and let ω ∈ Ω1(X(Γ)) with π∗(ω) = f(τ)dτ . Then π ◦ γ = π and so

f(τ)dτ = π∗(ω) = (π ◦ γ)∗(ω) = γ∗(π∗(ω)) = γ∗(f(τ)dτ) = f(γ(τ))γ′(τ)dτ

and this last expression is equal to (f [γ]2)(τ)dτ by (1.4). Thus indeed f = f [γ]2,
so f is weakly modular of weight 2.

Now let f ∈ A2(Γ). We need to define a differential fi(z)dz on each Vi and let
ω(f) = {fi(z)dz}. As with the charts in Section 2.4, we define ω(f) in three steps:
at generic points of X(Γ), at elliptic points, and at cusps. Let φi : Ui → Vi be a
chart around a generic point τ . At such points, we simply change coordinates to
be centered around 0. Recall δτ from Proposition 2.18. Then we define fi(z)dz =
(f [δ−1

τ ])(z)dz on Vi.
If τ is an elliptic point, recall the matrix δτ and integer hτ from Proposition 2.18.

Then

fi(z)dz =
z1/hτ (f [δ−1

τ ]2)(z
1/hτ )

hτz
dz on Vi.(3.3)

It is not immediately obvious that this is well-defined given the ambiguity of z1/hτ

over the complex numbers, however it can be shown that the function z(f [δ−1
τ ])(z)

is invariant under the transformation z 7→ µhτ
z, making this well-defined. Similarly

if s is a cusp recall the matrix δs and integer hs from Definition 2.19. Then

fi(z)dz =
hs
2πiz

(f [δ−1
s ])

(
log(z)

hs
2πi

)
dz on Vi(3.4)

and this is also well-defined. The local versions of π from C to C around elliptic
points and cusps are precisely the ψ maps from Proposition 2.18 and Proposi-
tion 2.20, so one can check that pulling back the formulas in (3.3) and (3.4) by the
corresponding ψ gives f(τ)dτ . □

Corollary 3.5. S2(Γ) is isomorphic to Ω1
hol(X(Γ)).

Proof. Given a meromorphic form f : H → C and τ ∈ H, let ντ (f) denote the order
of vanishing of f at τ , i.e. if f(z) =

∑∞
n=−∞ an(z − τ)n is the Laurent expansion

of f , then an = 0 for all n < ντ (f). If s is a cusp then let νs(f) denote the order of
the first non-zero coefficient in the Fourier development of f [δ−1

s ]. Since (cτ + d)−2

has no poles or zeroes on H, given τ ∈ H and γ ∈ SL2(Z) we have

ντ (f [γ]) = νγ(τ)(f).

An automorphic form f is a cusp form if and only if it is holomorphic on H, so
ντ (f) ≥ 0 for all τ ∈ H, and zero at the cusps, so νs(f) ≥ 1 for all s ∈ Q ∪ {∞}.

Let ω(f) = {fi(z)dz}. If fi(z) is centered around a generic point τ then

ν0(fi) = ν0(f [δ
−1
τ ]) = ντ (f)

so fi is holomorphic if and only if f is holomorphic at τ . If τ is an elliptic point we
analyze (3.3) to get

ν0(fi) =
1

hτ
ν0(z(f [δ

−1
τ ])(z))− 1.

6We use ω both as a variable to represent elements of Ω1(X(Γ)) and as the name of the
isomorphism, however we do this in two different steps so these two uses should not overlap.
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Our assertion that the function z1/hτ (f [δ−1
τ ])(z1/hτ ) is well-defined and meromor-

phic also implies that ν0(z(f [δ
−1
τ ])(z)) = 1+ ντ (f) is a multiple of hτ . Thus ν0(fi)

is greater than or equal to zero if and only if 1 + ντ (f) is strictly greater than zero
and so at least hτ . This is true if ντ (f) ≥ 0. Thus fi is holomorphic around all
non-cusp points if and only if f is holomorphic on H.

If fi(z) is centered around a cusp, then the Laurent expansion of

(f [δ−1
s ])

(
log(z)

hs
2πi

)
is precisely the Fourier development of f [δ−1

s ] (with a change of variables) and so

ν0(fi) = ν0

(
hs
2πiz

(f [δ−1
s ])

(
log(z)

hs
2πi

))
= −1 + νs(f).

Thus ν0(fi) ≥ 0 if and only if νs(f) ≥ 1, i.e. if f is a cusp form. □

3.2. The Jacobian. Once we have differential forms, it is natural to do what
differential forms were made for: integrate them. In particular, there is a well-
defined notion of path integration.

Definition 3.6. Let X be a Riemann surface and ω = (ωi)i∈I be a differential
form on X. Let γ : [0, 1] → X. Suppose the image of γ lies entirely within one
coordinate patch Ui with chart φi. Then we define∫

γ

ω =

∫
φi◦γ

ωi.

If the image of γ goes between coordinate patches, we split it up and take the sum.

To show that this is well defined, we need to show that if the image of γ lies
in more than one coordinate patch, say in the intersection Ui ∩ Uj , then the value
of the integral is independent of which patch we choose. This follows from the
compatibility as we defined it in Definition 3.1:∫

φj◦γ
ωj |Vj,i

=

∫
φj,i◦φi◦γ

ωj |Vj,i
=

∫
φi◦γ

φ∗
j,i(ωj |Vj,i

) =

∫
φi◦γ

ωi|Vi,j
.

In standard complex analysis, path integrals of holomorphic functions are com-
pletely determined by the endpoints of the path, i.e. integration around loops is
always zero. However, on a general Riemann surface this is not the case. Therefore
it would be helpful to (in some sense) quotient away by integration over loops.

These path integrals are linear operators on Ω1
hol(X) so they are elements of the

dual space Ω1
hol(X)∧. Thus we define the following subgroup:

Definition 3.7. Let X be a compact Riemann surface. The (first) homology group
of X, denoted H1(X,Z), is the subgroup of Ω1

hol(X)∧ generated by integrals over
loops. In other words

H1(X,Z) =

{
n∑

i=1

ki

∫
αi

: n ∈ N, ki ∈ Z, and αi : [0, 1] → X is a loop

}
Definition 3.8. The Jacobian of X is

Jac(X) = Ω1
hol(X)∧/H1(X,Z).
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So the elements of Jac(X) are essentially integrals of the form
∫ x2

x1
, since such

integrals are defined up to integration around loops (see Theorem 3.11).
If X = X(Γ) is a modular curve, by the dual of the map ω from Corollary 3.5,

we know that

Ω1
hol(X(Γ))∧ ∼= S2(Γ)

∧.

Let H1(X(Γ),Z) denote both the homology group of X(Γ) and its image under the
map ω∧. Then we can write

Jac(X(Γ)) = S2(Γ)
∧/H1(X,Z).

So we will more often think of the elements of the Jacobian as equivalence classes
of linear maps on the space of weight 2 cusp forms. For simplicity, we introduce
the notation

Jac(X0(N)) = J0(N) and Jac(X1(N)) = J1(N).

The definition of the Jacobian is essentially sufficient for our second statement
of the modularity theorem, however the theorem refers to a holomorphism from a
Jacobian, which requires it to have a complex analytic structure. For the result
here we refer to the reader to a text on Riemann surface theory such as [2]:

Proposition 3.9. Let X be a Riemann surface. It is a well-known result from
topology that X is a sphere with g tori stuck to it for some g ∈ N. For each of these
tori, let αi : [0, 1] → X be a loop around the inside like an equator, and let βi be a
perpendicular loop like a band around the torus. Then

Ω1
hol(X)∧ = R

∫
α1

⊕ R
∫
β1

⊕ · · · ⊕ R
∫
αg

⊕ R
∫
βg

and

H1(X,Z) = Z
∫
α1

⊕ Z
∫
β1

⊕ · · · ⊕ Z
∫
αg

⊕ Z
∫
βg

.

In other words, Ω1(X)∧ is a finite dimensional vector space over C and H1(X,Z)
is a lattice, so Jac(X) is complex torus (specifically a g-dimensional complex torus).

3.3. The Modularity Theorem.

Theorem 3.10 (Modularity Theorem, Version II). For every complex elliptic curve
E with j(E) ∈ Q, there is some N ∈ N such that there exists a surjective holomor-
phic homomorphism of complex tori from J0(N) to E.

We will now briefly explain why versions (I) and (II) of the modularity theorem
are equivalent, which will require some statements without proof. In particular,
one of the most important results about the Jacobian is Abel’s Theorem:

Theorem 3.11 (Abel’s Theorem). Let X be a Riemann surface and fix a base
point x0 ∈ X. Let

∑
x nxx be a degree-0 divisor on X, i.e. a finite formal sum

over points in X with each nx ∈ Z such that
∑

x nx = 0. Then the map into the
Jacobian ∑

x

nxx 7→
∑
x

nx

∫ x

x0

is well-defined and surjects. Furthermore, the map descends to an isomorphism
between the Jacobian and the degree-0 Picard group (which we do not define here).
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We state this theorem without defining the Picard group because it shows that
the Jacobian does just consist of Z-linear sums of integrals of the form

∫ x

x0
. Note

that by adding any integer multiple of
∫ x0

x0
we can essentially ignore the requirement

that the nx sum to 0. Furthermore, it is used for the following result:

Proposition 3.12. If a Riemann surface X has genus greater than 0, it embeds
in its Jacobian by

X → Jac(X), x 7→
∫ x

x0

.

If X is a complex elliptic curve, then this embedding is an isomorphism.

Proof (sketch). That this map is well-defined is an immediate consequence of Abel’s
theorem, as outlined above. The fact that this map is injective requires a more
careful application of Abel’s theorem (first injecting into the Picard group and
then using the isomorphism from Abel’s theorem) which we omit.

Let C/Λ be a complex elliptic curve. Then holomorphic differentials on C/Λ pull
back to holomorphic Λ-periodic functions on C. Such functions are bounded, and
so are constant. Thus Ω1

hol(C/Λ) only consists of constant functions, and so the
integrals in Ω1

hol(C/Λ)∧ are translation invariant. In particular, letting x0 = 0+ Λ
and computing in the Jacobian (i.e. modulo loops), we have∫ x1+Λ

0+Λ

+

∫ x2+Λ

0+Λ

=

∫ x1+Λ

0+Λ

+

∫ x1+x2+Λ

x1+Λ

=

∫ x1+x2+Λ

0+Λ

.

This calculation shows that the map both surjects and is a group homomorphism
when X is an elliptic curve. □

We also need a generalization of Proposition 2.3:

Lemma 3.13. Let g, h ∈ N, let Cg/Λg and Ch/Λh be complex tori, and let φ :
Cg/Λg → Ch/Λh be a holomorphic homomorphism. Then

φ(z + Λg) =Mz + b+ Λh

for some b ∈ Ch and M ∈Mh×g(C).

Proposition 3.14. Versions (I) and (II) of the modularity theorem are equivalent.

Proof. First we show that (II) implies (I). Let φ : J0(N) → E be the surjective
holomorphic homomorphism from the theorem. This surjection shows that J0(N)
is non-trivial, and so X0(N) has genus greater than 0 (see Proposition 3.9). Thus
we have an embedding f : X0(N) → J0(N) and so φ ◦ f is a map from X0(N)
to E. This composite map inherits being a holomorphic homomorphism, but it
remains to show it is surjective. By Proposition 1.7, it suffices to show that it is
non-constant. Since f(x0) is the zero integral, φ(f(x0)) = 0E . To show that φ ◦ f
is non-constant, it thus suffices to show that the image of f is not contained in the
kernel of φ. As noted above, Abel’s theorem shows that the C-span (in fact, the
Z-span) of the image of f is all of J0(N). However, Lemma 3.13 shows that the
kernel of φ is a subspace of J0(N) of strictly lower dimension as a C vector space,
and so span(ker(φ)) ̸= J0(N). Thus the image of f cannot be a subset of the kernel
of φ, and this completes the proof.
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To show that (I) implies (II), let h : X0(N) → E be the holomorphic surjection
given by version (I). The dual of the pullback of h, (h∗)∧, sends homology to
homology, since if α is a loop in X0(N) then

(h∗)∧
(∫

α

)
=

∫
α

h∗ =

∫
h(α)

and h(α) is a loop in E. Thus (h∗)∧ descends to the jacobians, giving a surjective
holomorphic homomorphism

J0(N) → Jac(E)

and by Proposition 3.12 we have Jac(E) ∼= E, so this is the map conjectured by
version (II). □

4. Version (III)

4.1. The Double Coset and Hecke Operators. Let Γ1 and Γ2 be congruence
subgroups of SL2(Z). It is natural to consider maps between the spaces Mk(Γ1)
and Mk(Γ2). The most important such maps come from the following family:

Definition 4.1. Let α ∈ GL+
2 (Q). Then the weight-k Γ1αΓ2 operator (or in general

a double coset operator)

[Γ1αΓ2]k : Mk(Γ1) → Mk(Γ2)

is given by

f 7→
∑

f [βj ]k

where the βj are representatives of the orbits for Γ1 in the set

Γ1αΓ2 = {γ1αγ2 : γ1 ∈ Γ1 and γ2 ∈ Γ2}.

We can also think of this map as descending into subgroups rather than passing
through the larger set Γ1αΓ2, as in the diagram:

Γ1αΓ2

Γ1 Γ2

Γ1 ∩ αΓ2α
−1 α−1Γ1α ∩ Γ2

α

We will use this equivalence to show that the double coset operator is well-defined,
and also introduce notation that will be useful later.

Definition 4.2. Let Γ2 and Γ3 be congruence subgroups of SL2(Z) with Γ3 ≤ Γ2.
Let π2 be the projection map from X(Γ3) to X(Γ2). Then the trace of π2 is the
map trπ2

: Mk(Γ3) → Mk(Γ2) given by

f 7→
∑

f [γj ]k

where the γj are coset representatives for Γ3\Γ2.

Proposition 4.3. The trace is well-defined. That is, it is independent of the choice
of coset representatives, and the resulting function is indeed in Mk(Γ2).
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Proof. Suppose γj and {γ′j} are two different representatives for the same coset of
Γ3 in Γ2, so that each γj = γ3,jγ

′
j for some γ3,j ∈ Γ3. Since f ∈ Mk(Γ3), we have

f [γ′j ] = f [γ3,jγj ] = (f [γ3,j ])[γj ] = f [γj ].

Let γ2 ∈ Γ2. It is a fact of group theory that multiplication by γ2 permutes the
coset representatives for any subgroup of Γ2. In particular, {γjγ2} is a new set
of equally valid coset representatives. Since we are taking the sum over all cosets,
and using the previous result that it doesn’t matter which coset representatives we
choose, we also get

(trπ2
f)[γ2]k =

∑
j

f [γj ]k[γ2]k =
∑
j

f [γjγ2]k = trπ2
f.

Proposition 2.28 shows that the resulting function is also holomorphic at the cusps,
so indeed the resulting function is in Mk(Γ2). □

Proposition 4.4. Let [I]k denote the inclusion map from Mk(Γ1) to Mk(Γ1 ∩
αΓ2α

−1) and let π2 be the projection map from X(α−1Γ1α ∩ Γ2) to X(Γ2). Then

[Γ1αΓ2] = trπ2
◦[α]k ◦ [I]k.

Proof. To show that trπ2
is well-defined, we have to show that Γ3 = α−1Γ1α ∩ Γ2

is a congruence subgroup. Suppose Γ1 is a congruence subgroup of level N1 and Γ2

of level N2. Let K ∈ Z such that Kα and Kα−1 have integer entries. We want to
show that Γ(K2N1N2) ⊂ Γ3. SinceN2 dividesK

2N1N2, we have Γ(K
2N1N2) ⊂ Γ2.

Furthermore

αΓ(K2N1N2)α
−1 ⊂ α(I +K2N1N2 M2(Z))α−1

= I +N1N2 ·Kα ·M2(Z) ·Kα−1

⊂ I +N1N2 M2(Z)

and since αΓ(K2N1N2)α
−1 only consists of matrices with determinant 1, it is in

fact a subset of Γ(N1N2) ⊂ Γ(N1) ⊂ Γ1. Thus

αΓ(K2N1N2)α
−1 ⊂ Γ1 =⇒ Γ(K2N1N2) ⊂ α−1Γ1α

so Γ3 is indeed a congruence subgroup.
Thus we know that this composition is indeed a map from Mk(Γ1) to Mk(Γ2)

by Proposition 2.28 and Proposition 4.3. All that remains is to show it is equivalent
to [Γ1αΓ1]. We have

trπ2
◦[α]k ◦ [I]k =

∑
j

(f [α]k)[γj ]k =
∑
j

f [αγj ]k

where {γj} are the coset representatives for Γ3 in Γ2. It suffices to show that {αγj}
are the orbit representatives for Γ1 in Γ1αΓ2. In particular, the map

α : Γ2 → Γ1αΓ2, γ2 7→ αγ2

induces a bijection between Γ3\Γ2 and Γ1\Γ1αΓ2. The map from Γ2 to Γ1\Γ1αΓ2

taking γ2 to Γ1αγ2 surjects. The kernel is comprised of matrices γ2 ∈ Γ2 such that
Γ1αγ2 = Γ1α. In other words γ2 ∈ α−1Γ1α, so the kernel is precisely Γ3. Quoti-
enting out by the kernel, this map becomes a bijection from Γ3\Γ2 to Γ1\Γ1αΓ2,
as desired. □

Corollary 4.5. The double coset operators take cusp forms to cusp forms.
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Proof. This follows immediately from the definition and Proposition 2.28. □

Certain special cases of the double coset operator are of particular interest, the
Hecke operators.

Definition 4.6. Let p be a prime. Then Tp is an operator which takes Mk(Γ0(N))
to itself given by

Tp =
[
Γ0(N)

[
1 0
0 p

]
Γ0(N)

]
k

or defined equivalently for Γ1(N).

There is another class of Hecke operators called diamond operators. However,
these operators act trivially on Mk(Γ0(N)), and so will be ultimately unnecessary
for our statement of the modularity theorem.7 Similarly, one can extend the defi-
nition to all n in N in a non-trivial manner, but we will implicitly account for this
by using the Hecke algebra as defined in Definition 4.20.

Proposition 4.7. Let q and p be primes. Then TpTq = TqTp. In other words, the
Hecke operators commute.

Proof. We will prove this by explicitly finding the coset representatives βj for
Γ0(N) in Γ0(N)αΓ0(N) (where α =

[
1 0
0 p

]
), and then computing. Using the re-

sult from in Proposition 4.4, we first find the representatives for Γ3\Γ0(N) where
Γ3 = α−1Γ0(N)α ∩ Γ0(N). By conjugating a generic matrix in Γ0(N) by α and
then requiring the resulting matrix have integer entries, we find that

Γ3 =

{[
a pb
Nc d

]
: a, b, c, d ∈ Z and ad− (pb)(Nc) = 1

}
.

We will show that the coset representatives are

γj =

[
1 j
0 1

]
for 0 ≤ j < p

if p|N . If p does not divide N , then we add the additional coset representative

γ∞ =

[
p m
N n

]
where m,n are such that pn −mN = 1 (if p ∤ N they are coprime, so such n,m
must exist). Two such matrices are Γ3-equivalent if and only if γjγ

−1
k ∈ Γ3, which

requires the upper right entry to be divisible by p. However, if both j, k <∞ then
the upper right entry of γjγ

−1
k is j − k, so either j = k and they are trivially in

the same orbit or j − k < p, and so the upper right entry is not divisible by p.
Additionally

γjγ
−1
∞ =

[
n− jN −m+ jp
−N p

]
and m is not a multiple of p, since otherwise we could not have pn−mN = 1. Thus
neither is −m+ jp for any j. This shows these matrices are in distinct orbits. Let

δ =

[
a0 b0
Nc0 d0

]
∈ Γ0(N).

7The general theory is more often developed with the smaller Γ1(N) in mind, rather than
Γ0(N). However, the Modularity Theorem is more precise when referencing Γ0(N), so going

forward we develop the theory for this subgroup.
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We want to find a matrix γ ∈ Γ3 such that γγj = δ for some 0 ≤ j < p or j = ∞.
If p|N , then it cannot be that p|a0, since det(δ) = 1. Thus there is some j between
0 and p− 1 such that b0 − ja0 is divisible by p. Then let

γ =

[
a0 b0 − ja0
Nc0 d0 − jNc0

]
.

Which is indeed in Γ3 and γγj = δ. If p ∤ N , we have the additional possibility that
p|a. In this case

δγ−1
∞ =

[
na0 −Nb0 −ma0 + pb0
Nnc0 −Nd0 −mNc0 + pd0

]
.

Since p|a0, we indeed have that p divides the upper right entry, and so δγ−1
∞ ∈ Γ3.

This shows that we have successfully identified the coset representatives. To find
orbit representatives for Γ0(N) in Γ0(N)αΓ0(N) we left multiply by α to get

βj =

[
1 j
0 p

]
for 0 ≤ j < p

plus the additional representative when p ∤ N :

β∞ =

[
p m
Np np

]
=

[
1 m
N pn

] [
p 0
0 1

]
and since this first matrix is in Γ0(N), we let β∞ =

[
p 0
0 1

]
.

Now let βp,j be the representatives for Tp and βq,j the representatives for Tq.
Suppose that both p and q divide N . Then

TpTq(f) =

p−1∑
j=0

q−1∑
i=0

f [βq,i]k[βp,j ]k =

p−1∑
j=0

q−1∑
i=0

f
[
1 pi+j
0 pq

]
k
=

pq−1∑
j=1

f
[
1 j
0 pq

]
k

which is symmetric in p and q. Now suppose only q ∤ N . Then the above compu-
tation still applies for all βq,i except i = ∞. Thus we only need to show that the
expressions

p−1∑
j=0

f [βq,∞]k[βp,j ]k =

p−1∑
j=0

f
[
q qj
0 p

]
k

and

p−1∑
j=0

f [βp,j ]k[βq,∞]k =

p−1∑
j=0

f
[
q j
0 p

]
k

are equivalent. By left multiplying by [ 1 k
0 1 ], a matrix

[
q j
0 p

]
can be made Γ0(N)-

equivalent to any matrix
[
q i
0 p

]
with i ≡ j (mod p). Thus it suffices to show that

{qj}p−1
j=1 contains all remainders mod p, which is immediate since p and q are distinct

primes and so have greatest common divisor 1.
If both p and q don’t divide N , then we are only left to check f [βq,∞]k[βp,∞]k =

f [βp,∞]k[βq,∞]k, and indeed βq,∞βp,∞ =
[
pq 0
0 1

]
= βp,∞βq,∞. □

Definition 4.8. Let f ∈ Sk(Γ0(N)) be non-zero. Then f is an eigenform if it is
an eigenvector of Tp for all primes p, i.e. for all primes p there exists λ ∈ C such
that

Tp(f) = λf

If the first coefficient a1 in the Fourier development of f is 1, then f is normalized.
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4.2. Hecke Operators and Jacobians. The double coset operator maps S2(Γ1)
to S2(Γ2), and therefore it has a dual map

[Γ1αΓ2]
∧
2 : S2(Γ2)

∧ → S2(Γ1)
∧

acting by composition. The goal of this section is to show that this action descends
to the Jacobian. Since

[Γ1αΓ2]2 = trπ2
◦ [α]2 ◦ [I]2

it suffices to show that the dual of each of these functions (translated into the
language of differential forms) preserves the homology group.

Proposition 4.9. Let Γ1 ≤ Γ2 be congruence subgroups and let π be the projection
map from X(Γ1) to X(Γ2). The map from Ω1

hol(X(Γ2))
∧ to Ω1

hol(X(Γ1))
∧ induced

by tr∧π takes homology to homology.

Proof. Let π1 and π2 be the projection maps from H∗ to X(Γ1) or X(Γ2) respec-
tively, and let ω1 : S2(Γ1) → Ω1

hol(X(Γ1)) and ω2 : S2(Γ2) → Ω1
hol(X(Γ2)) be the

isomorphisms given by Corollary 3.5, which were defined such that given f ∈ S2(Γi)

π∗
i (ωi(f)) = f(τ)dτ i = 1, 2.

We would like to show that the map

ω2 ◦ trπ ◦ ω−1
1 : Ω1

hol(X(Γ1)) → Ω1
hol(X(Γ2))

which we will denote by the same symbol trπ, dualizes to a map sending homology
to homology. We have

trπ(ω1(f)) = ω2

∑
j

f [γj ]2


where γj are the coset representatives for Γ1\Γ2. Let δ : [0, 1] → X(Γ2) be a loop
so that

∫
δ
is an element of H1(X(Γ2),Z). For any ω1(f) ∈ Ω1

hol(X(Γ1)) we have(
tr∧π

∫
δ

)
(ω1(f)) =

∫
δ

trπ(ω1(f)) =

∫
δ

ω2

∑
j

f [γj ]2


Now let δ̃ be a lift of δ to H∗, which is to say a continuous function δ̃ : [0, 1] → H∗

(although we can’t guarantee it is a loop) such that π2 ◦ δ̃ = δ.8 Then∫
δ

ω2

∑
j

f [γj ]2

 =

∫
δ̃

π∗
2

ω2

∑
j

f [γj ]2

 =
∑
j

∫
δ̃

f [γj ]2(τ) dτ

=
∑
j

∫
δ̃

γ′j(τ)f(γj(τ)) dτ

=
∑
j

∫
γj◦δ̃

f(τ) dτ

=
∑
j

∫
π1◦γj◦δ̃

ω1(f).

8See [3] for why such a lift always exists.
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So we have to show that, when taken together, the paths π1 ◦ γj ◦ δ̃ form a loop

or integer sum of loops in X(Γ1). Let δ̃(0) = τ0 so that δ̃(1) = γ2(τ0) for some

γ2 ∈ Γ2 (recall that δ̃ projects to a loop in X(Γ2)). Then for each j, the start and

end points of π1 ◦ γj ◦ δ̃ are

Γ1γj(τ0) to Γ1γjγ2(τ0).

The set {Γ1γj(τ0)} is precisely the (finite, discrete) set of points in X(Γ1) which π
maps to Γ2τ0. As we have mentioned before, multiplication by γ2 permutes coset
representatives, so the function sending the initial point of each path π1◦γj ◦ δ̃ to its
final point is a permutation on the finite set π−1(Γ2τ0). Therefore, concatenating
these paths must indeed give some integer sum of loops, given by the cyclic structure
of this permutation.

Finally, since trπ is Z-linear, showing this result for operators of the form
∫
δ

immediately extends to all of H1(X(Γ2),Z). □

Proposition 4.10. Let Γ1 and Γ2 be congruence subgroups and let α ∈ GL+
2 (Q)

such that αΓ1α
−1 ⊂ Γ2. The map from Ω1

hol(X(Γ1))
∧ to Ω1

hol(X(Γ2))
∧ induced by

[α]2 takes homology to homology.

Proof. As before, let ω1 and ω2 be the isomorphisms from Corollary 3.5, and let
ω2(f) be an arbitrary element of Ω1

hol(X(Γ2)). Then

(ω1 ◦ [α]2 ◦ ω−1
2 )(ω2(f)) = ω1(f [α]2)

We will denote the map ω1 ◦ [α]2 ◦ ω−1
2 by α∗ (one can show it is the pullback

of the map Γ1τ 7→ Γ2α(τ)). Let δ : [0, 1] → X(Γ1) be a loop. Using the same
manipulations as before we get(

(α∗)∧
∫
δ

)
(ω2(f)) =

∫
δ

α∗(ω2(f)) =

∫
δ

ω1(f [α]2) =

∫
π2◦α◦δ̃

ω2(f).

Where δ̃ is a lift of δ from X(Γ1) to H∗. Again let τ0 = δ̃(0) so δ̃(1) = γ1(τ0) for
some γ1 ∈ Γ1. Then

(π2 ◦ α ◦ δ̃)(0) = Γ2α(τ0) and (π2 ◦ α ◦ δ̃)(1) = Γ2αγ1(τ0).

Since αΓ1α
−1 ⊂ Γ2, we have αγ1α

−1 = γ2 for some γ2 ∈ Γ2 and so

Γ2αγ1(τ0) = Γ2γ2α(τ0) = Γ2α(τ0).

Thus π2 ◦α◦ δ̃ has the same start and end point, so indeed α∗ takes integration over
loops to integration over loops. Since it is Z-linear, it therefore takes H1(X(Γ1),Z)
to H1(X(Γ2),Z). □

Corollary 4.11. Let p be a prime. Then the action of the Hecke operator Tp on
Sk(Γ0(N))∧ descends to the Jacobian J0(N).

4.3. The Petersson Inner Product. We have introduced linear transformations
between our spaces of modular forms, so in continuing to add linear-algebraic struc-
ture, in this section we introduce an inner product. This inner product will be very
similar to the inner product familiar from Fourier theory:

⟨f, g⟩ =
∫
f(z)g(z) dz

with the integral appropriately defined over X(Γ) and certain factors added to
ensure everything works.
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Definition 4.12. Let Γ be a congruence subgroup of SL2(Z) and let {αj} be the
coset representatives for {±I}Γ\ SL2(Z). Let µ denote the hyperbolic measure on
H, such that if τ = x+ yi ∈ H then

dµ(τ) =
dx dy

y2
.

If φ is Γ invariant then we define∫
X(Γ)

φ(τ) dµ(τ) =

∫
⋃

j αj(D)

φ(τ) dµ(τ)

where D is the fundamental domain from Proposition 2.6.

In other words, we can make sense of integrating a Γ invariant function over
X(Γ) by integrating over the fundamental domain from Proposition 2.12.

Proposition 4.13. This is independent of our choice of αj. Furthermore, if φ is
continuous and bounded, this integral converges.

Proof. If α′
j is another coset representative, then α′

j = γαj for some γ ∈ Γ. Thus∫
α′

j(D)

φ(τ) dµ(τ) =

∫
(γ◦αj)(D)

φ(τ) dµ(τ) =

∫
αj(D)

φ(γ(τ)) dµ(γ(τ)).

We asserted that φ is Γ invariant, so it suffices to show that dµ(τ) is as well. In
fact, dµ(τ) is SL2(Z) invariant. To see this, we first do some manipulations with
differential forms:

dµ(τ) =
dx dy

y2
=
d
(
τ+τ
2

)
d
(
τ−τ
2i

)(
τ−τ
2i

)2 =
(dτ)2 + dτdτ − dτdτ − (dτ)2

(−i)(τ − τ)2
=

2i dτdτ

(τ − τ)2
.

And so we have

dµ(α(τ)) =
2i dα(τ)dα(τ)

(α(τ)− α(τ))2
= α′(τ)2α′(τ)2

2i dτdτ

(α(τ)− α(τ))2
.

Let α =
[
a b
c d

]
with ad − bc = 1. Then using (1.4) and analyzing the denominator

and we have

(cτ + d)2(cτ + d)2

((
aτ + b

cτ + d

)2

+

(
aτ + b

cτ + d

)2

− 2

(
aτ + b

cτ + d

)(
aτ + b

cτ + d

))
= ((aτ + b)(cτ + d)− (aτ + b)(cτ + d))

2

= ((ad− bc)τ − (ad− bc)τ)2

= (τ − τ)2

so that

dµ(α(τ)) = α′(τ)2α′(τ)2
2i dτdτ

(α(τ)− α(τ))2
=

2i dτdτ

(τ − τ)2
= dµ(τ)

as desired. To show convergence, we note that∫
⋃

j αj(D)

φ(τ) dµ(τ) =
∑
j

∫
D
φ(αj(τ))dµ(τ).
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Thus it suffices to show that the integral of φ(αj(τ)) (which is itself a bounded
continuous function) converges on D. Letting M be the bound for φ ◦ αj , this is
immediate since ∫

D
|φ(αj(τ))|dµ(τ) ≤

∫∫
D

M

y2
dx dy

and this integral converges. □

Definition 4.14. Given a congruence subgroup Γ, the volume of X(Γ) is

VΓ =

∫
X(Γ)

dµ(τ).

Given f, g ∈ Sk(Γ), we want to use this integral to define an inner product.
However, the function fg is not Γ invariant as is required by our definition.

Lemma 4.15. Given f, g ∈ Sk(Γ), the function

φ(τ) = f(τ)g(τ) Im(τ)k

is Γ invariant and bounded.

Proof. Let γ =
[
a b
c d

]
∈ Γ. Then, using Proposition 1.2, we get

φ(γ(τ)) = f(γ(τ))g(γ(τ)) Im(γ(τ))k

= f [γ]k(τ)(cτ + d)kg[γ]k(τ) (cτ + d)k Im(τ)k|cτ + d|−2k

= f(τ)g(τ) Im(τ)k

as desired. To show it is bounded, we note that Γ invariance means it suffices to
show that φ ◦ αi is bounded on D for αi the coset representatives of Γ in SL2(Z).
Since it is continuous, φ◦αi is bounded on any compact subset of D, namely below
some sufficiently large cutoff on the imaginary part.

For sufficiently large τ , the magnitude of a modular form goes by the first non-
zero term in its Fourier development, and for cusp forms this is the first non-constant
term. Thus for Im(τ) sufficiently large, f [αi]k and g[αi]k are both at most of the
order

|qh| =
∣∣∣e2πiτ/h∣∣∣ = e−2π Im(τ)/h

and this exponential decay is much faster than the growth of Im(τ)k. □

Definition 4.16. Let Γ be a congruence subgroup of SL2(Z). Then the Petersson
inner product is

⟨ , ⟩Γ : S2(Γ)× S2(Γ) → C,

where if f, g ∈ S2(Γ) then

⟨f, g⟩Γ =
1

VΓ

∫
X(Γ)

f(τ)g(τ) Im(τ)k dµ(τ).

Proposition 4.13 and Lemma 4.15 combine to show that this integral converges.
Furthermore this function is immediately linear in f , conjugate-symmetric, and
positive definite, so it is an inner product. The factor of VΓ is only really useful
when comparing inner products on different curves.
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4.4. Oldforms and Newforms. Let M divide N . Then Γ0(N) is a subgroup of
Γ0(M), and so Sk(M) is a subset of Sk(N). Furthermore, for any f ∈ Sk(M), let
d be a divisor of N/M and let

αd =

[
d 0
0 1

]
.

Then αdΓ0(M)α−1
d ⊂ Γ1(N), so by Proposition 2.28 f [αd]k is an element of Sk(N)

for any f ∈ Sk(M). This motivates the following definition:

Definition 4.17. The subspace of oldforms at level N is the subspace of Sk(Γ0(N))
generated over C by the set⋃

M |N

⋃
d| N

M

{f [αd] : f ∈ Sk(Γ0(M))}

and is denoted Sk(Γ0(N))old.

Naturally, once we have identified these oldforms, we want to focus on those
forms whose behavior is new to the level N :

Definition 4.18. The subspace of newforms of level N is the orthogonal comple-
ment of the space of oldforms with respect to the Petersson inner product:

Sk(Γ0(N))new =
(
Sk(Γ0(N))old

)⊥
.

We will however distinguish the subspace of newforms from the functions we will
call newforms:

Definition 4.19. A newform of level N is a normalized eigenform (see Defini-
tion 4.8) that is in the space of newforms of level N .

This terminology is consistent because such newforms form a basis for the sub-
space of newforms (which we will not show). Thus we could call the subspace
of newforms the subspace generated by newforms, although this would imply a
definition of newform which was independent of the subspace.

4.5. The Abelian Variety Associated to a Newform. Our two statements
of the modularity theorem so far associate every rational elliptic curve with some
geometric or algebraic structure based on a modular curve. In this section, we
introduce such a structure based on a modular form, which we will use in the final
version of the modularity theorem, giving it more specificity.

Definition 4.20. Given N ∈ N, the Hecke algebra is the ring of transformations
of Sk(Γ0(N)) generated over Z by the Hecke operators,

TZ = Z[{Tp : p prime}].

If f is an eigenform, then f is an eigenvector for all transformations in TZ.

Definition 4.21. Let f be a newform of level Nf . Then the function λf : TZ → C
that sends each operator T to its eigenvalue for f , i.e.

Tf = λf (T )f,

is a homomorphism from TZ to C. Let If denote the kernel of this homomorphism.
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By Corollary 4.11, we can consider the action of If on J0(Nf ). In particular,
J0(Nf ) is a module over TZ and If an ideal of TZ, so IfJ0(Nf ) is a subgroup of
J0(N). This enables us to make the following definition:

Definition 4.22. Let f be a newform of level Nf . The Abelian variety associated
to f is

Af = J0(Nf )/IfJ0(Nf ).

As with the Jacobian, this new structure is essentially all we need to state another
version of the modularity theorem. However, in order to state that there exists
a holomorphism from Af we want to give it a complex structure. As with the
Jacobian, this will require us to state some preliminary results without proof. The
missing proofs can be found in [1].

Proposition 4.23. Let f =
∑∞

n=1 an(f)q
n be a normalized eigenform. For all

n ∈ N there is some Tn ∈ TZ such that Tnf = an(f)f . If n = p is prime, this is
just Tp.

Proposition 4.24. Let f =
∑∞

n=1 anq
n be a newform of level Nf , and let Kf =

Q({an}). For any embedding σ : Kf → C the function

fσ =

∞∑
n=1

σ(an)q
n

is also a newform of level Nf .

This allows us to prove the following lemma:

Lemma 4.25. Let TC be defined the same way as TZ, just over C. Then T∧
C
∼=

Sk(Γ0(N)).

Proof. Consider the map F : TC × Sk(Γ0(N)) → C which sends (T, f) to a1(Tf),
where a1 : Sk(Γ0(N)) → C sends a cusp form to the coefficient on the first term
in its Fourier development. Then F is bilinear. To turn this map into the desired
isomorphism, we also need to show that it is non-degenerate in both terms.

Let T ∈ TC and suppose F (T, f) = 0 for all f ∈ Sk(Γ0(N)). Applying this to
Tnf and using Proposition 4.23 we have

0 = a1(TTnf) = a1(Tn(Tf)) = an(Tf) =⇒ Tf = 0

and since this is true for all f ∈ Sk(Γ0(N)), indeed T = 0. Conversely let f ∈
Sk(Γ0(N) and suppose F (T, f) = 0 for all T ∈ TC. In particular, Tn ∈ TC so
an(f) = a1(Tnf) = 0 and indeed f = 0.

Therefore the maps from Sk(Γ0(N)) to T∧
C sending f to (T 7→ F (T, f)) and

from TC to Sk(Γ0(N))∧ sending T to (f 7→ F (T, f)) are both linear and injec-
tive. From Corollary 3.5 and Proposition 3.9 we know that dim(Sk(Γ0(N))∧) =
dim(Sk(Γ0(N))) are both finite, so the existence of both of these maps combines to
show that

dim(TC) = dim(T∧
C) = dim(S(Γ0(N))) = dim(S(Γ0(N))∧).

In particular, since all dimensions are the same, these two injections become bijec-
tions, and so T∧

C
∼= Sk(Γ0(N)). □
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We will also need a few unproven facts from algebra more generally, in particular
the tensor product (for more details on the tensor product than are given here, see
[8]). Let R be a ring and let N and M be R-modules. Recall that N ⊗R M is the
unique R-module equipped with a R-bilinear map b : N ×M → N ⊗RM such that,
for any R-module Q and any R-bilinear map f from M ×N to Q, f can be written
as the composite of b and a linear map from M ⊗R N to Q.

We will only consider the case where N and M are Z-modules, i.e. Abelian
groups, and so we will drop the Z subscript. If either N or M is also a module for
some other ring A, then N ⊗R M is naturally an A-module as well, by the rule

a

(∑
i

ni ⊗mi

)
=
∑
i

(ani)⊗mi

or similarly if M is the A-module.
In particular, let k be a field and G be a finitely generated Abelian group. Then

k is certainly a k-module, and thus so too is G⊗k, or in other words a vector space
over k. We will need the following properties of the tensor product in this scenario:

Lemma 4.26. Let k be a field with characteristic 0 and let G be a finitely generated
Abelian group. Then

(1) G⊗ k ∼= krank(G).
(2) For any subgroup K ≤ G we have (G/K)⊗ k ∼= (G⊗ k)/(K ⊗ k).
(3) Let A be a ring with an ideal J and suppose G is also an A-module. Then

JG⊗ k ∼= J(G⊗ k).

Lemma 4.27. Let A be a ring, J an ideal in A, and let M be both an A-module
and vector space over some field k. Let M [J ] denote the elements of M annihilated
by J . The dual space of M is is naturally an A-module as well and

M∧/JM∧ ∼=M [J ]∧

as A-modules. The isomorphism is given by the restriction map φ+JM∧ 7→ φ|M [J].

All of this allows us to prove the following two results:

Proposition 4.28. Let f be a newform and let

Vf = span({fσ : σ is an embedding of Kf into C}) ⊂ Sk(Γ0(Nf ))

and Λf be the restriction of H1(X0(Nf ),Z) to Vf . Then

Af
∼= V ∧

f /Λf .

Proof. Here and through the rest of this section let S2 = S2(Γ0(Nf ) and let H1 =
H1(X(Γ0(N),Z). Let π be the projection map from S∧

2 to S∧
2 /IfS∧

2 . Then

Af = (S∧
2 /H1)/If (S

∧
2 /H1) ∼= (S∧

2 /IfS∧
2 )/π(H1)

(for this last equivalence one can check that (φ+H1)+ If (S
∧
2 /H1) 7→ (φ+ IfS∧

2 )+
π(H1) is an isomorphism). We then apply the isomorphism from Lemma 4.27 to
take S∧

2 /IfS∧
2 to S2[If ]

∧. Each π(φ) = φ+ IfS∧
2 ∈ π(H1) gets mapped to φ|S2[If ],

so the combination of π and this isomorphism simply restricts each function in H1,
sending H1 to H1|S2[If ]. Thus

Af
∼= S2[If ]

∧/H1|S2[If ]
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so it suffices to show that S2[If ] = Vf . In other words, the forms annihilated by If
are exactly f and its conjugates (and their sums).

For any embedding σ : Kf → C we want to show that fσ is annihilated by
If . Let T ∈ If , i.e. λf (T ) = 0. Then T is some Z-linear sum of products of the
operators Tn which sends f to 0. In other words, by Proposition 4.23, it is a Z-
linear sum of products of Fourier coefficients of f which equals 0. Then T (fσ) is this
same Z-linear sum of products of the coefficients σ(an). Since σ is an embedding,
it factors through products, sums, and multiplication by integers, so we get

T (fσ) = σ(λf (T ))f
σ = σ(0)fσ = 0.

This shows that Vf ⊂ S2[If ]. To show equality, it now suffices to show that
dim(S2[If ]) ≤ dim(Vf ).

By Proposition 4.23, we know that the image of λf : TZ → C is precisely Z[{an}]
and so

Z[{an}] ∼= TZ/If .

By Corollary 4.11, we can consider TZ as a ring of endomorphisms of H1. By
Proposition 3.9 we know that H1 has finite rank over Z, and therefore so does its
ring of endomorphisms, of which TZ is a subring. Thus Z[{an}] has finite rank,
and so Kf has finite degree over Q. In the language of algebraic number theory,
it is a number field. It is a fact from algebraic number theory that the number
of embeddings of a number field Kf into C is [Kf : Q]. The newforms fσ are all
linearly independent so

dim(Vf ) = [Kf : Q] = rank(TZ/If ).

Now consider the surjection from TZ ⊗ C to TC given by∑
i

Ui ⊗ zi 7→
∑
i

ziUi

which is well-defined by the basic properties of the tensor product. The image of
If ⊗ C are elements of the form

∑
i ziUi for Ui ∈ If , which is∑

i

ziUi =
∑
i

(ziT1)Ui =
∑
i

Ui(ziT1) ∈ IfTC.

Thus the image of If ⊗ C is a subgroup of IfTC, so the induced map from (TZ ⊗
C)/(If ⊗ C) to TC/IfTC is also a surjection. By Lemma 4.25,

dim(S2[If ]) = dim(S∧
2 /IfS∧

2 ) = dim(TC/IfTC)

and then using the above surjection and the properties from Lemma 4.26,

dim(TC/IfTC) ≤ dim((TZ ⊗ C)/(If ⊗ C))
= dim(TZ/If ⊗ C)
= rank(TZ/If )

= [Kf : Q]

and so indeed dim(S2[If ]) ≤ dim(Vf ), and this completes the proof. □

Proposition 4.29. Λf is a lattice in V ∧
f .
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Proof. Since V ∧
f is a finite dimensional vector space over R and Λf is a finitely

generated ring over Z, to show that Λf is a lattice, it suffices to show that a
minimal set of generators for Λf is also a basis for V ∧

f . It in turn suffices to show

that the R-span of Λf is V ∧
f and that rank(Λf ) ≤ dimR(V

∧
f ).

Since Vf ⊂ S2, the restriction map ρ : S∧
2 → V ∧

f is a surjection. Using the fact
that we already know H1 is a lattice, we have

RΛf = RH1|Vf
= Rρ(H1) = ρ(RH1) = ρ(S∧

2 ) = V ∧
f .

To show that rank(H1) ≤ dim(V ∧
f ), first consider the linear map from H1/IfH1 to

Λf sending φ + IfH1 to φ|Vf
. To show this map is well-defined, we have to show

that for any φ ∈ IfH1, φ|Vf
= ρ(φ) is zero on Vf . Given T ∈ If and φ ∈ H1, let Tφ

be a basis element of IfH1. Then for every f ∈ Vf = S2[If ] (see previous proof)
we have T (f) = 0 and so Tφ(f) = (φ ◦ T )(f) = φ(0) = 0, as desired. Furthermore

Λf = ρ(H1) =⇒ Λf
∼= H1/ ker(ρ|H1

) = H1/(ker(ρ) ∩H1).

We just showed that IfH1 ⊂ ker(ρ), and by definition IfH1 ⊂ H1, so the map
from H1/IfH1 to H1/(ker(ρ)∩H1) ∼= Λf is a surjection. Using this surjection and
Lemma 4.26 we have

rank(Λf ) ≤ rank(H1/IfH1)

= dimR(H1/IfH1 ⊗ R)
= dimR((H1 ⊗ R)/If (H1 ⊗ R)).

Since H1 is a free and finitely generated Z-module (by Proposition 3.9), the surjec-
tion from H1 ⊗ R to S∧

2 sending
∑

i φi ⊗ xi to
∑

i xiφi is an isomorphism. To see
this, let φ1, . . . , φd be minimal set of generators for H1, which is also a basis for S∧

2 .

By collecting like terms we can write any element of H1⊗R as
∑d

i=1 φi⊗xi, which
is in bijection with arbitrary elements of S∧

2 which can be written
∑d

i=1 xiφi. Thus

dimR((H1 ⊗ R)/If (H1 ⊗ R)) = dimR(S∧
2 /IfS∧

2 ) = dimR(S2[If ]
∧) = dimR(V

∧
f )

and this completes the proof. □

The above two results combine to show that Af is a complex torus, as desired.

4.6. The Modularity Theorem.

Theorem 4.30 (Modularity Theorem, Version III). For every complex elliptic
curve E with j(E) ∈ Q, there is some N ∈ N and a newform f ∈ S2(Γ0(N)) such
that there exists a surjective holomorphic homomorphism of complex tori from Af

to E.

To show that version (III) is equivalent to version (II) (and so also version (I)),
we need some preliminary results:

Proposition 4.31. Let Cg/Λg and Ch/Λh be complex tori. A surjective holomor-
phic homomorphism φ : Cg/Λg → Ch/Λh is called an isogeny if it has finite kernel.
If such an isogeny exists, then there also exists an isogeny in the other direction,
φ̂ : Ch/Λh → Cg/Λg.

Proof (sketch). Using Lemma 3.13 we can show that such an isogeny can only exist
if h = g, and then

φ(z + Λg) =Mz + Λh
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where M is an invertible g × g matrix such that MΛg ⊂ Λh. This means that
there exists some basis {ω1, . . . , ω2g} of Λh and non-zero integers n1, . . . , n2g such
that {n1ω1, . . . , n2gω2g} is a basis for MΛg. Thus (n1n2 . . . n2g)Λh ⊂ MΛg and in
particular

(n1n2 . . . n2g)M
−1Λh ⊂ Λg

so the matrix (n1n2 . . . n2g)M
−1 gives the isogeny in the reverse direction. □

Proposition 4.32. Let f, g be newforms of the same level. If there exists an
embedding σ : Kf ↪→ C such that fσ = g, then there exists an embedding σ′ : Kg ↪→
C such that f = gσ

′
, and so conjugation by embeddings in an equivalence relation

on newforms. Furthermore, in this case Af = Ag.

Proof. To find σ′, we restrict the codomain of σ to its image and take the inverse.
In Proposition 4.28 we showed that If annihilates fσ = g, so If ⊂ Ig. Applying the
same logic to g and σ′ shows the other inclusion, so If = Ig and indeed Af = Ag. □

Recall our unproven assertion that the newforms of level N form a basis for the
subspace of newforms of level N . This result can be further extended to all of
Sk(Γ0(N)):

Proposition 4.33. Let N ∈ N. For all n ∈ N let αn = [ n 0
0 1 ]. Then

{f [αn]k : f is a newform of level M and nM |N}

is a basis of Sk(Γ0(N)).

Proof (sketch). Taking as given that the newforms of level M form a basis for
Sk(Γ0(M))new, the fact that this set spans Sk(Γ0(N)) follows almost immediately
from the definition of oldforms in Definition 4.17. We omit the proof that these
forms are linearly independent, although the fact that they span and so contain a
basis is sufficient to prove a weakened version of the following theorem which still
shows the equivalence of versions (II) and (III) of the modularity theorem. □

Theorem 4.34. Let [f ] denote an equivalence class of newforms from the previous
proposition, and let d : N → N be the number of divisors function. Then there is
an isogeny

J0(N) →
⊕
M |N

⊕
[f ]

A
d(N/M)
f .

where the second direct sum is over equivalence classes of newforms of level M .

Proof. Throughout this proof we will write
⊕

to mean
⊕
M |N

⊕
[f ]

.

We can rewrite the basis from Proposition 4.33 as⋃
M |N

⋃
newforms f
of level M

⋃
n|N/M

f [αn]2 =
⋃
M |N

⋃
[f ]

⋃
n

⋃
σ

fσ[αn]2(4.35)

where the second union is over equivalence classes of newforms of levelM , the third
over divisors of N/M , and the last over embeddings of Kf into C. We now define
an explicit isomorphism

Ψ :
⊕

V
d(N/M)
f → S2(4.36)
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The space Vf has basis {fσ : σ is an embedding from Kf to C}. On the left hand
side of (4.36), if [f ] is an equivalence class of newforms of level M then we have
one copy of Vf for each divisor n of N/M . Thus we send fσ in the copy of Vf
corresponding to n to fσ[αn]2, a basis element from (4.35). Linearly extending this
one to one mapping of bases, we get an isomorphism.

Restricting Ψ to a particular copy of Vf , we get Ψ|Vf
= [αn]2 where n is some

divisor of N/M for M the level of f . Thus the dual of Ψ is the direct product of
the dual of these operators:

Ψ∧ =
∏
M |N

∏
n|N/M

[αn]
∧
2 : S∧

2 →
⊕

(V ∧
f )d(N/M)

We showed in Proposition 4.10 that the maps [αn]
∧
2 take integration over loops to

integration over loops, so each map takes H1 into H1 restricted to Vf , i.e. Λf .
Piecing these functions together, we have

Ψ∧(H1) ⊂
⊕

Λ
d(M/N)
f .

Thus Ψ∧ descends to a surjection

S∧
2 /H1 →

(⊕
(V ∧

f )d(M/N)
)
/
(⊕

Λ
d(M/N)
f

)
∼=
⊕

(V ∧
f /Λf )

d(M/N).(4.37)

To show this is an isogeny, we have to show that it has finite kernel, which is equiv-

alent to saying Ψ∧(H1) has finite index in
⊕

Λ
d(M/N)
f . Since they are both finitely

generated Abelian groups, it suffices to show that they have the same rank. By
Proposition 4.29 we know that rank(Λf ) = dimR(V

∧
f ). Since Ψ∧ is an isomorphism

it preserves dimension and rank, so

rank(Ψ∧(H1)) = rank(H1) = dimR(S∧
2 ) = dimR

(⊕
(V ∧

f )d(N/M)
)

=
∑
M |N

∑
[f ]

d(N/M) dimR(V
∧
f )

=
∑
M |N

∑
[f ]

d(N/M) rank(Λf )

= rank
(⊕

Λ
d(M/N)
f

)
Thus the surjection in (4.37) is indeed an isogeny, and applying the definition of
the Jacobian and Proposition 4.28 we immediately get an isogeny

J0(N) →
⊕

A
d(N/M)
f

as desired. □

Proposition 4.38. Versions (II) and (III) of the modularity theorem are equiva-
lent.

Proof. Suppose version (III), so there is some N ∈ N and a newform f ∈ S2(Γ0(N))
such that there exists a surjective holomorphic homomorphism from Af to E. Com-
posing with the map from Theorem 4.34, and sending all varieties other than Af

to zero, we get a surjective holomorphic homomorphism

J0(N) →
⊕
M |N

⊕
[f ]

A
d(N/M)
f → E
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(or we can replace J0(N) with J0(K) for any K such that N |K). This is the map
conjectured by version (II).

Now suppose version (II), so there is some N ∈ N such that there exists a
surjective holomorphic homomorphism from J0(N) to E. Let

φ :
⊕
M |N

⊕
[f ]

A
d(N/M)
f → J0(N)

be the isogeny in the reverse direction (which we know exists from Proposition 4.32).
For each Af in the direct sum, φ|Af

is a holomorphic homomorphism of compact
Riemann surfaces, so it must either be surjective or constant. If all these restrictions
were constant, then φ could not be surjective, a contradiction. So there must exist
some newform f of level M (where M |N) such that φ|Af

surjects Af onto J0(N),
and then the map from version (II) surjects J0(N) onto E. □
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