AN INTRODUCTION TO THE MODULARITY THEOREM

DESMOND SAUNDERS

ABSTRACT. The aim of this paper is to state one of the most important results
of modern number theory: the modularity theorem. In fact, we will state it
three times, all following [1]. Our particular aim is to make this presenta-
tion accessible with minimal background knowledge. No prior knowledge of
modular forms, elliptic curves, or algebraic curves is necessary.
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1. INTRODUCTION

2025 marks the 30th anniversary of the publication of the remarkable paper
“Modular elliptic curves and Fermat’s Last Theorem” by Andrew Wiles, which fi-
nally proved Fermat’s Last Theorem, over 300 years after it was conjectured. He did
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so by proving a very different and much less accessible result: the modularity the-
orem, also known as the Taniyama—Shimura—Weil conjecture before it was proven.
This result connects two structures of utmost importance to modern number the-
ory: elliptic curves and modular forms. Our goal is to provide an accessible but
rigorous introduction to the machinery necessary to state three different versions
of the modularity theorem, with increasing structure and specificity:

Theorem (Modularity Theorem, Version I). For every complex elliptic curve E
with j(E) € Q, there is some N € N such that there exists a surjective holomorphic
map from Xo(N) to E.

Theorem (Modularity Theorem, Version II). For every complex elliptic curve E
with j(E) € Q, there is some N € N such that there exists a surjective holomorphic
homomorphism of complex tori from Jy(N) to E.

Theorem (Modularity Theorem, Version III). For every complez elliptic curve E
with j(E) € Q, there is some N € N and a newform f € Sa(T'o(N)) such that there
exists a surjective holomorphic homomorphism of complex tori from Ay to E.

As stated, the goal of this paper is to be accessible, but the theory of modular
forms does use results from many areas of mathematics. This paper should be
understandable to anyone who has taken undergraduate courses in analysis (in-
cluding differential forms), complex analysis, linear algebra, and abstract algebra.
We attempt to prove everything necessary for the statements of the modularity
theorems, however in certain places where the proofs would become too tedious or
require too much background from topology or Riemann surface theory we may
just sketch them in brief. Around the ends of Section 3 and Section 4 we allow
ourselves to make some statements without proof in order to give the geometric
structures Jo(INV) and Ay a complex analytic structure and show the equivalence of
our three versions of the modularity theorem.

1.1. Basic Ideas and Notation. Let H = {z € C : Im(z) > 0} denote the
complex upper half plane. Of fundamental interest to us is the action of GLy(R)
(or more often the subgroup SL2(Z)) on H:

Definition 1.1. Let v = [¢}] € Max2(R) be nonsingular and 7 € CU{oo}. Then

ar +b

() = cr+d’

If ¢ = 0 then oo is fixed and otherwise oo is sent to ¢ and ’Td is sent to co. Since
v is nonsingular we don’t have to worry about both numerator and denominator
being equal to zero.

One can check by computation that this action respects matrix multiplication.
Note that —I acts as the identity. For this reason some authors choose to quotient
out by the subgroup {+I} and consider the action of PSLs(Z), but we will find it
more convenient to use SLy(Z).

Im(7)

Proposition 1.2. Im(y(7)) = det(v)w.
T
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Proof. A simple manipulation shows

(m + b) B ((m +b)(er + d))
Im =Im| ————=
et +d (et +d)(cT +d)

Im(ac|T|? + beT + adt + bd)

ler + dJ?

0+ (ad — bc)Im(7) + 0
ler + d|?
Im(7)
= det(v)m
as desired. ]

Corollary 1.3. The action of SLa(Z) on C sends H to itself.

So we have established the action of SLy(Z) on H. It will also be useful for us
to note that the derivative of v € Max2(R) is

det(v)
1.4 ) = — 21
(14) "= rrar
or for v € SLy(Z) we have v/(7) = m.
For some intuition for what this action looks like, consider the following result
from algebra:

Proposition 1.5. SL(Z) is generated by the matrices

1 1 0 -1
T—{O J and S—L 0]

These matrices correspond to the functions

1
T—=7+1 and T+ —=
-

so the action of SLy(Z) on 7 either shifts 7 to the left or right by 1, or reflects 7
across the unit circle and then the imaginary axis, or any combination of these two.

We will also provide the basic definition of a Riemann surface, both for the
unfamiliar reader and to introduce notation:

Definition 1.6. Let X be a Hausdorff topological space. A complex atlas is an
open cover {U;}ier of X where each open set has an associated homeomorphism
(called a chart) ¢; : U; — V; where V; is an open subset of C. These charts must
be compatible, i.e. if we let

Vij=wiUinTy), Vii=¢;U;NU;), and ¢;;:Vij— Vji=p;0op; ",

then ¢; ; is biholomorphic for all 4, j € I. The map ¢, ; is called the transition map.
A connected Hausdorff topological space X with a complex atlas is called a
Riemann surface.

Local properties related to the complex numbers can easily be translated to
Riemann surfaces via the charts. For example, whether a function is holomorphic
at a point is perfectly well-defined on Riemann surfaces.

Proposition 1.7. Let X and Y be compact Riemann surfaces and let f: X —Y
be holomorphic. Then f is either constant or surjective.
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Proof. We know f(X) is compact, and so closed. By the open mapping theorem of
complex analysis, if f is non-constant then f(X) is also open. Since Y is connected,
Y is the only non-empty subset of itself that is both closed and open. O

Finally, since we will be using * for the pullback, we will use the slightly unusual
notation V” to denote the dual of a vector space V.

2. VERsION (I)

2.1. Complex Elliptic Curves. Although our main focus is on developing the
modular forms part of the modularity theorem, we start with a brief discussion of
elliptic curves, which will also serve as motivation for some of the later ideas.

Definition 2.1. A lattice A in C is given by A = w1Z ® weZ where wy,ws form
a basis for C over R. A complezx elliptic curve or complex torus E is the quotient
E = C/A for some lattice A.

Different choices of w; and ws can create the same lattice and so the same torus.
For example, by possibly switching one for its negative, we can choose w; and ws
such that ﬁ—; € H. Assuming this convention, we can obtain a more complete
characterization:

Lemma 2.2. Let A = w1 Z ® weZ and ' = Wi Z ® whZ be lattices. Then A = A if
and only if there exists a vy € SLo(Z) such that

4 =)

Proof. First suppose that A = A’ so that there exist a,b,c,d € Z such that w| =
aw + bws and wh = cwy + dws. Let v = [‘Z g] so that

) =]

Since the situation is entirely symmetrical, we could have exchanged the roles of A
and A’, resulting in some matrix 7/, also with integer entries. Since {wy,w2} and
{w},wh} are both bases for C over R, we conclude that v/ = y~!. Thus v and
7~ both have integer entries and in particular det(v) and det(y~!) are integers.
Therefore det(y) = +1. Using the normalizing convention from above, we can
further conclude that det(y) = 1, and so indeed 7y € SLy(Z).

For the other direction, suppose
_ w1

!
!
)

Then w; and w) can be expressed as integer sums of w; and wq, and so A’ C A.
Multiplying both sides by 4~ then shows that A C A’. (]

Such elliptic curves are Riemann surfaces which also inherit an abelian group
structure from addition in C. We would like to categorize when two such curves are
equivalent as Riemann surfaces and groups, i.e. when there exists a holomorphic
group isomorphism between them.

Proposition 2.3. Let C/A and C/A’ be two complex elliptic curves. There exists
a holomorphic group isomorphism between them if and only if there exists some
m € C such that mA = A’.
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Proof. If such an m exists, then it is easy to show ¢ : C/A — C/A’ sending z + A
to mz + A’ is a holomorphic group isomorphism.

Conversely, suppose such a ¢ exists. Let 7 : C — C/A and ' : C — C/A’ be
projection maps. The key step is to construct a holomorphic function ¢ : C — C
such that the diagram

c—% ¢

ol

C/A —£— C/N

commutes. This uses some basic topology, but it is not hard to see how such a
map is constructed. Let A = w1Z @ weZ and A’ = W|Z ® wHZ. Let z be in the
parallelogram defined by w; and wy and suppose ¢(z + A) = w+ A’. Then we send
&(2) to the coset representative for w + A’ which lies in the parallelogram defined
by wj and wj. Passing into adjacent parallelograms, we know 7’ o ¢ = ¢ o 7 and
so ¢ is defined up to a constant in A’. We can choose this constant inductively,
passing from parallelogram to parallelogram, so that ¢ is holomorphic on C.

By this construction, for any A € A, we have ¢(A + z) = @(2) + A for some
X € A Thus ¢(A+z) —@(z) is a continuous function which maps into the discrete
set A’, so it must be constant. Differentiating both sides we get

F(A+2) = 3(2).

In other words, ¢’ is A periodic, so bounded, so constant by Liouville’s theorem.
Therefore ¢(z) = mz+band p(z+A) = mz+b+A’. Since ¢ is a homomorphism,

we know (0) = 0, which implies b+ A" =0+ A" and mA+ A =N = mA CA.

Since ¢ is invertible, we equally conclude that %A' C Aandsoindeed mA =A'. O

If mA = A’, we say that A and A’ are homothetic, with the map sending z to
mz being a homothety. Thus we have shown that holomorphic isomorphism of
complex elliptic curves is equivalent to homothety of their respective lattices. To
characterize elliptic curves modulo isomorphism it suffices to characterize lattices
modulo homothety:

Theorem 2.4. The set of lattices modulo homothety is in bijection with H modulo
the action of SLy(Z). The bijection is given by

SLe(Z)T — [TZ 8 Z).
The lattice 77 ® 7 is denoted A,.

Proof. The action of SLy(Z) splits H into orbits, and we denote the set of these
orbits SLo(Z)\H. Let 7 € H and let v(7) be another point in the same orbit. Then
~(7) maps to

ar +b

cT+d
which is homothetic to (a7 4+ b)Z @ (¢t + d)Z, and by Lemma 2.2 this lattice
is equivalent to 7Z @ Z. This shows the map is well-defined, and the argument
for injectivity follows similarly. By Proposition 2.3, this also characterizes elliptic
curves up to isomorphism. [l

YASY/
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If f:H — Cis a function such that f(y(r)) = f(r) for all v € SLy(Z) (i.e. f
is SL(Z) invariant), then we can consider f as a function on equivalence classes of
elliptic curves by composing f with the inverse map from Theorem 2.4.

2.2. The Curve SLy(Z)\H. We have shown that the set of equivalence classes of
complex elliptic curves is parametrized by the orbit space

SLo(Z)\H.

In other words, SL2(Z)\H is the moduli space for complex elliptic curves. This is
the origin of the word modular in modular curves and modular forms. We now
turn our attention to studying these quotients and related objects.

The first goal is to understand SL2(Z)\H as a geometric object. A natural start-
ing point is to try and find a subset of H that contains exactly one representative
of each SL2(Z) orbit. It turns out that we can find such a set that is closed and
connected, up to a certain boundary identification.

Definition 2.5. Let I be a group acting on H. A fundamental domain for a
quotient T\H is a closed set D C H such that no two points in the interior of D
are I'-equivalent and every point in H is I'-equivalent to some point in D.!

Proposition 2.6. Let

1
DZ{TEHI|RC(T)|<2a’I’LdT|Zl}.

Then D is a fundamental domain of SLo(Z)\H. Points on the boundary are iden-
tified by reflection across the imaginary axis.

Proof. First we show that every 7 € H is SLa(Z)-equivalent to some point in D.
Consider the lattice A, = 7Z @ Z. This lattice must have some point ¢ + d of
minimal absolute value. Clearly ¢ and d are co-prime, otherwise we could scale
down by their common factor. Therefore, by the Euclidean algorithm, there exist
a,b € Z such that ad — bc = 1, and in particular the matrix v = [‘j Z] is in SLy(Z).
By Proposition 1.2 we know that

Im(7)

Im(y(7)) = m

and by the minimality of |er + d|, we know that this is less than or equal to
Im(a(7)) for all & € SLy(Z). Using T from Proposition 1.5 some integer n € Z
times, we can shift v(7) such that its real part is between :l:%. Let v/ = T"v so
that 7/(7) = v(7) + n. Since we only changed the real part, the imaginary part is
still maximal. Applying S we get

Im(+/ (7)) > Im($/ (7)) = W

and so |7/(7)| > 1. Since |Re(y/(7))| < 3 indeed we have 7/(7) € D.

To show the other direction, suppose that 7 and 7o are distinct points of D
and there exists some v € SLg(Z) such that 74 = y72. We want to show that
either |Re(71)| = 2 and 75 = 7 £ 1 (the identification of the two half-lines of the
boundary) or |11| = |72| = 1 and they have opposite real part (the identification of

the two halves of the circular arc of the boundary). Let v = [‘C‘ g]. Without loss

IPrecise definitions of fundamental domain vary, but this definition gives the general idea.
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F 2.
FicURE 1. D with some [GURE hi —
SL,(Z) translates. From Stereographic projection
2 : of D. From [4].

[5]-

of generality, suppose Im(73) > Im(7;) and so applying Proposition 1.2 it must be

that |er; + d|? < 1. Since all points of D have imaginary part greater than V3

2
V3
2
and so |c| < %, and since ¢ € Z, we know |c¢| € {0,1}. If ¢ = 0 then in order for

det(y) = 1 to hold, we know that a =d = £1soy = £[} ¥] and 7o = v(11) = 71 +b.
It must be that b = +1 and we are in the first case.
Now suppose that ¢ = 1. Then we can show a similar constraint on |d|. We have

1> |m +d* = |(Re(r1) + d) + Im(7)i|> = (Re(1) + d)? 4 Im(7y)?

which implies

le| < le|Im(my) =Im(ery) =Im(er +d) < |erp +d] <1

3 1
(Re(ﬁ) +d)2 < 1 71111(7'1)2 < 1-— 1 — \Re(ﬁ) +d| < 5
and so |d| < 1. The same argument also works if ¢ = —1.

If |[d| = 1, then the only way for the above inequalities to be satisfied is if they
are equalities, i.e. |Re(1)| = 1 and Im(r;) = §7 so 7y is the point p or p+ 1 in
Figure 1. Thus

V3 Im(7;) V3
— <1 =< —
y stmln) = E =5

so 79 must be the only other point of D with this minimal imaginary part, namely
T1 + 1.

Finally if |¢| = 1 and d = 0, then the condition |e71 +d| < 1 becomes |71| < 1 and
indeed |71| = 1. By our formula from Proposition 1.2, Im(7;) = Im(73). Therefore
we could have taken Im(7) < Im(7), flipped all of these calculations, and shown
that either one of the above cases holds or |z] = 1 as well. Then 71 and 75 have
magnitude 1 and the same imaginary part, so they have opposite real parts. O

Acting on D by any v € SLy(Z) gives an equally valid fundamental domain
(although it may not be closed), some of which are pictured in Figure 1. While
it is nice that D is closed and connected, we would really like it to be compact.
Indeed, the stereographic projection of D in Figure 2 suggests that, under the right
topology, D could be compactified by adding a single point at infinity. To make
this precise, note that the SLy(Z) orbit of oo is QU {oc}. So let H* = HUQU {oo},
which is sent to itself by the action of SL2(Z), and let D* = D U {oo} be the
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fundamental domain for SLo(Z)\H*. To show that D* is compact, we need to
define an appropriate topology for H*:

Definition 2.7. The topology on H* is is the smallest topology which contains:

(1) The standard Euclidean topology on H,
(2) The sets

Ny ={r€H :Im(r) > M} U {co}

for all M € RT,
(3) All SLy(Z) images of these sets Njs (which are either sets of the same form
or circles tangent to the real axis containing a single rational number).

Proposition 2.8. D* is compact under the above topology.

Proof. Let ¢ be an arbitrary open cover of D*. Then ¢ must contain a neighbor-
hood of co. The only open sets which contain co are of the form Ay U G where
M € R* and G is an open set in the Euclidean topology (plus maybe some rational
points). The points in D not covered by this open set are some closed subset of
{r € D : Im(r) < M}, which is compact under the Euclidean topology and so
compact under our topology as well. Thus adding Njy; UG to some finite subcover
of this set, we get a finite subcover for all of D. ([

2.3. Congruence Subgroups and Modular Curves. We do not want to only
study the curve SLo(Z)\H, but a family of related curves. In particular, by quo-
tienting out by smaller groups or subgroups of SLs(Z), we get a curve which is in
some sense ‘larger’ and can encode additional information. Indeed, although we
will not show it, the curves we will define below encode information such as an
elliptic curve plus a particular cyclic subgroup or a point of interest.

Definition 2.9. The principle congruence subgroup of level N is the subgroup

F(N)_H‘cl Z} ESLQ(Z):a_d_landb_c_O(modN)}.

and we define I'(1) = SL2(Z).
Proposition 2.10. I'(N) is normal and of finite index in SLa(Z).

Proof. Consider the natural homomorphism from SLy(Z) to SL2(Z/NZ) which re-
duces each entry mod N. Then T'(N) is the kernel of the homomorphism, so it is
normal. Furthermore, SLo(Z)/T'(N) is isomorphic to the image of this homomor-
phism, some subgroup of SLy(Z/N7Z).? Since SLy(Z/NZ) is finite (it has at most
N* elements), so is this subgroup. Thus indeed [SLy(Z) : T'(N)] is finite. O

Definition 2.11. A congruence subgroup of level N is a subgroup I' < SLs(Z) such
that I'(N) C T. In particular let

rO(N):HZ Z}GSLQ(Z):CEO(modN)} and

Fl(N):{{ Z} ESLQ(Z):aEdzlandCEO(modN)}.

o

21n fact, the homomorphism is surjective, so this quotient is isomorphic to all of SL2(Z/NZ).
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By Proposition 2.10, we immediately get that all congruence subgroups have
finite index in SLy(Z). It is not hard to describe the fundamental domains of these
congruence subgroups if we allow them to be disconnected, although the boundary
identification becomes more convoluted and so the picture less helpful:

Proposition 2.12. Let I' be a congruence subgroup and let {aj};lzl be coset rep-
resentatives for I' in SLo(Z). Then a fundamental domain for T' is

d
U a;(D).

Definition 2.13. Let I" be a congruence subgroup. Then
YT)=T\H and X({T)=T\H"

are called modular curves. The points of X (I') not in Y(I') (i.e. the I' orbits in
QU {o0}) are called the cusps of X(T).

We will write Y(N) or X(N) to mean Y (I'(N)) or X(I'(N)), and similarly for
Yo(N), Xo(N),Y1(N), and X;1(N). We want to consider these curves as topological
spaces in their own right (and ultimately as Riemann surfaces). The natural topol-
ogy to use is the quotient topology: if 7 is the projection map from H to Y (T'),
then U C Y(T') is open if 7=1(U) is open in H, and similarly with #* and X (T).

Proposition 2.14. For any congruence subgroup T', Y (T') and X (T') are Hausdorff
and connected.

Proof. Tt is fairly easy to see from the description of the fundamental domain that
Y (1) and X (1) are Hausdorff (Figure 3 may be helpful to see this). Showing the
more general case requires a proof not dissimilar from that of Proposition 2.6, which
we omit.

The fact that these curves are connected comes immediately from the fact that
‘H and ‘H* are connected in their respective topologies, and the projection maps are
continuous by definition of the quotient topology. (I

As with the full modular group, adding the cusps is sufficient to make X (T")
compact:

Proposition 2.15. For any congruence subgroup I';, X (") is compact.

Proof. Let m be the projection map from H* to X(T'). Let {a;}9_, be the coset
representatives for I' in SLy(Z), which there are finitely many of since I" has finite
index. By Proposition 2.12 we have

d d

XM =n|Ja®) | = (D).

j=1 j=1

The maps o; are continuous from H* to H*, and by the definition of the quo-
tient topology = is continuous to X (T"). The continuous image of a compact set is
compact, so we have written X (I") as a finite union of compact sets. (I
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FIGURE 3. D with some charts and elliptic points.

2.4. Modular Curves as Riemann Surfaces. To show that these modular
curves are Riemann surfaces, we need to find the charts as in Definition 1.6. In
this section we will give formulas and some motivation for these charts but will not
prove their compatibility or that they are in fact homeomorphisms. Understanding
these formulas is not necessary for our purposes, although they will be referenced
later.

Figure 3 shows that around most points of X (1), the projection map restricted
to a small enough open neighborhood is injective, so a local inverse can serve as
the necessary chart. See Proposition 2.17. However, this injectivity fails at ¢ and
ps3. This motivates the following definition:

Definition 2.16. Let I" be a congruence subgroup. For any 7 € H, let I'; denote
the stabilizer of 7 in I'. Then 7 is an elliptic point for " if ' is non-trivial, i.e.

I'r ¢ {+I}.
The period of T is the order of this stabilizer, up to the equivalent actions of +1:
hy = (£, /{1

Proposition 2.17. Let 7 be a non-elliptic point of I'. Then for some open neigh-
borhood U of T the restriction of the projection map w|y is a homeomorphism. The
local inverse is the necessary chart around 7.

h

Proposition 2.18. Let 7 be an elliptic point for T. Let p;(z) = 2"~ and let

5, = E ‘q € GL(2).

For a sufficiently small open neighborhood U of T, let ¢ : U — V = (p; 0 d;)|u-
Then the local chart ¢ : m(U) — V is defined by ¢ om = 1.

Proof (idea). The idea is that v mimics the identification of 7 around 7, but going
from C to C. In particular, d, takes 7 to 0 and does some straightening, then p,
wraps around 0 in the same manner as 7. See Figure 4. (]

3Sometimes it is convenient to have the local coordinates centered at 0, in which case we can
compose with §r from Proposition 2.18.
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FIGURE 4. FIGURE 5.
Elliptic ~point charts. Cusp charts. From [1].
From [1].

Finally, for X (I") we need to put charts around the cusps. The process is similar
to the elliptic points.

Definition 2.19. Let s € Q U {oo} and let §; € SLo(Z) take s to oco. Then the
width of s is

hs = | SLo(Z) 0o/ ({£I}0T6 1) oo

Since d; takes s to oo not 0, we use the exponential map rather than the power
map to take it to a neighborhood of 0:

Proposition 2.20. Let s € QU {oo} and let p, = >/, For a sufficiently small
neighborhood U of s, let ) : U — V = (ps0ds)|u. Then the local chart o : 7(U) — V
is defined by p o = 1.

Proof (idea). See Figure 5. O

2.5. Modular Forms, Automorphic Forms, and Cusp Forms. The next nat-
ural objects to study are functions on these modular curves. Since modular curves
are Riemann surfaces, we are particularly interested in holomorphic functions, but
these do not turn out to be interesting objects to study:

Proposition 2.21. Let I' be a congruence subgroup and let f : X(I') — C be
holomorphic. Then f is constant.

Proof (sketch). Since X (T') is compact, f must be bounded. It is not hard to show
that if f is holomorphic on X (T"), then f o7 is holomorphic on H. By Liouville’s
theorem we get that f o m is constant, and therefore so is f. O

In other words, functions on H that are invariant under I'" and sufficiently well-
behaved as they approach the cusps are overly constrained. We will choose to
loosen the invariance constraint by introducing a new operator that does slightly
more than just composition:

Definition 2.22. Let k € Z. Let f: H — C and v = [li Z] € GL}(Q). Then
fAlk : H — Cis defined by

FIk(r) = det()**(er + ) * f((7))
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Definition 2.23. Given a set of matrices I', a meromorphic function f: H — C is
weakly modular of weight k with respect to T" if

fhle=f Vvyel.

If o, B € GLF (Q) then [a]x[B]r = [aB]k as operators. On H, the function cr + d
has no poles or zeroes, so if f is holomorphic so too is f[v]x, and similarly for
meromorphic. Since we will almost always be dealing with v € SLy(Z), the factor
of det(v) can usually be ignored.*

By way of motivation, for & = 2 we have f[y]y = 7'(f ov) by (1.4), a familiar
formulation from the chain rule (Theorem 3.2 will make this connection precise).
Taking products of weight 2 weakly modular functions, we get weakly modular
functions of all even weights.

With this piece of notation, we can also say what it means for a function to be
sufficiently well-behaved as it approaches co. Note that the function e2™*7/" takes
H to the open unit disk minus 0, which we denote D’.

Definition 2.24. Let v = [} #] € SLy(Z) and suppose f : H — C is a function
such that f = f[y]x for some k € Z. Then f(r) = f(7 + h) so (even though the
complex logarithm is only defined up to 2miZ) let g : D’ — C be given by

9@)=1 <log(q)2:lm,) — f(7) = g(gn) where g, = e*™7/".

We say f is holomorphic at oo if g has a holomorphic extension to the point 0.
Similarly for meromorphic.

If we know a function f is holomorphic on H (and so g is holomorphic on D’), to
show that f is holomorphic at co it suffices to show that g(q) is bounded as ¢ — 0,
or in other words f(7) is bounded as Im(7) — oo.

Of course, we want to be holomorphic at all the cusps, not just co. For all s € Q
there is some a € SLy(Z) that takes oo to s, so rather than make a new definition
we use the operator [@];. Thus we can finally define modular forms:

Definition 2.25. Let I' be a congruence subgroup and let k € Z. Then f: H — C
is a modular form of weight k with respect to I if

(i) f is weakly modular of weight & with respect to T', and
(ii) f is holomorphic on H and f[a] is holomorphic at co for all a € SLy(Z).

The set of such forms is denoted My(T').

v [1 N}

Note that the matrix

0 1

is in any congruence subgroup of level V. Furthermore, it is easy to check that
fla]y is weakly modular of weight k& with respect to a~!T'e, which also contains
TV (since I'(N) is normal). Thus condition (i) ensures the requirements are met
for condition (ii) to be well-defined.

Although modular forms will be our main focus, we can easily replace holomor-
phy with meromorphy to get:

4Sometimes it can be more convenient to raise the determinant to the power of k — 1, but for
SL2(Z) or k = 2 it does not matter.
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Definition 2.26. Let I' be a congruence subgroup and let k € Z. Then f: H — C
is a automorphic form of weight k with respect to I if

(i) f is weakly modular of weight & with respect to I', and

(ii) f is meromorphic on A and f[a]x is meromorphic at co for all o € SLo(Z).
The set of such forms is denoted A (T").

If f(7) is a modular form, then g(gz) has a holomorphic continuation to 0, so we
can write a Taylor series expansion of g around ¢, = 0:

oo
g9lan) = angj.
n=0

2mitT/h

Recalling that g5, =€ , we get

f(T> _ Z aneQﬂniT/h
n=0

which is called the Fourier development of f. Having a Fourier development and
being holomorphic at oo are equivalent.

Definition 2.27. Let f € My(I"). Then we say f is a cusp form if it goes to zero
at the cusps, i.e. ag = 0 in the Fourier development of f[a]; for all a € SLy(Z).
The set of cusp forms of weight k with respect to I" is denoted Si(T").

The sets My (T"), Ax(T"), and Sk (I") are all vector spaces over C. A crucial feature
of the theory of modular forms (which we will not discuss very much) is that these
spaces are all finite dimensional.

We add one final observation about the [v]; operator which will be useful later:

Proposition 2.28. Let I'y and I's be congruence subgroups such that yI'1y~! C Ty
for some v € GL3 (Q). Then [y]x takes My (T2) to My (T1) and Sg(T's) to Si(Ty).

Proof. Let f € My(I'2). As we noted above, it is fairly straightforward to show
that f[y]x is weakly modular of weight k with respect to 4!y, which contains
I'y. Thus we focus on showing that condition (ii) from Definition 2.25 holds for
Y]k Given a € SLy(Z), ya is in GL3 (Q), so to show that f[y]x[a]r = f[yalx is
holomorphic at oo, it suffices to show that f[y]x is holomorphic at oo for a generic
v € GL3 (Q).

Let v = [ 4]. We would like to find a matrix a € SL3(Z) such that oy has lower

left entry 0. If ¢ = 0 then @ = I. Otherwise let % be % written in lowest terms,
such that p and q are coprime. Then there exist s,t¢ € Z such that ps —qt = 1. Let

-5
o= € SLay(Z).
2L ese@
Then computation shows that a~y has lower entry 0. Let

/*O[ =T a/ b/
’77 ’Y* O cl

with »r € Qt and o/,b',d’ € Z with g.c.d. 1. Changing o for £a we can ensure
a',d > 0. Then fly]x = (fla=]x)[Y']x and since f is a modular form we know that
fla~ has a Fourier development:

(f[a_l}k)('r) — ZaneQTrin‘r/h
n=0



14 DESMOND SAUNDERS

for some period h. Thus

det(y/)F1

(FDI)T) = (o )b I(r) = = e D anetrintirm i/t

n=0

S
o § (ane%rin%> eQ‘n’i(na')T/(d’h)
n=0

(where the constant multiplier was dropped for simplicity). This is the necessary
Fourier development of f[v]; with period d’h, so indeed f[v]; is holomorphic at co.

This completes the proof that [v]; takes My (T's) to M (T'1). To see that cusp
forms get taken to cusp forms, note that in the proof if ag = 0 in the initial Fourier
development, that carries through to the Fourier development of f[v]. O

We now provide some examples of modular forms. The zero function is a modular
form of every weight with respect to any I'. Constant functions are the only modular
forms of weight 0, also with respect to any I'. The following more interesting
examples also happen to be necessary to defining the function j that appears in the
statement of the modularity theorem.

Definition 2.29. Let k > 4 be even, and let A be a lattice. Then
11
Ge(A) =) e
weA

where primed summation means without the point (0, 0). In particular, the Eisen-
stein series of weight k is the function

Gk(T) = Gk(AT) = Z

(c,d)€z?

/ 1
(cT +d)*

Proposition 2.30. G (1) converges on all of H and is a modular form of weight
k with respect to SLa(Z).
Proof. Let v = [24] € SLy(Z). We want to show that G[y], = Gy, i.e.
Gr(v(1)) = (et + d)FGr(7).
Examining the proof of Theorem 2.4 we see that A ;) = (c7 + d)~'A,. Thus

! 1 (T k
GO = Gelha) = D, ojk:Z< +d> — (cr + d) ()

w
we(eT+d) 1A, wEA,

as desired. Now we will show that G (7) converges absolutely and is bounded as
Im(7) — o0, and so is holomorphic at co. Let
1 3
D= {7‘ € H : |Re(1)| < 3 and Im(r) > \2[}

so that D C D. Since we know G}, is weakly modular, showing convergence on D
shows convergence on all of H. Furthermore, if we can show that Gy is bounded
on D then Gi(r) = (Gi[T)x)(T) = Gi(r + 1) shows that it is bounded for all
Im(r) > %2,
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Our first step is to show that |7 + 6| > % sup{1,|6|} for all 7 € D and § € R. If
6] < 2 then

> —sup{1,|d|}.

N
W

|7+ 6] > Im(7) >
If |§] > 2 then
12 1
|7+ 8| > |Re() + 6| > |6 — 32 §|5| > gsup{L 5]}
By taking partial sums over expanding squares of radius n, we also find that the

sum

o0

/ 1 1
Z . ko 2(4” +4)
e (N | LS S
converges absolutely for k£ > 4. Finally, the Riemann zeta function ((k) = Y0, %

converges for k > 2. Thus for 7 € D we have

/ 1 1
2 ferwar = XWX o

S ¢£0,d€7
1
<2¢(k) + oSoes (le|d sup{1, % )k
= 2¢(k) + 3 #%ez m
< 20(k) + 3’“(0%222 o T

which we established converges absolutely. Furthermore, this bound is independent
of 7, showing that G, (7) is bounded on D and so holomorphic at oo as desired.” [

Of particular importance are the functions
gz (T) = 60G4(T) and gs (T) = 140G6 (T)

since they give the connection between complex tori and curves defined by equations
of the form y? = 4x3 + ax + b, which the more recognizable definition of elliptic
curves. In particular, a complex torus C/A is isomorphic as a group and a Riemann
surface to the curve

y® = 42° + go(N)z + g3(A).
We will not prove this, but it also motivates looking at the discriminant function,
A = g5 — 27g3

which is a modular form of weight 12 with respect to SLo(Z) (in fact, it is a cusp
form). Comparing powers also shows:

5The fact that G & is holomorphic on H follows quickly from the fact that it converges absolutely
on H, although the proof does have to be slightly modified.
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Corollary 2.31. The modular function j : H — C given by

(92(7))°

j(r) = 17282% ©

is SLo(Z) invariant.

Since j is not constant, by Proposition 2.21 we know that j cannot be a weight
0 modular form. It does happen to be a weight 0 automorphic form, however the
above corollary is sufficient for defining j(E) for any elliptic curve E, which is what
we need to state the modularity theorem.

2.6. The Modularity Theorem.

Theorem 2.32 (Modularity Theorem, Version I). For every complex elliptic curve
E with j(E) € Q, there is some N € N such that there exists a surjective holomor-
phic map from Xo(N) to E.

3. VERSsION (II)

3.1. Holomorphic and Meromorphic Differentials. Riemann surfaces are 1-
dimensional complex manifolds, so we should be able to write differential 1-forms
on them.

Definition 3.1. Let X be a Riemann surface with charts ¢; : U; — V; for ¢ in
some index set I. A meromorphic differential on X (of degree 1) is a collection of
differential 1-forms w; = f;(z)dz on each V;, with f; meromorphic, such that these
forms are compatible, i.e.

o} i(wilv;.) = wilvi

where the asterisk denotes the pullback and the other notation comes from Defini-
tion 1.6.

The set of such differential forms, a vector space over C, is denoted Q! (X). We
can also require the functions f; to be holomorphic, in which case we get the vector
space Q} (X).

Essentially differential forms are still of the form f(z)dz, just defined locally
with the coordinate maps. It turns out that these differentials on the modular
curves X (I') provide a good way of studying modular forms, due to the following
connection:

Theorem 3.2. Let T' be a congruence subgroup of SLa(Z). Then A2(T) and
QYX(T)) are isomorphic as complex vector spaces.

Proof (sketch). Given any two Riemann surfaces X and Y and a holomorphic map
h : X — Y there is a corresponding pullback map h* : QYY) — Q!(X) which
suitably defines h; : C — C for each coordinate patch V; and then sends f;(z)dz
to fi(hi(2))h}(z)dz. In particular we can consider the pullback of the projection
map 7 : H — X(T') which sends each w € Q'(X(T)) to a differential f(7)dr on H,
omitting the cusps. Here we will show that for all w € Q' (X (), this f(7) is weakly
modular of weight 2, and then construct (but not justify) an explicit isomorphism

w: Ap(T) — QY (X(T))
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such that 7 (w(f)) = f(7)dr.5
Let v € T and let w € QY (X(I")) with 7*(w) = f(7)dr. Then m o~y = 7 and so

f(r)dr = 7" (w) = (m07)"(w) = v"(7"(w)) = " (f(T)dr) = f(y(7))Y (T)dr

)
and this last expression is equal to (f[y]2)(7)dr by (1.4). Thus indeed f = f[y]s,
so f is weakly modular of weight 2.

Now let f € A3(T"). We need to define a differential f;(2)dz on each V; and let
w(f) ={fi(2)dz}. As with the charts in Section 2.4, we define w(f) in three steps:
at generic points of X (T'), at elliptic points, and at cusps. Let ¢; : U; — V; be a
chart around a generic point 7. At such points, we simply change coordinates to
be centered around 0. Recall §, from Proposition 2.18. Then we define f;(z)dz =
(/07 1])(=)dz on Vi.

If 7 is an elliptic point, recall the matrix §, and integer h, from Proposition 2.18.
Then

1/h, ~1 1/h,
(3.3) fi(z)dz = 2t (B 1) (Y )dz on V.
hrz
It is not immediately obvious that this is well-defined given the ambiguity of z
over the complex numbers, however it can be shown that the function z(f[6-1])(2)
is invariant under the transformation z — sz, making this well-defined. Similarly
if s is a cusp recall the matrix §; and integer hg from Definition 2.19. Then

(3.4) ﬁ@w—hsmxmo%@“)dzonw

T 2miz 2mi

and this is also well-defined. The local versions of 7 from C to C around elliptic
points and cusps are precisely the ¢ maps from Proposition 2.18 and Proposi-
tion 2.20, so one can check that pulling back the formulas in (3.3) and (3.4) by the
corresponding 1 gives f(7)dr. O

1/h,

Corollary 3.5. S»(T) is isomorphic to Q} ,(X(T)).

Proof. Given a meromorphic form f : H — C and 7 € H, let v-(f) denote the order
of vanishing of f at 7, i.e. if f(z) = > .7 an(z —7)" is the Laurent expansion
of f, then a, =0 for all n < v, (f). If s is a cusp then let v,(f) denote the order of
the first non-zero coefficient in the Fourier development of f[5;!]. Since (c7 +d) =2

has no poles or zeroes on H, given 7 € H and v € SLo(Z) we have

VT(f[’YD = V’Y(T)(f)'

An automorphic form f is a cusp form if and only if it is holomorphic on H, so
vr(f) > 0 for all 7 € H, and zero at the cusps, so vs(f) > 1 for all s € QU {o0}.
Let w(f) = {fi(2)dz}. If f;(2) is centered around a generic point 7 then

vo(fi) = o (f[6-1]) = vr(f)

so f; is holomorphic if and only if f is holomorphic at 7. If 7 is an elliptic point we
analyze (3.3) to get

wo(fi) = o5 (=) — 1

T

6We use w both as a variable to represent elements of ©!(X(I')) and as the name of the
isomorphism, however we do this in two different steps so these two uses should not overlap.
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Our assertion that the function 2%/ (f[6:1])(2/"") is well-defined and meromor-
phic also implies that vo(z(f[0:1])(2)) = 1 + v (f) is a multiple of h,. Thus vo(f;)
is greater than or equal to zero if and only if 1 + v (f) is strictly greater than zero
and so at least h,. This is true if v,(f) > 0. Thus f; is holomorphic around all
non-cusp points if and only if f is holomorphic on H.

If f;(2) is centered around a cusp, then the Laurent expansion of

(767D (1o

211

is precisely the Fourier development of f[6;1] (with a change of variables) and so

() = (e (7167 (tou(e) 57 ) ) = =14 (),

2miz

Thus vo(f;) > 0 if and only if vs(f) > 1, i.e. if f is a cusp form. O

3.2. The Jacobian. Once we have differential forms, it is natural to do what
differential forms were made for: integrate them. In particular, there is a well-
defined notion of path integration.

Definition 3.6. Let X be a Riemann surface and w = (w;);er be a differential
form on X. Let v : [0,1] — X. Suppose the image of « lies entirely within one
coordinate patch U; with chart ¢;. Then we define

/w:/ wj.
Y i07%y

If the image of v goes between coordinate patches, we split it up and take the sum.

To show that this is well defined, we need to show that if the image of v lies
in more than one coordinate patch, say in the intersection U; N Uj;, then the value
of the integral is independent of which patch we choose. This follows from the
compatibility as we defined it in Definition 3.1:

/ wjlv;., :/ wjlv;., :/ @?,i(wﬂvj,i):/ wilv; ;-
Pjoy $j,i0pi0Y PioY ©i0y

In standard complex analysis, path integrals of holomorphic functions are com-
pletely determined by the endpoints of the path, i.e. integration around loops is
always zero. However, on a general Riemann surface this is not the case. Therefore
it would be helpful to (in some sense) quotient away by integration over loops.
These path integrals are linear operators on Q%]Ol(X ) so they are elements of the

dual space Q[ _(X)". Thus we define the following subgroup:

Definition 3.7. Let X be a compact Riemann surface. The (first) homology group
of X, denoted Hy(X,Z), is the subgroup of Q} ;(X)" generated by integrals over
loops. In other words

H(X,Z) = {Z!@/ :n €Nk, €Z, and o; 1 [0,1] = X is aloop}
i=1 i
Definition 3.8. The Jacobian of X is
Jac(X) = Qf ,(X)"/H (X, 7).
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So the elements of Jac(X) are essentially integrals of the form f;f, since such
integrals are defined up to integration around loops (see Theorem 3.11).

If X = X(T') is a modular curve, by the dual of the map w from Corollary 3.5,
we know that

Qo (X (D))" = S(D)"
Let H1(X(T'),Z) denote both the homology group of X (I') and its image under the
map w”. Then we can write
Jac(X(T)) = So(I)"/H1(X, Z).

So we will more often think of the elements of the Jacobian as equivalence classes
of linear maps on the space of weight 2 cusp forms. For simplicity, we introduce
the notation

Jac(Xo(N)) = Jo(N)  and  Jac(X;(V)) = J1 (V).
The definition of the Jacobian is essentially sufficient for our second statement
of the modularity theorem, however the theorem refers to a holomorphism from a

Jacobian, which requires it to have a complex analytic structure. For the result
here we refer to the reader to a text on Riemann surface theory such as [2]:

Proposition 3.9. Let X be a Riemann surface. It is a well-known result from
topology that X is a sphere with g tori stuck to it for some g € N. For each of these
tori, let a; : [0,1] = X be a loop around the inside like an equator, and let B; be a
perpendicular loop like a band around the torus. Then

Q}wz(X)A=R/ @R/ 69-~69R/ @R/
aq 1 Qg g
Hl(X,Z):Z/ EBZ/ @m@z/ @Z/.

Qg 1 Qg g

In other words, 2 (X)" is a finite dimensional vector space over C and H;(X,Z)
is a lattice, so Jac(X) is complex torus (specifically a g-dimensional complex torus).

3.3. The Modularity Theorem.

and

Theorem 3.10 (Modularity Theorem, Version II). For every complex elliptic curve
E with j(E) € Q, there is some N € N such that there exists a surjective holomor-
phic homomorphism of complex tori from Jo(N) to E.

We will now briefly explain why versions (I) and (II) of the modularity theorem
are equivalent, which will require some statements without proof. In particular,
one of the most important results about the Jacobian is Abel’s Theorem:

Theorem 3.11 (Abel’s Theorem). Let X be a Riemann surface and fix a base
point xg € X. Let ) ngx be a degree-0 divisor on X, i.e. a finite formal sum
over points in X with each ng € Z such that ) n, = 0. Then the map into the

Jacobian
x
Sz s [
T T o

is well-defined and surjects. Furthermore, the map descends to an isomorphism
between the Jacobian and the degree-0 Picard group (which we do not define here).
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We state this theorem without defining the Picard group because it shows that
the Jacobian does just consist of Z-linear sums of integrals of the form f;o Note

that by adding any integer multiple of ffoo we can essentially ignore the requirement
that the n, sum to 0. Furthermore, it is used for the following result:

Proposition 3.12. If a Riemann surface X has genus greater than 0, it embeds
in its Jacobian by

X — Jac(X), zr—>/ .
T

If X is a complex elliptic curve, then this embedding is an isomorphism.

Proof (sketch). That this map is well-defined is an immediate consequence of Abel’s
theorem, as outlined above. The fact that this map is injective requires a more
careful application of Abel’s theorem (first injecting into the Picard group and
then using the isomorphism from Abel’s theorem) which we omit.

Let C/A be a complex elliptic curve. Then holomorphic differentials on C/A pull
back to holomorphic A-periodic functions on C. Such functions are bounded, and
so are constant. Thus Ql (C/A) only consists of constant functions, and so the
integrals in Q] (C/A)" are translation invariant. In particular, letting xo = 0+ A
and computing in the Jacobian (i.e. modulo loops), we have

z1+A zo+A z1+A r1+xo+A z1+ao+A
0+A 0+A 0+A z1+A 0+A

This calculation shows that the map both surjects and is a group homomorphism
when X is an elliptic curve. (Il

We also need a generalization of Proposition 2.3:

Lemma 3.13. Let g,h € N, let CI/A, and C"/A;, be complex tori, and let ¢ :
C9/Ay — C" /Ay, be a holomorphic homomorphism. Then

pz+Ag) =Mz+b+ Ay
for some b € C" and M € M 4(C).
Proposition 3.14. Versions (I) and (II) of the modularity theorem are equivalent.

Proof. First we show that (IT) implies (I). Let ¢ : Jo(IN) — E be the surjective
holomorphic homomorphism from the theorem. This surjection shows that Jo(N)
is non-trivial, and so Xo(/N) has genus greater than 0 (see Proposition 3.9). Thus
we have an embedding f : Xo(N) — Jo(N) and so ¢ o f is a map from Xo(N)
to E. This composite map inherits being a holomorphic homomorphism, but it
remains to show it is surjective. By Proposition 1.7, it suffices to show that it is
non-constant. Since f(zg) is the zero integral, ¢(f(x¢)) = 0g. To show that ¢ o f
is non-constant, it thus suffices to show that the image of f is not contained in the
kernel of ¢. As noted above, Abel’s theorem shows that the C-span (in fact, the
Z-span) of the image of f is all of Jy(N). However, Lemma 3.13 shows that the
kernel of ¢ is a subspace of Jy(N) of strictly lower dimension as a C vector space,
and so span(ker(y)) # Jo(IN). Thus the image of f cannot be a subset of the kernel
of ¢, and this completes the proof.
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To show that (I) implies (II), let h : Xo(NN) — E be the holomorphic surjection
given by version (I). The dual of the pullback of h, (h*)", sends homology to
homology, since if « is a loop in Xo(N) then

o ()= =L

and h(a) is a loop in E. Thus (h*)" descends to the jacobians, giving a surjective
holomorphic homomorphism

Jo(N) — Jac(E)

and by Proposition 3.12 we have Jac(E) = E, so this is the map conjectured by
version (II). O

4. VERSION (IIT)

4.1. The Double Coset and Hecke Operators. Let I'; and I'; be congruence
subgroups of SLa(Z). It is natural to consider maps between the spaces My (T';)
and Mg(T3). The most important such maps come from the following family:

Definition 4.1. Let o € GLJ (Q). Then the weight-k T1al's operator (or in general
a double coset operator)

[Crals]y : My(T1) — My (T2)
is given by

> fBilk
where the 3; are representatives of the orbits for I'y in the set
I'al's = {’}/10&’)/2 Y1 € I’y and Y2 € FQ}

We can also think of this map as descending into subgroups rather than passing
through the larger set I'yal's, as in the diagram:
FlOlFQ

T

Fl F?
Iinalea™ —2 5 o7 TanTy

We will use this equivalence to show that the double coset operator is well-defined,
and also introduce notation that will be useful later.

Definition 4.2. Let I'; and I's be congruence subgroups of SLy(Z) with T's < T's.
Let w3 be the projection map from X (T'3) to X (T's). Then the trace of my is the
map try, : My(T's) = M (T'2) given by

fe Y
where the 7; are coset representatives for I's\T's.

Proposition 4.3. The trace is well-defined. That is, it is independent of the choice
of coset representatives, and the resulting function is indeed in My (Ts).
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Proof. Suppose ; and {v;} are two different representatives for the same coset of
'3 in I', so that each v; = 73 ;7; for some 73 ; € I's. Since f € My(I'3), we have

flvil = flsgvil = (fhsa Dbl = il
Let 75 € T'y. It is a fact of group theory that multiplication by 7, permutes the
coset representatives for any subgroup of I';. In particular, {y;72} is a new set
of equally valid coset representatives. Since we are taking the sum over all cosets,
and using the previous result that it doesn’t matter which coset representatives we
choose, we also get

(trey )v2lk = Z fvilklvelk = Z flvivelk = tre, f.

Proposition 2.28 shows that the resulting function is also holomorphic at the cusps,
so indeed the resulting function is in My(T'2). O

Proposition 4.4. Let [I]; denote the inclusion map from My (T1) to Mg(T1 N
alsa™t) and let my be the projection map from X (o 1T1aNTy) to X(T2). Then

[[1al's] = tra, o[a]k o [{]k-

Proof. To show that tr,, is well-defined, we have to show that I's = a='Tja N Ty
is a congruence subgroup. Suppose I'; is a congruence subgroup of level N; and I’y
of level Ny. Let K € Z such that Ka and Ka~' have integer entries. We want to
show that T'(K2N;Ny) C I's. Since Ny divides K?Nj No, we have I'(K2N1Ny) C Ts.
Furthermore

ol (K2NiNy)a™t € oI + K? Ny Ny My(Z))a™*
=TI+ NNy -Koa-My(Z)-Ka™*
C I+ N1NyMs(Z)
and since al'(K?N;Ny)a~! only consists of matrices with determinant 1, it is in
fact a subset of I'(N1N2) C T'(Ny) C T'y. Thus
ol (K2NiNy)a ' ¢ Ty = T(K?NiN,) C o™ 'Tha
so I's is indeed a congruence subgroup.
Thus we know that this composition is indeed a map from My (T'1) to My(T2)

by Proposition 2.28 and Proposition 4.3. All that remains is to show it is equivalent
to [['1al'1]. We have

trr, ofals o [Ix = Y (flode)vsle = Y Floslk
J J

where {v;} are the coset representatives for I's in I'y. It suffices to show that {ay;}

are the orbit representatives for I'y in I';al's. In particular, the map

(o Fg — FlaFQ, Y2 = Qy2

induces a bijection between I's\I'y and I'1\I'yal's. The map from I'y to T'1\I'1al's
taking o to 'y a7y surjects. The kernel is comprised of matrices v, € I's such that
I'iaye = I'ia. In other words 42 € a 'T1a, so the kernel is precisely I's. Quoti-
enting out by the kernel, this map becomes a bijection from I's\I's to T'1\T'1al's,
as desired. O

Corollary 4.5. The double coset operators take cusp forms to cusp forms.
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Proof. This follows immediately from the definition and Proposition 2.28. O

Certain special cases of the double coset operator are of particular interest, the
Hecke operators.

Definition 4.6. Let p be a prime. Then T}, is an operator which takes My (To(NV))
to itself given by

T, = [To(N)[§5]To(N)],
or defined equivalently for 'y (N).

There is another class of Hecke operators called diamond operators. However,
these operators act trivially on My (T'o(N)), and so will be ultimately unnecessary
for our statement of the modularity theorem.” Similarly, one can extend the defi-
nition to all n in N in a non-trivial manner, but we will implicitly account for this
by using the Hecke algebra as defined in Definition 4.20.

Proposition 4.7. Let g and p be primes. Then T, T, = T,T,. In other words, the
Hecke operators commute.

Proof. We will prove this by explicitly finding the coset representatives j3; for
[o(N) in To(N)aTl'o(N) (where o = [§5]), and then computing. Using the re-
sult from in Proposition 4.4, we first find the representatives for I'3\I'o(/N) where
I3 = a To(N)aNTy(N). By conjugating a generic matrix in I'g(XN) by « and
then requiring the resulting matrix have integer entries, we find that

Nec d

We will show that the coset representatives are

F3:{[a pb} ta,b,c,d € Z and ad_(pb)(Nc):1}.

vj:[(l) ﬂ for 0<j<p

if p|N. If p does not divide N, then we add the additional coset representative

_|pm
= b

where m,n are such that pn — mN = 1 (if p 1 N they are coprime, so such n,m
must exist). Two such matrices are I's-equivalent if and only if v, ! € I3, which
requires the upper right entry to be divisible by p. However, if both j, k < co then
the upper right entry of ;v Lis j — k, so either j = k and they are trivially in
the same orbit or j — k < p, and so the upper right entry is not divisible by p.
Additionally
—1_ [n—JN —m+jp
ViVToo = |: -N P :|
and m is not a multiple of p, since otherwise we could not have pn—mN = 1. Thus
neither is —m + jp for any j. This shows these matrices are in distinct orbits. Let

|l a  bo
0= [Nco do] € Iy(N).

"The general theory is more often developed with the smaller I'1(N) in mind, rather than
To(N). However, the Modularity Theorem is more precise when referencing I'o(N), so going
forward we develop the theory for this subgroup.
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We want to find a matrix v € I's such that yy; = ¢ for some 0 < j < p or j = 0.
If p|N, then it cannot be that p|ag, since det(d) = 1. Thus there is some j between
0 and p — 1 such that by — jag is divisible by p. Then let

_ | a0 bo—jao
v NC() do—jNCO ’

Which is indeed in I's and yvy; = 6. If pf N, we have the additional possibility that
pla. In this case

Sy=l = nag — Nby —mag + pbg
Voo Nncyg — Ndg —mNco + pdo|”

Since p|ag, we indeed have that p divides the upper right entry, and so v} € T's.
This shows that we have successfully identified the coset representatives. To find
orbit representatives for I'o(N) in To(N)al'o(N) we left multiply by « to get

Bi=lo 3| for osi<

plus the additional representative when p t N:

=l = v B )

and since this first matrix is in To(V), we let S = [29].
Now let B, ; be the representatives for T}, and 3, ; the representatives for Tj.

Suppose that both p and ¢ divide N. Then

p—1g—1 p—1lg—1 pg—1

LI = 303 ailpali = S0 F[47] = > r[h i)

j=0 i=0 §=0 i=0 j=1

which is symmetric in p and q. Now suppose only ¢ 1 N. Then the above compu-
tation still applies for all 3,; except i = co. Thus we only need to show that the
expressions

p—1 p—1 p—1 p—1
> fBuoclilBpale =2 f|8%] and Y FlBplilBaccli = D F[83]
j=0 =0 J=0 §=0

are equivalent. By left multiplying by [} 4], a matrix [g 1]?] can be made I'o(N)-

equivalent to any matrix [8 ;] with ¢ = j (mod p). Thus it suffices to show that

{qj }57;11 contains all remainders mod p, which is immediate since p and ¢ are distinct
primes and so have greatest common divisor 1.
If both p and ¢ don’t divide N, then we are only left to check f[B4 c0lk[Bp,c0lt =

f[ﬂp,oo]k[ﬁqpo]k; and indeed Bq,ooﬂppo = [%q (1)] = Bppoﬁqp(w O

Definition 4.8. Let f € S;(T'o(N)) be non-zero. Then f is an eigenform if it is
an eigenvector of T}, for all primes p, i.e. for all primes p there exists A € C such
that

Tp(f) =\

If the first coefficient aq in the Fourier development of f is 1, then f is normalized.
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4.2. Hecke Operators and Jacobians. The double coset operator maps Sa(T';)
to S2(I'2), and therefore it has a dual map

[Flal“g]Q : 82(1—‘2)/\ — SQ(Fl)A

acting by composition. The goal of this section is to show that this action descends
to the Jacobian. Since

[FlaFQ]Q = 'DI'ﬂ-2 @) [04]2 o [I]Q

it suffices to show that the dual of each of these functions (translated into the
language of differential forms) preserves the homology group.

Proposition 4.9. Let 'y <T'5 be congruence subgroups and let w be the projection
map from X (T1) to X (T'z). The map from Qi (X (L))" to QF (X(T'1))" induced
by trl takes homology to homology.

Proof. Let m; and 72 be the projection maps from H* to X (I'1) or X (I'2) respec-
tively, and let wy : Sa(I'1) — OQf;(X(T1)) and wo : Sa(T2) — O, (X (T2)) be the
isomorphisms given by Corollary 3.5, which were defined such that given f € Sy(T;)

m (wi(f)) = f(r)dr i=1,2.
We would like to show that the map
wootryow !t (X (T1)) = Oty (X(T2))

which we will denote by the same symbol tr,, dualizes to a map sending homology
to homology. We have

trr (w1 (f)) = wa Zf[Vj}2

where v; are the coset representatives for I'1\I's. Let § : [0,1] — X (T'2) be a loop
so that [5 is an element of Hy (X (I'z),Z). For any wi(f) € (X (T'1)) we have

(12 [} rth = [eratirtrn = [n | S bl

J

Now let 0 be a lift of § to H*, which is to say a continuous function 6 : [0, 1] — H*
(although we can’t guarantee it is a loop) such that 7y 0 6 = 6.% Then

/5 s ;fm? - /gw; ws ;fmz =; /5 Fyla(r) dr
=3 [y dar
- Z/,OS f(r)dr

- Z/ﬂmjos “1(f).

J

8See [3] for why such a lift always exists.
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So we have to show that, when taken together, the paths 7 o ;o $ form a loop
or integer sum of loops in X (I';). Let 6(0) = 79 so that (1) = y2(7) for some
5 € Ty (recall that & projects to a loop in X (T'y)). Then for each j, the start and
end points of m 0 y; 0 5 are
Livi(r0)  to Tiyiye(70)-

The set {I'1y;(70)} is precisely the (finite, discrete) set of points in X (I';) which 7
maps to ['27g. As we have mentioned before, multiplication by ~2 permutes coset
representatives, so the function sending the initial point of each path 7 07; 04 to its
final point is a permutation on the finite set 7—1(I'y79). Therefore, concatenating
these paths must indeed give some integer sum of loops, given by the cyclic structure
of this permutation.

Finally, since tr, is Z-linear, showing this result for operators of the form | 5
immediately extends to all of Hy (X (T's),Z). O

Proposition 4.10. Let I'y and T's be congruence subgroups and let o € GL3 (Q)
such that al'ya~! C Ta. The map from Q) (X (T1))" to Q) (X (T2))" induced by
[a]2 takes homology to homology.

Proof. As before, let w; and ws be the isomorphisms from Corollary 3.5, and let
wa2(f) be an arbitrary element of Q] (X (T'2)). Then

(wi 0 [a]z 0wy ) (wa(f)) = wilflal2)

We will denote the map w; o [a]z 0wy ' by a* (one can show it is the pullback
of the map I'y7 — Taa(7)). Let 6 : [0,1] — X (I'1) be a loop. Using the same
manipulations as before we get

(wmAA)wxﬂw=éamwwn=AwmmmwiLm£mU»

Where 4 is a lift of § from X (I'1) to #*. Again let 75 = 6(0) so 6(1) = 71 (7o) for
some 1 € I'y. Then
(mg 0 06)(0) =aa(ry) and (mao0ao0d)(1) = aavi (7).
Since al'ya~! C Ty, we have ayia~! = 75 for some 5 € I'y and so
aavi(70) = Tevea(10) = Maa(70).

Thus my0a 0 has the same start and end point, so indeed a* takes integration over
loops to integration over loops. Since it is Z-linear, it therefore takes Hy (X (I'1),Z)
to H1<X(F2)7Z) O

Corollary 4.11. Let p be a prime. Then the action of the Hecke operator T, on
Si(To(N))" descends to the Jacobian Jo(N).

4.3. The Petersson Inner Product. We have introduced linear transformations
between our spaces of modular forms, so in continuing to add linear-algebraic struc-
ture, in this section we introduce an inner product. This inner product will be very
similar to the inner product familiar from Fourier theory:

<ﬂm=/fwa*w

z)
with the integral appropriately defined over X (I') and certain factors added to
ensure everything works.
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Definition 4.12. Let I" be a congruence subgroup of SLo(Z) and let {a;} be the
coset representatives for {+1}T\ SLo(Z). Let 1 denote the hyperbolic measure on
‘H, such that if 7 =z + yi € H then

dx dy

du(r) = 7

If ¢ is I invariant then we define

/ o(7) du(r) = / o(7) du(r)
X(I) U; o (D)

where D is the fundamental domain from Proposition 2.6.

In other words, we can make sense of integrating a I' invariant function over
X(T') by integrating over the fundamental domain from Proposition 2.12.

Proposition 4.13. This is independent of our choice of a;. Furthermore, if ¢ is
continuous and bounded, this integral converges.

Proof. If o; is another coset representative, then o/, = ya; for some v € I'. Thus

) dp(r) = 7)du(t) = 7)) d 7)).

We asserted that ¢ is I' invariant, so it suffices to show that du(7) is as well. In
fact, du(r) is SLo(Z) invariant. To see this, we first do some manipulations with
differential forms:

Cdedy  d(ZF) d(%FE)  (dr)? +drdr — drdT — (dT)? 26 drdr
B =) —77 GG

And so we have

w20 s idrdr
W) = G —amye ~ O G T ame

Let a = [¢ %] with ad — bc = 1. Then using (1.4) and analyzing the denominator
and we have

(7 + d)*(c7 + d)? ((j;ﬁ;)z + (2:2)2 7 (ZIQ (Z:D)
at +0)(¢T + d) — (a7 + b)(c7 + d))*

(
(ad — be)T — (ad — be)T)?
T—7)

= (
=
= (
so that

2¢ d7dTt _ 2idrdr

(a(r) —a(7))? (1 —7)?

as desired. To show convergence, we note that

oy #7 0 = 2 | etasmnautr)

dp(a(7)) = o ()% (7)? = dp(T)

J
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Thus it suffices to show that the integral of ¢(a;(7)) (which is itself a bounded
continuous function) converges on D. Letting M be the bound for ¢ o a;, this is

immediate since
M
lp(aj(T))|du(r) < — dxdy
D DY

and this integral converges. O

Definition 4.14. Given a congruence subgroup I', the volume of X (T') is

Vr = / du(T).
X(I)

Given f,g € Sk(T"), we want to use this integral to define an inner product.
However, the function fg is not I' invariant as is required by our definition.

Lemma 4.15. Given f,g € Sk(T), the function
(1) = f(r)g(7) Im(7)"
is I' invariant and bounded.

Proof. Let v = [(; g] € I'. Then, using Proposition 1.2, we get

p(v(1)) = F(3(7)g(7()) Im(~(7))"
= filk(r)(er + d)*g[(7) (er + d)F Im(7)*|er + d| =2
= f(r)g(r) Im(r)*

as desired. To show it is bounded, we note that I'" invariance means it suffices to
show that ¢ o ; is bounded on D for «; the coset representatives of I' in SLy(Z).
Since it is continuous, ¢ o «; is bounded on any compact subset of D, namely below
some sufficiently large cutoff on the imaginary part.

For sufficiently large 7, the magnitude of a modular form goes by the first non-
zero term in its Fourier development, and for cusp forms this is the first non-constant
term. Thus for Im(7) sufficiently large, f[o]x and g[a;]r are both at most of the
order

|Qh| _ ‘627ri‘r/h‘ — e—27rIm(T)/h

and this exponential decay is much faster than the growth of Im(7)". O

Definition 4.16. Let T" be a congruence subgroup of SLa(Z). Then the Petersson
inner product is

{,)r:82(T) x S(T") — C,
where if f,g € S2(T") then
(e =g [ F@GE )" dutr).
Vo Jx )

Proposition 4.13 and Lemma 4.15 combine to show that this integral converges.
Furthermore this function is immediately linear in f, conjugate-symmetric, and
positive definite, so it is an inner product. The factor of Vr is only really useful
when comparing inner products on different curves.
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4.4. Oldforms and Newforms. Let M divide N. Then I'g(NV) is a subgroup of
I'o(M), and so Si(M) is a subset of Si(NN). Furthermore, for any f € Si(M), let
d be a divisor of N/M and let
_|d 0
Qg = o 1|-

Then ayTo(M)ay;' € Ty(N), so by Proposition 2.28 f[ag]x is an element of Sy (V)
for any f € Sip(M). This motivates the following definition:

Definition 4.17. The subspace of oldforms at level N is the subspace of Si(T'o(N))
generated over C by the set

U U {fledl : f € SeTo(M))}

MIN d| 37
and is denoted Si(I'o(NV))!.

Naturally, once we have identified these oldforms, we want to focus on those
forms whose behavior is new to the level N:

Definition 4.18. The subspace of newforms of level N is the orthogonal comple-
ment of the space of oldforms with respect to the Petersson inner product:

Sk(To(N)™ = (Sp(To(N))*) ™.

We will however distinguish the subspace of newforms from the functions we will
call newforms:

Definition 4.19. A newform of level N is a normalized eigenform (see Defini-
tion 4.8) that is in the space of newforms of level N.

This terminology is consistent because such newforms form a basis for the sub-
space of newforms (which we will not show). Thus we could call the subspace
of newforms the subspace generated by newforms, although this would imply a
definition of newform which was independent of the subspace.

4.5. The Abelian Variety Associated to a Newform. Our two statements
of the modularity theorem so far associate every rational elliptic curve with some
geometric or algebraic structure based on a modular curve. In this section, we
introduce such a structure based on a modular form, which we will use in the final
version of the modularity theorem, giving it more specificity.

Definition 4.20. Given N € N, the Hecke algebra is the ring of transformations
of 8;(To(N)) generated over Z by the Hecke operators,

Tz = Z[{T} : p prime}].
If f is an eigenform, then f is an eigenvector for all transformations in Tz.

Definition 4.21. Let f be a newform of level Ny. Then the function Ay : Tz — C
that sends each operator T to its eigenvalue for f, i.e.

Tf= (D),

is a homomorphism from Tz to C. Let Iy denote the kernel of this homomorphism.
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By Corollary 4.11, we can consider the action of Iy on Jy(Ny). In particular,
Jo(Ny) is a module over Tz and Iy an ideal of Tz, so I;Jo(Ny) is a subgroup of
Jo(IN). This enables us to make the following definition:

Definition 4.22. Let f be a newform of level Ny. The Abelian variety associated
to f is

Ap = Jo(Ng)/IsJo(Ny).

As with the Jacobian, this new structure is essentially all we need to state another
version of the modularity theorem. However, in order to state that there exists
a holomorphism from Ay we want to give it a complex structure. As with the
Jacobian, this will require us to state some preliminary results without proof. The
missing proofs can be found in [1].

Proposition 4.23. Let f = > °°  an(f)g" be a normalized eigenform. For all
n € N there is some T,, € Ty such that T,,f = a,(f)f. If n = p is prime, this is
Just Tp.

Proposition 4.24. Let f = Y ° | a,q" be a newform of level Ny, and let Ky =
Q({an}). For any embedding o : Ky — C the function

o0

1= Z U(an)qn

n=1

is also a newform of level Ny¢.
This allows us to prove the following lemma:

Lemma 4.25. Let T be defined the same way as Tz, just over C. Then Tp =2
Sk(Lo(N)).

Proof. Consider the map F : T¢ x S(T'o(N)) — C which sends (T, f) to a1 (Tf),
where a1 : Sp(T'0(N)) — C sends a cusp form to the coefficient on the first term
in its Fourier development. Then F' is bilinear. To turn this map into the desired
isomorphism, we also need to show that it is non-degenerate in both terms.

Let T € T¢ and suppose F(T, f) = 0 for all f € Sk(To(N)). Applying this to
T, f and using Proposition 4.23 we have

0= aq (TTnf) =a; (Tn (Tf)) = an (Tf) — Tf =0

and since this is true for all f € Sp(T'0(N)), indeed T = 0. Conversely let f €
Sk(To(N) and suppose F(T, f) = 0 for all T € T¢. In particular, T, € T¢ so
an(f) = a1(Tnf) =0 and indeed f = 0.

Therefore the maps from Si(I'o(NV)) to T¢ sending f to (T — F(T, f)) and
from T¢ to Si(To(N))" sending T to (f — F(T,f)) are both linear and injec-
tive. From Corollary 3.5 and Proposition 3.9 we know that dim(Sk(To(N))") =
dim(S;(T'o(IN))) are both finite, so the existence of both of these maps combines to
show that

dim(T¢) = dim(T) = dim(S(To(N))) = dim(S(To(N))").

In particular, since all dimensions are the same, these two injections become bijec-

tions, and so T¢ = S,(To(N)). O
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We will also need a few unproven facts from algebra more generally, in particular
the tensor product (for more details on the tensor product than are given here, see
[8]). Let R be a ring and let N and M be R-modules. Recall that N ® g M is the
unique R-module equipped with a R-bilinear map b : N x M — N ®r M such that,
for any R-module @ and any R-bilinear map f from M x N to @, f can be written
as the composite of b and a linear map from M ®r N to Q.

We will only consider the case where N and M are Z-modules, i.e. Abelian
groups, and so we will drop the Z subscript. If either N or M is also a module for
some other ring A, then N ® g M is naturally an A-module as well, by the rule

a (Z n; ® mz> = Z(ani) ® m;

1
or similarly if M is the A-module.
In particular, let k be a field and G be a finitely generated Abelian group. Then
k is certainly a k-module, and thus so too is G®Xk, or in other words a vector space
over k. We will need the following properties of the tensor product in this scenario:

Lemma 4.26. Let k be a field with characteristic 0 and let G be a finitely generated
Abelian group. Then
(]) Gok krank(G)
(2) For any subgroup K < G we have (G/K) @k = (G®k)/(K @ k).
(3) Let A be a ring with an ideal J and suppose G is also an A-module. Then
JGRk=J(G®Kk).

Lemma 4.27. Let A be a ring, J an ideal in A, and let M be both an A-module
and vector space over some field k. Let M[J] denote the elements of M annihilated
by J. The dual space of M is is naturally an A-module as well and

M"»)JM" = M[J"
as A-modules. The isomorphism is given by the restriction map ¢+ JM”" = @|p1)-
All of this allows us to prove the following two results:
Proposition 4.28. Let f be a newform and let
Vi = span({f° : o is an embedding of Ky into C}) C S(To(Ny))
and Ay be the restriction of Hi(Xo(Ny),Z) to Vy. Then
Ap =V /Ay.

Proof. Here and through the rest of this section let So = Sa(T'o(Ny) and let Hy =
Hy1(X(To(N),Z). Let m be the projection map from S5 to 85 /1;S3'. Then

Ap = (S5 /H1)/I;(S3 /Hy) = (S5 /1785) /m(Hy)

(for this last equivalence one can check that (¢ + Hq)+17(S5/Hy) — (¢ +1;S5) +
m(Hy) is an isomorphism). We then apply the isomorphism from Lemma 4.27 to
take S5 /IS5 to Sally]". Each m(p) = ¢ + 1S3 € m(Hy) gets mapped to ¢|s,1,1,
so the combination of 7w and this isomorphism simply restricts each function in Hy,
sending H; to Hl‘Sz[If]' Thus

Ay = S[I4]"/Hils, 1y
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so it suffices to show that Sy[I] = V. In other words, the forms annihilated by Iy
are exactly f and its conjugates (and their sums).

For any embedding ¢ : Ky — C we want to show that f° is annihilated by
If. Let T € Iy, ie. A\f(T) = 0. Then T is some Z-linear sum of products of the
operators T,, which sends f to 0. In other words, by Proposition 4.23, it is a Z-
linear sum of products of Fourier coefficients of f which equals 0. Then T'(f7) is this
same Z-linear sum of products of the coefficients o(a,). Since o is an embedding,
it factors through products, sums, and multiplication by integers, so we get

T(f7) = o(As(T)f7 = a(0)f7 = 0.

This shows that Vy C Ss[If]. To show equality, it now suffices to show that
dim(S, [If]) < dim(Vf).

By Proposition 4.23, we know that the image of Ay : Tz — C is precisely Z[{ax, }]
and so

Zl{an}] = Tz /1.

By Corollary 4.11, we can consider Tz as a ring of endomorphisms of H;. By
Proposition 3.9 we know that H; has finite rank over Z, and therefore so does its
ring of endomorphisms, of which Ty is a subring. Thus Z[{a,}] has finite rank,
and so K has finite degree over Q. In the language of algebraic number theory,
it is a number field. It is a fact from algebraic number theory that the number
of embeddings of a number field Ky into C is [K; : Q]. The newforms f7 are all
linearly independent so

dim(Vy) = [Ky : Q] = rank(Tz/Iy).

Now consider the surjection from Tz ® C to T¢ given by
ZUl X z; — ZZiUi
i i

which is well-defined by the basic properties of the tensor product. The image of
I+ ® C are elements of the form ), z;U; for U; € Iy, which is

Zlel = Z(ZZTI)UZ = Z UZ(ZZTl) S IfT@.
Thus the image of Iy ® C is a subgroup of I;T¢, so the induced map from (Tz ®
C)/(Iy ®C) to Tc/I;Tc is also a surjection. By Lemma 4.25,
dim(Ss[1]) = dim(85 /1,85 = dim(Tc/I,Tc)
and then using the above surjection and the properties from Lemma 4.26,
dim(Te/I;Te) < dim((Tz @ C)/(I; © C))
=dim(Tz/I; ® C)
= rank(Tz/Iy)
= [K;:Q
and so indeed dim(S2[If]) < dim(Vy), and this completes the proof. O

Proposition 4.29. Ay is a lattice in V.
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Proof. Since Vf/\ is a finite dimensional vector space over R and Ay is a finitely
generated ring over Z, to show that Ay is a lattice, it suffices to show that a
minimal set of generators for Ay is also a basis for VfA. It in turn suffices to show
that the R-span of Ay is V" and that rank(Ay) < dimg (V).
Since Vy C Sy, the restriction map p : S5 — VfA is a surjection. Using the fact
that we already know H; is a lattice, we have
RAj =RHilv, = Rp(Hy) = p(RH:) = p(Sy') = V.

To show that rank(H;) < dim(V}"), first consider the linear map from H,/I;H; to
Ay sending ¢ + I H; to <p|Vf. To show this map is well-defined, we have to show
that for any ¢ € IyHy, ¢|v, = p(p) is zero on V. Given T' € Iy and ¢ € Hy, let T
be a basis element of I;H;. Then for every f € V; = Sy[Iy] (see previous proof)
we have T'(f) =0 and so To(f) = (¢ o T)(f) = ¢(0) = 0, as desired. Furthermore

Aj=p(H1) = Ay = H,/ker(pl,) = Hy/(ker(p) 0 Hy).

We just showed that IyH, C ker(p), and by definition Iy H, C Hi, so the map
from Hy/IyH; to Hy/(ker(p) N Hy) = Ay is a surjection. Using this surjection and
Lemma 4.26 we have
rank(Ay) < rank(H,/I;Hy)

= dimR(Hl/Ile ® R)

= dimR((Hl &® R)/If(Hl ® R))
Since H; is a free and finitely generated Z-module (by Proposition 3.9), the surjec-
tion from Hq ® R to S5 sending >, ¢; ® #; to >, x;; is an isomorphism. To see
this, let ¢1, . . ., ¢q be minimal set of generators for Hy, which is also a basis for S5'.
By collecting like terms we can write any element of H; ® R as 2?21 w; @ x;, which
is in bijection with arbitrary elements of S2* which can be written E?:l x;p;. Thus

dimg((H; ® R)/I;(Hy ® R)) = dimp(85/1;S}) = dimp(S2[I4]") = dimg(V})
and this completes the proof. (]

The above two results combine to show that A is a complex torus, as desired.
4.6. The Modularity Theorem.

Theorem 4.30 (Modularity Theorem, Version III). For every complex elliptic
curve E with j(E) € Q, there is some N € N and a newform f € Sa(Lo(N)) such
that there exists a surjective holomorphic homomorphism of complex tori from Ag
to E.

To show that version (IIT) is equivalent to version (II) (and so also version (I)),
we need some preliminary results:

Proposition 4.31. Let C9/A, and C" /Ay, be complex tori. A surjective holomor-
phic homomorphism ¢ : CI/Ay — Ch /Ay, is called an isogeny if it has finite kernel.
If such an isogeny exists, then there also exists an isogeny in the other direction,
@ :CM/Ap — CI/A,.

Proof (sketch). Using Lemma 3.13 we can show that such an isogeny can only exist
if h = ¢, and then

pz+Ag) =Mz+ Ay
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where M is an invertible g x g matrix such that M A, C Aj. This means that
there exists some basis {w1,...,was} of Aj, and non-zero integers nq,...,nyy such
that {niw1,...,nogway} is a basis for MA,. Thus (nins...nge)Ap C MA, and in
particular

(n1n2 R ngg)M_lAh C Ag
so the matrix (ninz...ngy)M ! gives the isogeny in the reverse direction. O

Proposition 4.32. Let f,g be newforms of the same level. If there exists an
embedding o : Ky < C such that f7 = g, then there exists an embedding o’ : Ky —

C such that f = ga/, and so conjugation by embeddings in an equivalence relation
on newforms. Furthermore, in this case Ay = Ag.

Proof. To find ¢/, we restrict the codomain of ¢ to its image and take the inverse.
In Proposition 4.28 we showed that ¢ annihilates f” = g, so Iy C I,. Applying the
same logic to g and ¢’ shows the other inclusion, so Iy = I, and indeed Ay = 4,. O

Recall our unproven assertion that the newforms of level N form a basis for the
subspace of newforms of level N. This result can be further extended to all of

Sk(To(N)):

Proposition 4.33. Let N € N. For alln € N let a,, = [29]. Then
{flanlk : f is a newform of level M and nM|N}

is a basis of Sp(T'o(N)).

Proof (sketch). Taking as given that the newforms of level M form a basis for
Sk (To(M))"¥, the fact that this set spans S, (I'o(N)) follows almost immediately
from the definition of oldforms in Definition 4.17. We omit the proof that these
forms are linearly independent, although the fact that they span and so contain a
basis is sufficient to prove a weakened version of the following theorem which still
shows the equivalence of versions (IT) and (III) of the modularity theorem. O

Theorem 4.34. Let [f] denote an equivalence class of newforms from the previous
proposition, and let d : N — N be the number of divisors function. Then there is

an isogeny
d(N/M)
- @ P4
MIN (]

where the second direct sum is over equivalence classes of newforms of level M.

Proof. Throughout this proof we will write @ to mean @ @
MIN [f]
We can rewrite the basis from Proposition 4.33 as

(4:35) U U U fed= UUUUs el

M |N newforms f n|N/M M|N [f] n o
of level M

where the second union is over equivalence classes of newforms of level M, the third
over divisors of N/M, and the last over embeddings of K into C. We now define
an explicit isomorphism

(4.36) v PV s,
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The space V; has basis {f? : o is an embedding from K; to C}. On the left hand
side of (4.36), if [f] is an equivalence class of newforms of level M then we have
one copy of Vy for each divisor n of N/M. Thus we send f” in the copy of V¢
corresponding to n to f7[ay]s, a basis element from (4.35). Linearly extending this
one to one mapping of bases, we get an isomorphism.

Restricting ¥ to a particular copy of Vy, we get W[y, = [ay]z where n is some
divisor of N/M for M the level of f. Thus the dual of ¥ is the direct product of
the dual of these operators:

=TT TT fools 88— @)
M|N n|N/M

We showed in Proposition 4.10 that the maps [a,]5 take integration over loops to
integration over loops, so each map takes H; into H; restricted to Vi, ie. Ay.
Piecing these functions together, we have

U (HY) @ Ad(M/N
Thus ¥” descends to a surjection

(4.37)  Sy/H; — (@(V/\ d(M/N)) (@ Ad(M/N)) @(Vf/\/Af)d(M/N).

To show this is an isogeny, we have to show that it has finite kernel, which is equiv-
alent to saying ¥/ (H;) has finite index in @ Ad(M/ M) Since they are both finitely
generated Abelian groups, it suffices to show that they have the same rank. By
Proposition 4.29 we know that rank(A ) = dimg(V}"). Since ¥” is an isomorphism
it preserves dimension and rank, so

rank(U"(H;)) = rank(H,;) = dimg(S5) = dimg (EB(VA)M/M))

= Zd N/M) dimg (V})

M|N |

=3 Zd N/M)rank(A )

M|N |

= rank (@ A?(M/N))

Thus the surjection in (4.37) is indeed an isogeny, and applying the definition of
the Jacobian and Proposition 4.28 we immediately get an isogeny

To(N) — @ Ad(N/M
as desired. O

Proposition 4.38. Versions (II) and (III) of the modularity theorem are equiva-
lent.

Proof. Suppose version (III), so there is some N € N and a newform f € So(T'o(V))
such that there exists a surjective holomorphic homomorphism from Ay to £. Com-
posing with the map from Theorem 4.34, and sending all varieties other than Ay
to zero, we get a surjective holomorphic homomorphism

— @ EBA?(N/M) —F

MIN [f]



36 DESMOND SAUNDERS

(or we can replace Jo(N) with Jo(K) for any K such that N|K). This is the map
conjectured by version (II).

Now suppose version (II), so there is some N € N such that there exists a
surjective holomorphic homomorphism from Jo(N) to E. Let

p: @ @A?(N/M) — Jo(N)

MIN [f]

be the isogeny in the reverse direction (which we know exists from Proposition 4.32).
For each Ay in the direct sum, ¢|4, is a holomorphic homomorphism of compact
Riemann surfaces, so it must either be surjective or constant. If all these restrictions
were constant, then ¢ could not be surjective, a contradiction. So there must exist
some newform f of level M (where M|N) such that |4, surjects Ay onto Jo(V),
and then the map from version (II) surjects Jo(IN) onto E. O
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