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Abstract. This paper offers an overview of the Optimal Stopping Theorem
and the conditional probability that is necessary to prove and understand it.
We first give an overview of the measure theoretic definition of conditional
probability as well as its important properties. Then martingales are defined
and their important properties noted. Then, stopping times are explained.
The proof of the optimal stopping theorem starts with the finite horizon case,
proved using the optional stopping theorem. Then two examples of applica-
tions are detailed. Finally, the infinite case is treated and proved, with an
example given as well.
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1. Introduction

This paper introduces the optimal stopping theorem, the intuition behind it,
its proof, and some of its applications. An understanding of basic measure the-
oretic probability including random variables, distributions, expectation, and in-
dependence is assumed, but measure theoretic conditional expectation is treated
thoroughly in the paper.

The optimal stopping theorem comes into play in situations where we are ob-
serving a process occurring over times {1, . . . N} (finite horizon) or {1, 2, . . .}
(general), and we receive a reward (or incur a cost) whose distribution is modeled
by a random variable Xn that depends on the time n that we stopped at. The op-
timal stopping theorem helps us find a stopping rule that can tell us when to stop
the process in order to maximize the expected reward (or minimize the expected
cost). Critically, in order to be useful in applications, the stopping rule that comes
from this theorem only relies on information occurring before the stop, mirroring
the real life observation of processes.
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Section 2 gives a general definition of the measure theoretic definition of condi-
tional probability, and details its important properties that are necessary to under-
stand or prove the optimal stopping theorem. The main reason that conditional
expectation is necessary, is because it allows us to define and work with martingales
in section 3.

Martingales are sequences of random variables such that the best approximation
of a random variable later on in the sequence conditioned on the information known
up to a time n in the sequence is just the nth random variable in the sequence.
This concept allows us to mathematically represent the situations that the optimal
stopping theorem applies to where we want to extrapolate information about the
future based on what we know up to the present moment.

In section 4, we define and examine relevant properties of stopping times. Stop-
ping times are the object we seek to solve for in optimal stopping problems, as they
are defined as random variables T taking values in {1, 2, . . ., } such that for some
increasing sequence of σ-algebras {Fn}∞n=1, {T = n} is Fn measurable, meaning
that if the variable tells you to stop at time n, it only needed information up to
time n which is exactly the situation of the optimal stopping theorem.

Section 5 lays out the proof of the optimal stopping theorem for finite horizon
problems using all the details so far. This proof requires the optional stopping
theorem which is also proved. This theorem has applications and implications of
its own, although they are not the subject of this paper. Additionally, section 5
includes two examples of problems that can be solved by the finite horizon optimal
stopping theorem.

The paper ends in section 6 with a treatment of the general optimal stopping
theorem that can be applied to non finite horizon problems. This new version of
the theorem is proved in depth. Then an outline of an example and its solution is
provided.

The following is probability notation that is used throughout the paper:

• (Ω,F ,P) for a probability space, its sigma algebra, and the measure defined
on it.

• E(X;A) = E(X · χA)
• P(A) = E(χA)
• {X ∈ A} = {ω | X(ω) ∈ A}
• For random variables X and Y , E(Y |X) = E(Y |σ(X))

2. Conditional expectation

In discrete probability, the conditional probability of an event A given an event
B of nonzero probability is simple:

P(A|B) =
P(A ∩B)

P(B)
.

However, in measure theoretic probability, we are often dealing with events of
probability zero, so we must we must generalize the idea of conditional expectation
beyond this simple definition. This is done by conditioning a random variable on
a σ-algebra rather than on a single event. The outcome of this generalized form of
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conditional probability is a random variable rather than a number. We now define
such a conception of conditional probability.

Definition 2.1. For a probability space (Ω,F ,P), and a real-valued random vari-
able X defined on this probability space such that E|X| is finite, the conditional
expectation of X with respect to the σ-algebra G is a G measurable random variable
Y such that for every A ∈ G,

E(X;A) = E(Y ;A)

The following proposition demonstrates why this definition makes sense:

Proposition 2.2. For X defined as above and for a σ-algebra G there exists a Y
such that

Y = E(X|G).
Moreover, this Y is unique up to sets of measure zero.

The full proof of this statement can be found in Chatterjee [1] on pages 93-95.
Intuitively, we can interpret this definition of conditional expectation as the

closest approximation of X that is G-measurable, i.e. the closest approximation of
X when we are restricted to the information contained in the σ-algebra G. This
becomes helpful for the optimal stopping theorem where we are trying to decide
when to stop based on the information that has occurred up to that point in time;
conditional expectation is used to condition on the information that is available at
the moment that one must decide whether to stop.

The following proposition gives an interesting relationship between traditional
conditional expectation and the measure theoretic definition.

Proposition 2.3. Let A and B be any events such that P(B) > 0. Define G =
{B,BC ,Ω, ∅}. Then

P(A|G) = P(A ∩B)

P(B)
· χB +

P(A ∩BC)

P(BC)
· χBC

almost surely.

Proof. Since we have almost sure uniqueness of conditional expectation, we just
need to show that for

Y :=
P(A ∩B)

P(B)
· χB +

P(A ∩BC)

P(BC)
· χBC

we have
E(Y ;B) = E(χA;B) and E(Y ;BC) = E(X;BC).

Starting with B, we have

E(Y ;B) = E
󰀕
χB

󰀕
P(A ∩B)

P(B)
· χB +

P(A ∩BC)

P(BC)
· χBC

󰀖󰀖

= E
󰀕
P(A ∩B)

P(B)
· χB

󰀖

=
P(A ∩B)

P(B)
· E(χB)

= P(A ∩B)

= E(χAχB)

= P(A;B).
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Replacing B with BC we see that it holds for BC .. □

We now list some important properties about conditional expectation without
proof. All proofs can be found in Chatterjee [1] on pages 96-97. In all of the
following statements, X is a real-valued random variable defined on (Ω,F ,P) with
E(X) finite.

Proposition 2.4. Conditional expectation is linear.

Proposition 2.5. Nonnegativity is preserved by conditional expectation.

Corollary 2.6. Conditional expectation is monotone i.e. if X ≤ Y then for any
σ-algebra G,

E(X|G) ≤ E(Y |G)

Proposition 2.7. If X is independent of a σ-algebra then

E(X|G) = E(X)

almost surely and if X is G measurable then

E(X|G) = X

almost surely.

Proposition 2.8. If for a σ-algebra G, Y is G measurable and X and XY are
integrable then

E(XY |G) = Y E(X|G)
almost surely.

Proposition 2.9. The tower property states that for any σ-algebras G′ ⊂ G,
E(X|G′) = E(E(X|G)|G′)

All of these properties will be used to prove the optimal stopping theorem.

3. Martingales, submartingales, and supermartingales

Definition 3.1. For a probability space (Ω,F ,P), a filtration is a sequence of
σ-algebras {Fn}∞n=0 such that

F0 ⊂ F1 ⊂ F2,⊂ . . .

and each Fn ⊂ F . A sequence of random variables {Xn}∞n=0 is adapted to a
filtration if for each n, Xn is Fn measurable. A martingale is an adapted sequence
of random variables {Xn}∞n=0 such that for each n,

E(Xn+1|Fn) = Xn

almost surely.

Based on the intuitive idea of conditional expectation defined in section 2, a
martingale is a sequence of random variables such that, at any given time n, the
best approximation of the next random variable in the sequence, with only the
information provided by the random variables up to time n, is just the nth variable
in the sequence.

Below is a simple yet important property of martingales, that is a result of the
tower property of conditional expectation:
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Proposition 3.2. By the tower property of conditional expectation, for a martin-
gale {Xn}∞n=1 adapted to a filtration {Fn}∞n=0,

E(Xn|Fm) = Xm

almost surely for all n ≥ m.

Submartingales and supermartingales are used in the proof of the optimal stop-
ping theorem, so we define them here.

Definition 3.3. Consider a filtration {Fn}∞n=0 and a sequence of random variables
{Xn}∞n=0 adapted to this filtration. {Xn}∞n=0 is a submartingale if for each n

Xn ≤ E(Xn+1)|Fn)

and it is a supermartingale if for each n

Xn ≥ E(Xn+1)|Fn)

4. Stopping times

Definition 4.1. A random variable T is a stopping time for a filtration if it takes
values in {0, 1, 2, . . .}∪{∞} and for each n < ∞, the set {T = n} is Fn measurable.

Intuitively, this means that stopping times can tell us when to stop based only
on information that we possess before we have to stop.

From any stopping time T we get a σ-algebra FT and a random variable XT

that is FT measurable defined as follows:

Definition 4.2. Let T be a stopping time. Then the σ-algebra FT is defined as

FT = {A ∈ F|A ∩ {T = n} ∈ Fn ∀ n}

The intuition behind this definition is that events are in FT if whether or not
they occur can be determined using only information up to time T .

Definition 4.3. For any ω ∈ Ω, the stopped random variable XT is defined as

XT (ω) := XT (ω)(ω)

FT and XT both play important roles in the proofs of the optimal and optional
stopping theorems.

Proposition 4.4. For any stopping time T , XT is FT measurable.

Proof. Let B ∈ R be measurable. Then

X−1
T (B) ∩ {T = n} = X−1

n (B) ∈ Fn

so that X−1
T (B) ∈ FT . Thus, XT is FT measurable. □

Proposition 4.5. Let S and T be stopping times such that S ≤ T . Then

FS ⊂ FT

Proof. Let A ∈ FS . Then, since S ≤ T , for all n,

A ∩ {T = n} = A ∩ {S ≤ n} ∩ {T = n}.
Since A ∈ FS , A ∩ {S ≤ n} ∈ Fn. Then, since {T = n} ∈ Fn, A ∩ {T = n} ∈ Fn

which completes the proof. □
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It is often helpful for stopping times to be bounded (for example, it is a necessary
condition of the optional stopping theorem which will be used to prove the main
theorem of this paper). The following technique allows us to construct a bounded
stopping time out of an unbounded stopping time. For a stopping time T for a
filtration {Fn}∞n=0, fix any n ≥ 0. We define T ∧ n by

T ∧ n(ω) := min{T (ω), n}.
To prove that T ∧ n is a stopping time, consider that for any k ≥ 0

{T ∧ n > k} =

󰀫
{T > k} if n > k

∅ if n ≤ k
.

For all j < k, {T = j} ∈ Fj ⊂ Fk so that

{T > k} =

k−1󰁞

j=0

{T = j} ∈ Fk.

Furthermore, ∅ ∈ Fk. Thus, {T ∧ n > k} ∈ Fk. But, by the same reasoning,
{T ∧ n > k − 1} ∈ Fk−1 ⊂ Fk. Then

{T ∧ n = k} = {T ∧ n > k − 1} ∩ {T ∧ n ≤ k}
= {T ∧ n > k − 1} ∩ {T ∧ n > k}C ∈ Fk

so that T ∧n is a stopping time. With these definitions and basic properties out of
the way, we are ready to move on to proving one of our major theorems.

5. Finite horizon optimal stopping theorem

We begin this section with the optional stopping theorem, a related result to
the optimal stopping theorem that has applications of its own, but which we will
be using in our proof. Intuitively, this theorem says that in a “fair” process (i.e.
one with martingales), the expected outcome cannot be changed by stopping at a
particular time.

Theorem 5.1. Let {Xn}∞n=0 be a martingale adapted to {Fn}∞n=0 and S and T
be bounded stopping times for {Fn}∞n=0 such that S ≤ T . Then XS and XT are
integrable and

E(XT |FS) = XS .

In particular, we can set S = 0 and see that for any bounded stopping time T ,

E(XT ) = E(X0).

Proof. Since S and T are bounded, there exists n ≥ 0 such that

S ≤ T ≤ n.

Then for all ω ∈ Ω, there exists 0 ≤ i ≤ n such that XT (ω) = Xi(ω). Then for all
ω ∈ Ω,

|XT (ω)| ≤
∞󰁛

i=0

|Xi(ω)|

so that |XT | is bounded by
󰁓∞

i=0 |Xi| and thusXT is integrable. A similar argument
shows that XS is integrable.
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Consider A ∈ FS . Since T ∈ {0, . . ., n}, A =
󰁖n

i=1{T = i} ∩A. Then

E(Xn;A) =

n󰁛

i=0

E(Xn; {T = i} ∩A).

Since A ∈ FS ⊂ FT , A ∈ FT so that, by the definition of FT , {T = i} ∩ A ∈ Fi.
Furthermore, since {Xi}∞i=0 is a martingale, by Proposition 3.2, E(Xn|Fi) = Xi for
all i ≤ n. Thus, by the definition of conditional probability,

E(Xn;A) =

n󰁛

i=0

E(Xn; {T = i} ∩A)

=

n󰁛

i=0

E(E(Xn|Fi); {T = i} ∩A)

=

n󰁛

i=0

E(Xi; {T = i} ∩A)

= E(XT ;A).

Replacing all T with S we get that E(Xn;A) = E(XS ;A) for all A ∈ FS so that
E(XT ;A) = E(XS ;A). Therefore, since by Proposition 4.4, XS is FS measurable,

E(XT |FS) = XS .

□
Applying similar reasoning for a supermartingale, we get that E(XT |FS) ≤ XS

almost surely [1].
We now state and prove a lemma about martingales that will prove important in

the optimal stopping theorem proof. A similar statement holds for submartingales
and supermartingales, but it is not necessary for our proof.

Lemma 5.2. Let {Xn}∞n=0 be a sequence of integrable random variables adapted to
the filtration {Fn}∞n=0 and let T be a stopping time for this filtration. Assume that
for all n, E(Xn+1|Fn) = Xn almost surely on the set {T > n}. Then {XT∧n}∞n=0

is a martingale adapted to {Fn}∞n=0.

Proof. Let n ≥ 0. Since T ∧n ≤ n, by Proposition 4.5 FT∧n ⊂ Fn. By Proposition
4.4, XT∧n is FT∧n measurable, so it is Fn measurable.

A similar argument to that in the proof of the optional stopping theorem shows
that |XT∧n| ≤

󰁓n
i=0 |Xi| so that Xt∧n is integrable.

Since Ω =
󰁖n

i=0{T = i} ∪ {T > n},

E(XT∧(n+1)|Fn) =

n󰁛

i=1

E(XT∧(n+1)χ{T=i}|Fn) + E(XT∧(n+1)χ{T>n}|Fn)

=

n󰁛

i=1

E(Xiχ{T=i}|Fn) + E(Xn+1χ{T>n}|Fn)

For i < n, Fi ⊂ Fn so Xi is Fn measurable. Since {T = i} ∈ Fi ⊂ Fn, χ{T=i}
is Fn measurable. Furthermore, {T > n} ∈ Fn so that χ{T>n} is Fn measurable.
Thus, by Propositions 2.7 and 2.8,

E(XT∧(n+1)|Fn) =

n󰁛

i=0

Xiχ{T=i} + χ{T>n}E(Xn+1|Fn)
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But
n󰁛

i=0

Xiχ{T−i} = XTχ{T≤n}

and by assumption,

χ{T>n}E(Xn+1|Fn) = χ{T>n}Xn

so that

E(XT∧(n+1)|Fn) = XTχ{T≤n} +Xnχ{T>n} = XT∧n

which completes the proof. □

We now move to the optimal stopping theorem. This theorem gives us a stopping
time T for a filtration {Fn}Nn=1 and a sequence of integrable random variables
{Xn}Nn=1 such that E(XT ) is maximized. In applications, this can be used to
execute a decision on when to stop a process that is providing some outcome,
signified by the Xn’s, in order to maximize the expected value of the outcome when
you stop.

We will now derive such a stopping time, and then state and prove the theorem
that this stopping time actually maximizes E(XT ). We will be working over a
probability space (Ω,F ,P) with a sequence of integrable random variables {Xn}∞n=1.
Define Yn := E(Xn|Fn) for the filtration {Fn}∞n=1.

Lemma 5.3. Let T be a stopping time in {1, . . ., N} for {Fn}Nn=1. Then

E(XT ) = E(YT ).

Proof. Since {T = n} ∈ Fn, for each n, E(Yn; {T = n}) = E(Xn; {T = n}). Thus,

E(YT ) =

N󰁛

n=1

E(Xn; {T = n}) = E(XT )

which completes the proof. □

We now define what is called the Snell envelope of Y1, . . ., YN via backwards
induction. Define VN := YN and then for each n < N ,

Vn := max{Yn,E(Vn+1|Fn)}.

Then Vn is a supermartingale adapted to {Fn}Nn=1 and Vn ≥ Yn almost surely for
every n. Vn is actually the smallest supermartingale with this property, but we will
not prove or use that statement in this paper.

We now define τ which is the stopping time that will maximize E(Xτ ) as

τ := min{n : Vn = Yn}.

Since VN = YN , τ ≤ N . Since

{τ = n} = {Yn = Vn} ∩ {Yk ∕= Vk∀k < n}

which is the intersection of Fn measurable sets, {τ = n} is Fn measurable and
τ is a stopping time for {Fn}Nn=1. We now state and prove the optimal stopping
theorem.

Theorem 5.4. The finite horizon optimal stopping theorem states that the stopping
time τ as defined above maximizes E(Xτ ) with respect to all other stopping times
for the filtration {Fn}Nn=1, and this maximum value is equal to E(V1).
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Proof. Let T be a stopping time for the filtration {Fn}Nn=1. When n < τ , Vn ∕=
Yn by definition of τ so Vn = E(Vn+1|Fn). Then by lemma 5.2, {Vτ∧n}Nn=1 is a
martingale adapted to {Fn}Nn=1. Then

E(Yτ ) = E(Vτ ) = E(Vτ∧n) = E(Vτ∧1) = E(V1)

where the first equality is by definition of τ , the second equality is because τ ≤ N
so that τ ∧N = τ , the third equality is by the Theorem 5.1, and the last equality
is because 1 ≤ τ so that τ ∧ 1 = 1. Then, by the optional stopping theorem for
supermartingales and the definition of VT ,

E(Xτ ) = E(Yτ ) = E(V1) ≥ E(VT ) ≥ E(YT ) = E(XT )

□

We now detail two examples of applications of the finite horizon optimal stopping
theorem.

Example 5.5. Suppose you are seeking an employee to fill a job opening. You
have N candidates to interview, and you must offer the position to a candidate
immediately following their interview; if you do not offer them the job immediately,
you may not go back and offer it to them later. When should you stop interviewing
candidates? This theorem can help make that decision so that you don’t hire too
early, and miss better candidates later, or hire too late, and leave behind good
candidates in the early round.

Start with some N ≥ 2 number of candidates and denote the rank of the ith

candidate among the first n candidates by rni . Denote rNi by ri. We will assume that
r1, . . ., rn is uniformly distributed over the set of permutations of {1, . . ., N}. Then
for each n ≤ N , rn1 , . . ., r

n
n is uniformly distributed over the set of permutations of

1, . . .n.
At time n, the only information the interviewer has is rn1 , . . ., r

n
n. Thus, let Fn be

the σ-algebra generated by the vector-valued random variable rn := (rn1 , . . ., r
n
n).

Clearly F1 ⊂ F2 ⊂ . . . ⊂ FN . We want τ to maximize P(rτ = 1) so we want to
define {Xn}nn=1 such that maximizing E(Xτ ) also maximizes P(Xτ ). Thus, define

Xn := χ{rn=1}

so that E(Xn) = P(rn = 1).

Step 1: Computing {Yn}Nn=1 as defined in the proof of Theorem 5.4, that is

Yn := E(Xn|Fn).

Since Xn = χ{rn=1}, E(Xn|Fn) = P(rn = 1|Fn). If rnn ∕= 1 then rn ∕= 1 so we only
need to consider rnn = 1. If this is the case, then rn1 , . . .r

n
n−1 form a permutation

of 2, . . ., n− 1, denoted by rn1 = σ1, . . ., r
n−1
n−1 = σn−1. We want to compute

P(rn = 1|rn1 = σ1, . . ., r
n
n−1 = σn−1, r

n
n = 1).

If rn = 1 then rnn = 1 so that

P(rn1 = σ1, . . ., r
n
n−1 = σn−1, r

n
n = 1|rn = 1) = P(rn1 = σ1, . . ., r

n
n−1 = σn−1)

=
1

(n− 1)!
.
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This allows us to use Bayes’ rule to compute the conditional probability we actually
want as follows:

P(rn = 1|rn1 = σ1, . . ., r
n
n−1 = σn−1, r

n
n = 1) =

P(rn1 = σ1, . . ., r
n
n−1 = σn−1, r

n
n = 1|rn = 1)P(rn = 1)

P(rn1 = σ1, . . ., rnn−1 = σn−1, rnn = 1)

=

1
(n−1)!

1
N

1
n!

=
n

N

.

Thus, by Proposition 2.3,

Yn = E(Xn|Fn) = P(rn = 1|Fn) =
n

N
χ{rnn=1}.

Step 2: Calculating Vn’s. Let the Vn’s be defined as in the proof of the optimal
stopping theorem. In order to calculate Vn, it is helpful to show that for each
2 ≤ n ≤ N , Yn is independent of Fn−1. To prove this, it suffices to show that
P(Yn = n

N |Fn−1) = P(rnn = 1|Fn) is nonrandom (i.e. a fixed constant). Using a
similar strategy as above, we can see that

P(rnn = 1|Fn−1) = P(rnn = 1|rn−1
1 = σ1, . . ., r

n−1
n−1 = σn−1)

=
P(rnn = 1, rn−1

1 = σ1, . . ., r
n−1
n−1 = σn−1)

P(rn−1
1 = σ1, . . ., r

n−1
n−1 = σn−1)

=
P(rnn = 1, rn1 = σ1 + 1, . . ., rnn−1 = σn−1 + 1)

P(rn−1
1 = σ1, . . ., r

n−1
n−1 = σn−1)

=
1
n!
1

(n−1)!

=
1

n

Thus, E(Yn = n
N |Fn) =

1
n and Yn is independent from Fn−1.

We now want to use this to show that for each 1 ≤ n ≤ N − 1, E(Vn+1|Fn)
is equal to a nonrandom quantity, which we will denote by vNn . We proceed by
backwards induction. Since VN = YN , the claim holds for n = N +1. Furthermore,
vNN−1 = 1

N . Assume the claim holds for some 1 ≤ n ≤ N − 1. Then

E(Vn|Fn−1) = E(max{Yn,E(Vn+1|Fn)}|Fn−1)

= E(max{Yn, v
N
n }|Fn−1).

Since vNn is nonrandom, it is independent of Fn−1, and so is Yn. Thus, max{Yn, v
N
n }

is independent of Fn−1 so that E(Vn|Fn−1) = E(max{Yn, v
N
n }|Fn−1) is nonrandom.

This gives us nonrandom quantities vN1 , . . ., vNN−1 such that

vNn = E(Vn+1|Fn).

As shown above, vNN−1 = 1
N and for every n < N−1, since vNn−1 = E(max{Yn, v

N
n }),

we have that

vN1 ≥ . . . ≥ vNN−1 =
1

N
.

Define
tN := min{n ≤ N | vNn ≤ n

N
}
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which exists because vNN−1 = 1
N ≤ N−1

N . Then for n < tN ,

vNn ≥ vNtN−1 >
tN − 1

N
>

n

N

and for tN ≤ n,

vNn ≤ vNtN ≤ n

N
.

This implies that for n < tN , since vNn > n
N ≥ Yn,

vNn−1 = E(max{Yn, v
N
n }|Fn−1) = E(vNn |Fn−1) = E(vNn ) = vNn .

Furthermore, for tN ≤ n ≤ N − 1,

vNn−1 = E(max{Yn, v
N
n }|Fn−1)

=
n

N
P(Yn =

n

N
) + vNn P(Yn = 0)

=
1

N
+ vNn (1− 1

n
)

We will now use this information to show via backwards induction that for
tN − 1 ≤ n ≤ N − 1,

vNn =
1

N
+

n

N

N−1󰁛

k=n+1

1

k
.

Clearly this holds for N − 1. Assume this holds for some n. Then

vNn−1 =
1

N
+ vNn (1− 1

n
)

=
1

N
+

󰀣
1

N
+

n

N

N−1󰁛

k=n+1

1

k

󰀤
(1− 1

n
)

=
1

N
+

1

N
− 1

nN
+

n− 1

N

N−1󰁛

k=n+1

1

k

=
1

N
+

n− 1

N

󰀕
1

n

󰀖
+

n− 1

N

N−1󰁛

k=n+1

1

k

=
1

N
+

n− 1

N

N−1󰁛

k=n

1

k
.

Thus, tN can be explicitly defined as the unique integer n ∈ {1, . . ., N − 1} such
that

1

N
+

n− 1

N

N󰁛

k=n

1

k
>

n

N
≥ 1

N
+

n

N

N−1󰁛

k=n+1

1

k
.

For all n < tN ,
n

N
< vNn = E(Vn+1|Fn)

but

Vn = max{Yn,E(Vn+1|Fn)} ≥ E(Vn+1|Fn) >
n

N
≥ Yn

so that Vn ∕= Yn for all n < tN .
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For n ≥ tN , if rnn = 1 then Yn = n
N . Then, because Vn ≤ n

N ,

Vn = max{Yn,E(Vn+1|Fn)} = max{ n

N
,E(Vn+1|Fn)} =

n

N
.

Therefore, the optimal time to hire a candidate is the first candidate after the
t th
N candidate (where tN is just an integer that can be calculated for each N) who
is better than all candidates who came before them (i.e. rnn = 1).

Our next example deals with selling an asset.

Example 5.6. Suppose you possess an asset and are looking for the optimal time to
sell it. Let {Xn}Nn=1 be independently and identically distributed random variables,
and let Sn =

󰁓n
i=1 Xi represent the price of an asset on day n. Define Fn =

σ(X1, . . ., Xn). Let K > 0 represent the fee that the you must pay to sell the asset.
You may choose to never sell, represented as selling at day ∞. Consider stopping
times T in the set {1, . . ., N}∪ {∞} for the filtration {Fn}Nn=1. If you stop at time
T < ∞, you will receive a reward Sn −K and if you stop at time T = ∞ you will
receive a reward of 0.

In order to bypass the problem of working with an infinite stopping time, we
will rework the problem as follows. Define Yn := (Sn − K)+. Any time that an
asset’s price Sn is less than the fee K, it would be more advantageous for you to
never sell the asset, and incur no profit, than to sell the asset at a loss. Thus, we
can interpret all values of Sn −K that are less than 0 as simply 0 and adopt the
behavior that any time Sn − K evaluates to something less than 0, we don’t sell
the asset and incur zero profit. Once we obtain a stopping time T that maximizes
E((Sn −K)+), the optimal stopping time to maximize E(Sn −K) is

τ :=

󰀫
T if ST −K > 0

∞ if ST −K ≤ 0.

We will now define functions wn : R → R that define the optimal expected
reward with N steps left. Define w0(x) := (x−K)+ and for n > 0 define

wn(x) := max{(x−K)+,E(wn−1(x+X1))}.

Claim: wN−n is the Snell envelope (i.e. Vn as defined in the proof of Theorem 5.4)
of Yn.

Proof. Clearly

VN = (SN −K)+ = wN−N (SN ).

Assume that for some n, Vn+1 = wN−n−1(S+1). Then

Vn = max{Yn,E(Vn+1|Fn)}
= max{(Sn −K)+,E(wN−n−1(Sn+1)|Fn)}
= max{(Sn −K)+,E(wN−n−1(Sn +Xn+1)|Fn)}.

Because Sn is Fn measurable and Xn+1 is independent of Fn,

E(wN−n−1(Sn +Xn+1)|Fn) = E(wN−n−1(Sn +Xn+1)).

Additionally, because Xn+1 is identically distributed to X1,

E(wN−n−1(Sn +Xn+1)|Fn) = E(wN−n−1(Sn +X1)).
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Thus,
Vn = max{(Sn −K)+,E(wN−n−1(Sn +X1)}

= wn−N (Sn)

□

Thus, wn−N is the Snell envelope of Yn so that the stopping time that maximizes
E(Sn −K)+ is

T := min{n | (Sn −K)+ = wN−n(Sn)}.
Then

τ =

󰀫
T if YT > 0

∞ if YT ≤ 0
.

Since there are only N steps, we can manually calculate wN−n to find the actual
time to stop.

6. General optimal stopping theorem

There are many problems that the optimal stopping theorem can help solve
where the set of times that the process can be stopped at is not finite. Thus, it is
helpful to generalize the optimal stopping theorem beyond the finite horizon case.
We will now give an adjusted theorem with a few extra conditions that works in
the general case, as well as solve an example applying it. Assume we have reward
random variables {Xn}∞n=0 and a filtration {Fn}∞n=0.

We will show that the following two assumptions, which trivially hold in the
finite horizon example, do not hold in the general infinite case, but if they are
assumed to hold, we can construct an optimal stopping theorem around them:

• Assumption 1: E(supn∈N Xn) < ∞
• Assumption 2: lim supn→∞ Xn ≤ X∞

We first illustrate some examples demonstrating where one of these assumptions
does not hold and there is a problem choosing an optimal stopping time.

Example 6.1. First, an example where Assumption 1 fails.
Let {Zn}∞n=1 be Bernoulli random variables with probability parameter p. Define
X0 = 0 and

Xn := (2n − 1)

n󰁜

i=1

Zi.

Clearly lim supn→∞ Xn = 0 so that assumption 2 holds. For each k = 0, 1, 2, . . .,
supn∈N Xn = 2k − 1 with a probability of 1

2k+1 (since each Xk = 2k − 1 if and only

if Xi ∕= 0 for all i ≤ k which occurs with a probability of 1
2k+1 ). Thus

E(sup
n∈N

Xn) =

∞󰁛

k=0

2k − 1

2k+1
= ∞

and assumption 1 is not satisfied.
Assume that for some n, Xn has not had a failure at that time. ThenXn = 2n−1

but

E(Xn+1|Fn) =
1

2
(2n+1 − 1) > 2n − 1 = Xn

so that it is always optimal to continue. However, if we never stop, our outcome
will be 0. Thus, there is no stopping time that optimizes our expected return.



14 JULIA RYCHLIK

Example 6.2. Now, an example where Assumption 2 fails.
Define X0 = 0, Xn = 1− 1

n , and X∞ = 0. Then

E(sup
n∈N

Xn) = 1 < ∞

so that Assumption 1 is satisfied, but

lim sup
n→∞

Xn = 1 > 0 = X∞

so that Assumption 2 is not satisfied. And indeed, we cannot find an optimal
stopping rule because the longer we wait, the more our expected reward is increased,
but if we never stop, our reward is zero.

The above examples clearly show why, without these assumptions, we cannot
have an optimal stopping rule, and why the infinite case is more complicated. We
now begin to develop the proof of a general optimal stopping theorem that has the
additional constraints of Assumptions 1 and 2. But first, we must examine the idea
of regular stopping times.

Definition 6.3. A stopping time T for the filtration {F}∞n=0 is regular if

E(XT |Fn) > Xn

almost surely on the set {T > n}.

Intuitively, this means that whenever T says that you should not stop until after
n, the conditional expected return for stopping at T based on what has occurred
up to n is greater than if we had just stopped at n.

Lemma 6.4. Assume that Assumption 1 holds. Then for every stopping time for
the filtration {Fn}∞n=0, there exists a stopping time T̄ that is regular such that

E(XT ) = E(XT̄ ).

Proof. Define T̄ = min{n ≥ 0 | E(XT |Fn) ≤ Xn}. Clearly T̄ is a stopping time
such that T̄ ≤ T . On the set {T̄ = n}, we have E(XT |Fn) ≤ Xn almost surely and
on the set {T̄ = ∞} we have XT = XT̄ = X∞ since E(XT |Fn) > Xn for all n.
Then

E(YT̄ ) =

∞󰁛

n=0

E(χ{T̄=n}Xn)

≥
∞󰁛

n=0

E(χ{T̄=n}E(XT |Fn)) + E(χ{T̄=∞}X∞)

=

∞󰁛

n=0

E(χ{T̄=n}XT )

= E(XT )

Since conditional expectation is monotone, we have that E(XT̄ |Fn) ≥ E(XT |Fn)
almost surely. Then, since E(XT |Fn) > Xn almost surely on {T̄ > n} by definition
of T̄ , we have

E(XT̄ |Fn) ≥ E(XT |Fn) > Xn

on {T̄ > n}. Therefore, T̄ is regular. □
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Lemma 6.5. Suppose that Assumption 1 holds. If T and T̄ are regular stopping
times, then τ := max{T, T̄} is a regular stopping time and

E(Xτ ) ≥ max{E(XT ),E(XT̄ )}.

Proof. τ = T except on sets of the form {T − n} ∩ {T̄ > n} for some n in which
case

E(Xτ |Fn) = E(XT̄ |Fn)

almost surely. Thus,

E(Xτ ) =

∞󰁛

n=0

E(χ{T=n}Xτ )

=

∞󰁛

n=0

E(χ{T=n}E(Xτ |Fn))

=

∞󰁛

n=0

E(χ{T=n}∩{T̄>n}E(Xτ |Fn)) +

∞󰁛

n=0

E(χ{T=n}∩{T̄≤n}E(Xτ |Fn))

=

∞󰁛

n=0

E(χ{T=n}∩{T̄>n}E(XT̄ |Fn)) +

∞󰁛

n=0

E(χ{T=n}∩{T̄≤n}E(XT |Fn))

≥
∞󰁛

n=0

E(χ{T=n}∩{T̄>n}Xn) +

∞󰁛

n=0

E(χ{T=n}∩{T̄≤n}Xn)

=

∞󰁛

n=0

E(χ{T=n}Xn) = E(XT ).

Swapping T and T̄ gives us that E(Xτ ) ≥ E(XT̄ ). Therefore, E(Xτ ) ≥ max{E(XT ),E(XT̄ )}
We now show that τ is a regular stopping time. For any n, the set {τ > n} =

{T > n} ∪ {T̄ > n}. On the set {T > n} we can repeat the argument above but
conditioning the main expectation on Fn to see that

E(Xτ |Fn) ≥ E(XT |Fn) > Xn

by regularity of T . Similarly, replacing T with T̄ in the previous argument, we get
that

E(Xτ |Fn) ≥ E(XT̄ |Fn) > Xn

on {T̄ > n}. Thus, E(Xτ |Fn) > Xn on the set {τ > n}. □

We are now ready to prove the general optimal stopping theorem:

Theorem 6.6. Suppose assumptions 1 and 2 both hold. Then there exists a stop-
ping rule τ such that

E(Xτ ) = sup
T

E(XT ).

Proof. If supT E(XT ) = −∞ then E(XT ) = −∞ for all stopping times T . Thus,
we assume that −∞ < supT E(XT ) < ∞. Consider a sequence of stopping times
(T̄n) such that E(XT̄n

) → supT E(XT ). Then let (Tn) be a sequence of stopping

times where for each n, Tn is the regularized version of T̄n as defined in Lemma
6.4. Then E(XTn

) = E(XT̄n
) so that E(XTn

) → supT E(XT ). Define

τi = max{T1, . . ., Ti}.
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Then by Lemma 6.5, E(Xτi) ≥ E(XTi) so that E(Xτi) → supT E(XT ) as well.
Furthermore, τi is a monotone increasing sequence of regular stopping times. Thus,
it converges to a stopping time τ = sup{τ1, τ2, . . . .}. Since (τi) is a sequence of
integers, it either converges to ∞ or there is some N such that for i > N , τi = k
for some k ∈ N. Then, by Assumption 2,

lim sup
i→∞

Xτi ≤ Xτ

almost surely. By Assumption 1, E(supn Xn < ∞) so that Xτi ≤ supn Xn is Xτi is
integrable. Then, by Fatou’s Lemma,

sup
T

E(XT ) = lim sup
i→∞

E(Xτi) ≤ E(lim sup
i→∞

XSi) ≤ E(Xτ ) ≤ sup
T

E(XT )

so that E(Xτ ) = supT E(XT ). □

This theorem guarantees that an optimal stopping time exists. The principle of
optimality tells us more about what the actual stopping time is. We must first,
however, define what is called an essential supremum:

Definition 6.7. For a collection of random variables {Xα}α∈A, we say that a
random variable Z is an essential supremum of this collection and write Z =
ess supα∈A Xα if

(1) P(Z ≥ Xα) = 1 for all α ∈ A.
(2) If Z̄ is any other random variable such that P(Z̄ ≥ Xα) = 1 for all α ∈ A,

then P(Z̄ ≥ Z) = 1.

This definition allows us to take the supremum of possibly uncountable sets of
random variables without compromising the output being a random variable.

We will not prove the optimality equation, which is what allows us to actually
compute the stopping time, but Ferguson [3] gives a proof.

Theorem 6.8. Let

V ∗
N := ess sup

N≥n
E(YN |Fn)

If Assumption 1 holds, then

V ∗
n = max{Yn,E(V ∗

n+1|Fn)}

and the optimal stopping rule is

τ = min{n ≥ 0 | Yn = V ∗
n }

Note the similarity with the finite horizon problem. Additionally note that
Assumption 2 is not required. However, without Assumption 2, the stopping rule
given above may not actually be optimal.

We now move on to an example of an application of this general rule. It is
very common, in situations where we want to find the most rewarding time to stop
a process, that we do not know when the process will end. For example, in the
employee example in section 5, it is much more common that you will not know
how many total candidates will end up applying to your job. In this example, we
will look at offers on a house: if one left one’s house on the market indefinitely, it
would likely continue to receive offers indefinitely, so we cannot use a finite horizon
tool to solve this problem.
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Example 6.9. Let {Xn}∞n=0 be a sequence of independent and identically dis-
tributed random variables with distribution F (x). Each time unit that we keep the
house on the market, we incur a cost, c. So the net amount we will receive from an
offer accepted at time n is

Sn = Xn − nc.

Note that this is under the assumption that we cannot recall previous offers. Fer-
guson [3] gives a proof that this particular problem satisfies Assumptions 1 and 2
if the Xn have a finite second moment, and also details how to solve for the ac-
tual stopping rule. This requires many lemmas not relevant to this paper, so we
do not reproduce the proof here. However, for uniformly distributed offers, Fer-
guson showed that the optimal rule would be to accept the first offer higher than
supT E(ST ).
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