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Abstract. We call a finite set X ⊂ Rd Ramsey if, for any r ∈ N, we can

choose an n sufficiently large such that every r-coloration of Rn must contain
a congruent copy of X. It is an open problem to find an equivalent character-

ization of all Ramsey sets. This paper presents some results on specific and

general cases of Ramsey-ness, the current conjectured characterizations, and
a few productive directions that future research could follow.
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1. Introduction

Ramsey Theory stems from a theorem of Frank P. Ramsey [Ram30], which is
equivalent to the following statement (though originally phrased in the language of
formal logic).

Theorem 1.1. For all r, d ∈ N, there exists an n0 ∈ N such that for all n ≥ n0,
any r-coloring of the edges of the complete graph Kn must contain a monochromatic
copy of Kd as a subgraph.

For example, we know that any 2-coloring of the edges of K6 must contain three
vertices all connected by edges of the same color. More broadly, Ramsey The-
ory generalizes the idea behind Theorem 1.1 to other contexts, finding examples
of structures that must contain certain monochromatic substructures under arbi-
trary colorings. Because of this, the field is often characterized as revealing the
inevitability of order among chaos [Pr5]. Euclidean Ramsey Theory is the study of
Ramsey-like phenomena in Euclidean space. Central to this topic is the concept of
Ramsey sets.
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Definition 1.2. For a given r ∈ N, a finite set X ⊂ Rd is called r-Ramsey if every
r-coloration of Rn (i.e. every possible partition of Rn into r disjoint subsets) must
contain a monochromatic congruent copy of X for sufficiently large n. Graham

[Gra17] uses the following notation: Rn r→ X if X is r-Ramsey in Rn. X is Ramsey
if it is r-Ramsey for all r ∈ N.

Importantly, we only consider congruent copies of X, i.e. sets X ′ that are the im-
age of X under some isometry (distance-preserving transformation, e.g. reflections,
rotations, and translations). Scaled copies of X are disregarded in this definition.

This is a natural way to extend Ramsey’s theorem to Euclidean space, replacing
isomorphic subgraphs of Kn with isometric subsets of Rn.

To get a sense for what Ramsey sets can look like, we will show that all regular
simplices (2-point sets, equilateral triangles, tetrahedra, etc.) are Ramsey. Note
that when we say a particular polytope is Ramsey, we are referring to its vertex
set.

Definition 1.3. A simplex is a point configuration {x0, x1, . . . , xd} ⊂ Rd such
that the vectors {xi − x0}i∈[d] span Rd. A regular simplex is one whose points are
pairwise unit distance apart.

Note that, by this definition, all simplices are non-degenerate (i.e. their convex
hulls have non-zero measure). For example, we cannot have a 4-point simplex in
any 2-dimensional subspace of R3.

Proposition 1.4. The (d + 1)-point regular simplex Sd ⊂ Rd is Ramsey for all
d ∈ N.
Proof. Let r ∈ N (recall that r is the number of colors we allow ourselves when col-
oring the space). Consider an arbitrary r-coloring of Rrd, and specifically consider
a particular instance of Srd ⊂ Rrd. By the Pigeonhole Principle, because the rd+1
vertices of the simplex are partitioned into r subsets, there must exist one such
subset with at least d+1 vertices. Since these points are all pairwise unit distance

apart, they form a monochromatic copy of Sd. Thus, Rrd r→ Sd for all r ∈ N, so Sd

is Ramsey. □

Figure 1. A 3-colored S3, illustrating a proof that R3 3→ S1,
where S1 is the two-point simplex in R.

This technique of limiting our view to colorings of only a finite subset of the space
is extremely useful since the space of all possible r-colorings of Rn is unfathomably

large and complex (after all, there are r2
ℵ0

of them).
In Section 2, we will see that the condition of regularity can be dropped, i.e. all

simplices are Ramsey, but the proof becomes significantly more complex and goes
beyond the scope of this paper.
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Relative to the case of regular simplices, there are equally simple examples of
sets that are not Ramsey. For example, Erdos et al. [EGM+73] provide what is
arguably the simplest case of a non-Ramsey set:

Proposition 1.5. Let ℓ3 be the three-term arithmetic progression {x−δ, x, x+δ} ⊂
R for some x ∈ R and δ > 0. ℓ3 is not Ramsey.

Proof. Assume without loss of generality that δ = 1; as we will see with Proposition
2.1, this assumption suffices to prove the statement for all δ > 0. We claim that
for any n, there exists a 4-coloring χ : Rn → {0, 1, 2, 3} that avoids monochromatic
copies of ℓ3.

Let χ be defined as χ(x) = ⌊|x|2⌋ (mod 4). We will see that such “concen-
tric shell” colorings prove to be a powerful counterexample technique in Euclidean
Ramsey Theory.

Assume for the sake of contradiction that there exists a monochromatic {x −
u, x, x + u}, where x, u ∈ Rn and |u| = 1. Let r := χ(x − u) = χ(x) = χ(x + u).
We know that there exist constants a1, a2, a3 ∈ Z and θ1, θ2, θ3 ∈ [0, 1) such that:

(1) |x− u|2 = 4a1 + r + θ1
(2) |x|2 = 4a2 + r + θ2
(3) |x+ u|2 = 4a3 + r + θ3

We know that |a + b|2 = |a|2 + 2(a · b) + |b|2 for any a, b ∈ Rn, where (a · b) is
the dot product of the two vectors. Thus, |x + u|2 − 2|x|2 + |x − u|2 = (|u|2 +
2(x · u)) + (|u|2 − 2(x · u)) = 2 = 4(a3 + a1 − 2a2) + θ3 + θ1 − 2θ2. However, since
θ3+θ1−2θ2 ∈ (−2, 2), the lattermost equality is impossible. Thus, by contradiction,
the statement is proven. □

Note that we had to construct a coloring valid in any arbitrarily high-dimensional
space. Thus, this construction of concentric monochromatic spherical shells took on
a less geometric flavor, instead leaning on vector algebra and modular arithmetic.
In Section 2, we will see how the authors applied this approach to prove the non-
Ramsey-ness of a significant class of sets.

At the heart of Euclidean Ramsey Theory is the question of exactly which sets
are Ramsey. Beyond what we have already seen, we have many examples of Ramsey
and non-Ramsey sets. However, a general characterization still eludes us.

2. A Toolkit of Results and Examples

This central question has been studied from many angles, and various authors
have developed tools to generate new Ramsey sets or to prove that a particular
set is not Ramsey. In this section, we summarize what is known about Ramsey-
ness and discuss instances of these principles being applied to generate concrete
examples of Ramsey and non-Ramsey sets.

To begin, we have a few straightforward results that follow quickly from Defini-
tion 1.2.

Definition 2.1. A function f : Rn → Rn is an isometry if, for the standard ℓ2
(Euclidean) distance metric d, d(x1, x2) = d(f(x1), f(x2)) for all x1, x2 ∈ Rn.

Definition 2.2. Let X and Y be non-empty subsets of Rn. X and Y are congruent
if there exists an isometry mapping X onto Y . More generally, X and Y are similar
if X is congruent to some scaled copy aY , where a ̸= 0.
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Note that any distance-preserving mapping between X and Y as metric spaces
can be extended to an isometry of the ambient space.

Proposition 2.3. Let X be a Ramsey set.

(1) Any subset Y ⊂ X is also Ramsey.
(2) Any set X ′ similar to X (also known as a homothetic copy of X) is also

Ramsey.

Proof.

(1) This follows from the fact that any monochromatic copy of X must contain
a monochromatic copy of Y.

(2) Let r ∈ N and let n be sufficiently large such that Rn r→ X. Let C :=
{Ci}i∈[r] be an r-coloring of Rn. Since X ′ is similar to X, it is congruent to

aX for some a > 0. Scale C by a−1 to get a new coloring C∗ := {a−1Ci}i∈[r].
Because X is Ramsey, this coloring must have a monochromatic congruent
copy X∗ of X. Thus, C must have a monochromatic copy of aX, i.e. of X ′.

□

2.1. Spheres.

In the paper in which the concept of Ramsey sets was introduced, Erdös et al.
[EGM+73] also provide the strongest currently known criterion for a set not being
Ramsey.

Definition 2.4. A set X ⊂ Rd is spherical if it lies on the surface of some d-sphere,
or more precisely, if there exist c ∈ Rd and r > 0 such that X ⊂ {x ∈ Rd | |x− c| =
r}.

Theorem 2.5. If X is not spherical, then it is not Ramsey.

To prove this theorem, the authors extend their argument for Proposition 1.5
using the following lemmas, translating the problem into the language of algebra
and then proving a result on non-monochromaticity in this new language.

Lemma 2.6. A set X = {x0, x1, . . . , xk} ⊂ Rd is not spherical if and only if there
exist scalars c1, c2, . . . , ck not identically zero such that:

(2.1)

k∑
i=1

ci(xi − x0) = 0

and

(2.2)

k∑
i=1

ci(|xi|2 − |x0|2) ̸= 0.

Lemma 2.7. Let c1, . . . , ck, b ∈ R with b ̸= 0. There exists an r ∈ N, and some
r-coloring of the real numbers, such that there is no monochromatic solution X =
{x0, . . . , xn} to the equation

(2.3)

k∑
i=1

ci(xi − x0) = b.

Using these lemmas, we can sketch out the authors’ proof of Theorem 2.5.
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Proof sketch. For a given finite non-spherical configuration X ⊂ Rd, the proof
of Theorem 2.5 uses the constants {ci}i=0...k from Lemma 2.6 and the resultant
coloring χ : R → [r] from Lemma 2.7 to construct a coloring χ∗ : Rn → [r] defined
by χ∗(x) = χ(|x|2) for any n ≥ d. By Lemma 2.7, X is not monochromatic under
this coloring. Finally, the authors show that Equations 2.1 and 2.2 remain valid for
any congruent copy of X with the same choice of constants, so by applying Lemma
2.7 again, we can see that no monochromatic congruent copy of X exists under this
coloring. This completes the proof that X is not Ramsey. □

Theorem 2.5 allows us to immediately see that ℓ3 is not Ramsey (as claimed in
Section 1) since there is no hypersphere in any dimension whose surface contains
three collinear points. More generally, this technique of translating the geometric
concept of spherical sets into an algebraic one is very useful in proving negative
results in Euclidean Ramsey Theory. For example, recently, Conlon and Führer
[CF24] use this technique to prove that for any non-spherical set, there is an m ∈ N
such that any red-blue coloring of any Rn has neither a red copy of the set nor a
blue copy of ℓm, the set of m collinear points at unit distance apart.

2.2. Boxes.

Later in the same paper, Erdös et al. develop another powerful tool, this one
producing examples of Ramsey sets.

Theorem 2.8. If X and Y are Ramsey sets, then the Cartesian product X × Y is
Ramsey as well.

From this result along with the n = 1 case of Proposition 1.4, we can immediately
derive a significant class of Ramsey sets.

Definition 2.9. An n-brick is a set that can be expressed as the Cartesian product
of a collection of n two-point sets in R.

Corollary 2.10. All n-bricks are Ramsey.

We can use Theorem 2.8 along with Proposition 2.3 to construct a variety of
Ramsey sets.

Proposition 2.11. Any isosceles triangle with side lengths c, d, and d for d > c
is Ramsey.

Proof. Let T ′ = ∆ABC be an equilateral triangle of side length c in R2. Consider
the triangular prism T ∗ := T ′ × {0, α} for some α > 0. Take the copies A0, B0 of
A,B from T ′ × {0} and the copy Cα of C from T ′ × {α}. The distance between

A0 and B0 is still c, and the distance between A0 and Cα is
√
c2 + α2, which can

equal any d > c depending on the value of α. By Theorem 2.8, T ∗ is Ramsey, and
because the vertex set of ∆A0B0Cα is a subset of T ∗, we can apply Proposition 2.3
to conclude that it must also be Ramsey. □

This technique (which we can call lifting) is powerful, but it has its limits. With
the tools we have now, it is still not possible to prove the Ramsey-ness of a shape
with any obtuse angles. Thus, the following two results require an even more
powerful tool.
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Figure 2. A lifted equilateral triangle, illustrating the proof of
Proposition 2.11.

2.3. Symmetry Groups.

Theorem 2.12. All (non-degenerate, i.e. positive-measure) triangles are Ramsey
[FR86].

Theorem 2.13. All (non-degenerate isosceles) trapezoids are Ramsey [Kř92].

Note that both of these theorems are consistent with the condition that all
Ramsey sets are spherical, since both of these classes of sets can be embedded as
subsets of circles in R2. Also, note that Theorem 2.13 implies Theorem 2.12, since
for any triangle ∆ABC, we can construct a trapezoid ABCC ′, where C ′ is the
reflection of C about the perpendicular bisector of AB.

Both of these theorems were originally proven using relatively ad hoc combina-
torial and analytic methods with little resemblance to each other. However, shortly
after having submitted his proof of Theorem 2.13, Křiž [Kř91] developed a very
powerful algebraic theorem that covers not only these two cases but also many
others.

Definition 2.14. Let X be a finite point configuration spanning a d-dimensional
subspace S ⊂ Rn.

(1) A group of isometries G of X is a set of isometries in S mapping X onto
itself that is closed under the group operation of composition.

(2) G acts transitively on X if for each pair of points x1, x2 ∈ X, there is an
f ∈ G such that f(x1) = x2. If X has a group of isometries that acts
transitively, then we call it a transitive set.

(3) A subgroup H of G is normal if for all x ∈ G and y ∈ H, xyx−1 ∈ H. We
notate this as H ◁ G.

(4) G is solvable (or soluble) if there is a finite sequence of normal subgroups
1 = G0 ◁ G1 ◁ . . . ◁ Gk = G of G such that each quotient Gi/Gi−1 is an
Abelian (i.e. commutative) group.

(5) Let x ∈ X. The orbit of x under G is the set {gx | g ∈ G}. Observe that
X can be partitioned into one or more orbits, all disjoint from one another.

Theorem 2.15. Let X and G be a configuration and one of its isometry groups,
as in Definition 2.14. If G acts transitively and is solvable, then X is Ramsey.
More generally, if G acts transitively and has a solvable subgroup with at most two
distinct orbits, then X is Ramsey.

Importantly, G need not be the full group of isometries of X; so long as it is a
group satisfying the requirements, it can be used to show that X is Ramsey. As
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we will see in the Appendix, this allows us to prove Ramsey-ness without having
to worry about accounting for all possible symmetries of X.

With Theorem 2.15, we are able to construct many more examples of Ramsey
sets.

Definition 2.16. A regular n-gon is an equilateral and equiangular polygon with
n sides. More generally, for α, β ∈ R such that 0 ≤ α < β, an (α, β) semi-regular
2n-gon is an equiangular polygon with 2n sides whose lengths alternate between
two values, α and β.

Remark 2.17. We can see that α, β, and n uniquely determine the radius (or
the distance from the center to each vertex) of a semi-regular polygon. There is
no simple formula relating radius to α, β, and n, but we do not need one for our
purposes. Also, note that in the case when α = 0, a semi-regular 2n-gon is just a
regular n-gon, and that there is no way for a semi-regular 2n-gon to be a regular
2n-gon since α is strictly less than β. Finally, observe that semi-regular polygons
are just truncated regular polygons.

Corollary 2.18. All semi-regular 2n-gons are Ramsey.

Proof. Let P be an (α, β) semi-regular 2n-gon. The group of isometries of P is the
group of rotations and reflections mapping the set of β-edges onto itself, which acts
transitively on the vertices of P . This is exactly the dihedral group Dn. The cyclic
group Cn is both Abelian and a subgroup of Dn. Since Cn is Abelian, it is trivially
solvable (with the subnormal series 1 ◁ Cn). Also, Cn has two orbits on the vertex
set of P ; specifically, considering all points with respect to the β edge it is incident
to, we can partition the points into the class on the clockwise ends of these edges
and those on the counterclockwise ends. Thus, by Theorem 2.15, P is Ramsey. □

Figure 3. A semi-regular 8-gon, along with its two generating symmetries.

Semi-regular polygons can be used to construct sets satisfying Theorem 2.15
containing arbitrary trapezoids (and by extension, arbitrary triangles), thus proving
Theorems 2.12 and 2.13. See Appendix A for a full construction and proof of
Theorem 2.13. Interestingly, though this proof is a great example of the power of
Křiž’s result, it does not seem to appear anywhere in the literature; Leader et al.
[LRW10] state that such a proof is possible but do not explicitly provide it.
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In 1990, Frankl and Rödl [FR90] generalized their result in Theorem 2.12 to
higher-dimensional configurations. Recall Definition 1.3: a simplex is a point con-
figuration {x0, x1, . . . , xd} ⊂ Rd such that the vectors {xi−x0}i∈[d] span Rd (which
necessarily means that when interpreted as polyhedra rather than point configura-
tions, they are non-degenerate).

Theorem 2.19. All simplices are Ramsey.

Again, since this result was published before that of Křiž, their proof is combi-
natorial and relatively complex. Karamanlis [Kar22] provides an alternate, (some-
what) simpler proof of Theorem 2.19 using Křiž’s result.

3. Two Rival Conjectures

Based on Theorem 2.5, Graham [Gra17] poses the following conjecture, and, in
keeping with the Erdös tradition, offers $1000 for a proof or counterexample.

Conjecture 3.1. All spherical sets are Ramsey.

Later, Leader et al. [LRW10] observed that in all known proofs of a class of
sets being Ramsey, the authors embed the set in a larger, often very complex and
high-dimensional transitive set, followed by an ad hoc combinatorial argument to
show that the desired set must be Ramsey. Thus, they pose the following rival
conjecture.

Definition 3.2. A set X is called subtransitive if it is a subset of a (potentially
higher-dimensional) finite transitive set.

Conjecture 3.3. A set is Ramsey if and only if it is subtransitive.

It is clear that this conjecture is a stronger version of Křiž’s theorem, since
it simply removes the solvability criterion. We can further situate it within the
hierarchy of known results with the following claim, whose proof is alluded to in
[LRW10].

Proposition 3.4. Every subtransitive set is spherical.

Proof. Let X ⊂ Rd be the relevant transitive superset of a subtransitive set S.
First, we show that there exists a unique closed ball B(X) ⊂ Rd enclosing X
with minimal radius. To see this, consider the function r : Rd → R defined as
r(p) = max

x∈X
|x − p|, which represents the minimum possible radius of a p-centered

closed ball enclosing X. Since the function is continuous, non-negative, and goes
to +∞ in all directions, it must have at least one global minimizer. Assume for the
sake of contradiction that it has two distinct global minimizers p1 and p2, where
r(p1) = r(p2) = r∗ ≥ 0. Each |x − p| component is convex, so their maximum r
is as well. Thus, all (uncountably infinitely many) points p on the line between p1
and p2 are also global minimizers. To each of these points corresponds an x ∈ X
that is exactly r∗ distance away. However, each point in X can be a given distance
away from at most two points in a line, implying that X is also uncountably infinite,
which contradicts our implicit assumption that X is finite. Thus, a global minimum
r∗ := min

p∈Rn
r(p) occurs at exactly one point p∗ ∈ Rn, which are the radius and center,

respectively, of B(X).
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By definition, an isometry f of X maps X onto itself, so f(X) = X. Thus, since
B(X) is unique and B(X) and B(f(X)) are the same ball, any isometry of X must
map B(X) onto itself.

X is spherical if and only if all of its points lie on the surface of B(X). Assume
for the sake of contradiction that X is non-spherical, meaning that there is a point
x∗ ∈ X in the interior of B(X). Let x ∈ X be a point on the surface of B(X).
Because X’s isometry group acts transitively, there must be an isometry f mapping
x onto x∗. Since the center p∗ of the ball is a fixed point under any isometry of X,
f reduces the distance between x and p∗, contradicting the assumption that it is
an isometry. Thus, X must be spherical. □

Non-spherical

Spherical

(Sub)transitive

Transitive
+

Solvable

Figure 4. A diagram of what is known so far about which sets
are and are not Ramsey.

Though Leader et al. were unable to prove either direction of Conjecture 3.3,
they offered some evidence in the “subtransitive =⇒ Ramsey” direction by pro-
viding a series of conjectures translating this statement into the language of algebra
and then that of combinatorics, and proving that this combinatorial statement is
very similar to the Hales-Jewett Theorem, a foundational result in Ramsey The-
ory. Later, Kanellopoulos and Karamanlis [KK20] show that this property holds
for finite solvable groups, effectively recovering Křiž’s result.

Also, they show that their conjecture is distinct from that of Graham by proving
that there must exist spherical sets that are not subtransitive. In [LRW10], they
provided a non-constructive proof that almost all 16-point subsets of a circle are
not subtransitive, and in [LRW11], they showed that the same is true for 4-point
subsets. They also provided an explicit example of a very simple class of these
sets, namely the cyclic “kite” {(−1, 0), (a,

√
1− a2), (1, 0), (a,−

√
1− a2)} for any

transcendental a ∈ (−1, 1). We will refer to these as transcendental kites.
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Figure 5. A kite with a = 1
π , a non-subtransitive, spherical 4-

point set.

It is also worth noting that it is merely a conjecture that we can remove Křiž’s
solvability condition. I have not encountered a result in the literature showing that
there exist subtransitive sets not satisfying the conditions of Theorem 2.15, but
there is also no proof that such a set cannot exist.

4. Directions for Further Research

Aside from proving either of the two main conjectures directly, we can break
these large conjectures down into simpler cases that may shed some light on a
better approach. For example, after having proven that all three-point subsets of
the circle (i.e. all non-degenerate triangles) are Ramsey, it is natural to pose the
following conjecture.

Conjecture 4.1. All 4-point subsets of the circle are Ramsey.

This statement, although seemingly simple and a natural extension of Theorem
2.12, has proven extremely elusive to researchers. Leader et al’s result shows us
why: unlike triangles, which are all subtransitive, almost all 4-point subsets of the
circle are not subtransitive. Thus, we are entirely out of tools to work with since
all known results start with either transitively acting, solvable symmetry groups or
non-sphericality, neither of which apply in this case. Thus, a major next step could
be:

Task 4.2. Find a novel criterion for determining whether or not a set is Ramsey.

As motivation for the discovery of such a new criterion, one can pursue the
following conjecture of Leader et al. [LRW11]:

Conjecture 4.3. All transcendental kites are not Ramsey.

If we are in the business of disproving one of the main conjectures, then proving
the Ramsey-ness or non-Ramsey-ness of even one of these kites would suffice. If we
can find a Ramsey transcendental kite, then we will have found a Ramsey set that is
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spherical but not subtransitive, thus disproving the subtransitivity conjecture, and
if we can find a non-Ramsey example, then we will have disproven the sphericality
conjecture.

As mentioned in Section 3, although I have not encountered an example of a set
that is subtransitive but does not satisfy the conditions of Theorem 2.15, I have
also not seen a proof that such a set cannot exist. Thus, the following task would
help differentiate between Křiž’s result and Leader et al.’s conjecture.

Task 4.4. Find an example of a transitive configuration that does not generally
satisfy the conditions of Theorem 2.15, or prove that there is no such example.

If such a set proved to be Ramsey, then this would provide further evidence
toward Leader et al.’s conjecture, but if not, then both major conjectures would
be disproven, and it would be warranted to conjecture that Křiž’s conditions are
necessary and sufficient.

However, finding such a set is certainly non-trivial. In this search, we can no
longer rely on geometric intuition since all readily accessible examples of low-
dimensional transitive sets in the literature also satisfy the (weaker) solvability
condition. In R2, all transitive sets are dihedrally symmetric, and in R3, all semi-
regular polyhedra (vertex-transitive and all faces regular polygons) have symmetry
groups Dn × Z/2, tetrahedral symmetry, octahedral symmetry, and icosahedral
symmetry [Sch17], all of which also satisfy the condition. All examples of non-
semi-regular transitive polyhedra I have seen also had one of the aforementioned
symmetry groups. As far as I can tell, it is still an open problem to find all transitive
sets in R3. Thus, a natural and noble next step could be:

Task 4.5. Identify all possible isometry group structures for transitive sets in Rd

for any/all d ∈ N.

Finally, we briefly discuss a few generalizations of the concept of a Ramsey set,
each producing a slew of interesting open problems. Graham’s 2017 review [Gra17]
discusses many of these generalizations in more detail.

A related and commonly studied notion is that of a sphere-Ramsey set, which
essentially replaces Euclidean space with a finite-radius sphere in Definition 1.2.
This concept was introduced in Erdös et al.’s original paper [EGM+73] and has
been extensively studied since. Furthermore, one could study the phenomenon of
Ramsey sets on arbitrary manifolds and metric spaces (essentially adding a “non-”
to the term “Euclidean Ramsey Theory”); so long as a space is equipped with a
distance metric, one can define a notion of congruence with which we can extend
the idea of Ramsey sets.

Later, Erdös et al. [EGM+75] introduce the concept of edge-Ramsey sets. In
this case, we consider all colorings of all edges in Rn (i.e. all pairs of points) and
ask what monochromatic configurations of edges must exist in all colorings.

Appendix A. Proof of Theorem 2.13

Definition A.1. Consider a point configuration obtained by embedding an (α, β)
semi-regular 2n-gon P into R3, placing a copy P ′ “above” P such that they lie
on parallel planes and share axes of rotation, and rotating P ′ about this axis by
an angle θ ∈ [0, 2π

n ). If θ = 0, we call this a drum, and if θ = π
n , we call this

an anti-drum. Finally, in the specific case when θ /∈ {0, π
n} and α = 0, we call
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this a skew-drum. Note that a drum is just a P -based prism, and an anti-drum
is analogous to an anti-prism, with the shorter edges of P aligned with the longer
edges of P ′. Also, note that the condition that α = 0 in skew-drums is important
because otherwise, as we will see, they are not transitive.

Figure 6. A drum, and anti-drum, and a skew-drum, respectively.

Corollary A.2. All drums, anti-drums, and skew-drums are Ramsey.

Proof. The Ramsey-ness of drums follows immediately from the Ramsey-ness of
semi-regular polygons along with the Cartesian Product theorem. However, to
demonstrate an application of Křiž’s result, we provide an alternate proof here.
Consider a drum X constructed from a semi-regular 2n-gon P and its copy, P ′.
We claim that the group G of X’s isometries is isomorphic to Dn × Z/2. Every
isometry f of X corresponds to exactly one element of Dn × Z/2. This is because
f can be uniquely decomposed into functions g and h, where g is an isomorphism
mapping P and P ′ onto themselves and h is either the identity map or the vertical
reflection swapping P and P ′. The group of all possible maps g is isomorphic to
Dn, and the group of possible maps h is isomorphic to Z/2, so our claim is proven.
Since Dn is solvable and a normal subgroup of G with G/Dn = Z/2 Abelian, G is
solvable. Thus, by Theorem 2.15, X is Ramsey.

Figure 7. The generating symmetries of a drum.

Now, consider an anti-drum X. In this case, we claim that the group G of isome-
tries of X is isomorphic to D2n. The dihedral group is generated by two actions, r
and s, corresponding to a rotation mapping adjacent edges of a 2n-gon onto each
other and a reflection flipping an edge on itself, respectively. Number the set of β-
edges of both P and P ′ from e1 through e2n as they appear counterclockwise around
the central axis of rotation. In this situation, r represents a vertical reflection and
a rotation such that edges are mapped like e1 → e2 → e3 → . . . → e2n → e1, and
s represents a horizontal reflection mapping e1 ↔ e1, e2 ↔ e2n, e3 ↔ e2n−1, and
so on. Together, these two actions generate a transitively acting group, since for
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Figure 8. The generating symmetries of an anti-drum.

x1, x2 ∈ X, if x1 is incident to edge n1 and x2 is incident to edge n2 (WLOG as-
sume n1 ≤ n2), then we simply need to apply either the action rn2−n1 or the action
rn2sr−n1 to map x1 onto x2. Since any dihedral group is solvable, X is Ramsey.

Finally, consider a skew-drum X. Here, we claim that the group G of isometries
of X is isomorphic to Dn. Skew-drums have bases P , P ′ which are both regular
n-gons. Thus, r still represents a rotation of X by 2π

n about its axis of rotation.
However, since X is chiral, G cannot contain any reflections. We can get around
this by observing that there is a rotation s of R3 that swaps P ′ and P and reverses
each one’s orientation; this simulates the reflection action in the traditional dihedral
group. Each point in P can reach all other points in P through repeated applications
of r and can reach all points in P ′ through an s followed by r’s. Note that this
transitivity would not hold if α > 0 since every semi-regular polygon has two orbits
of vertices under rotational symmetry alone, and the pseudo-reflection in the skew-
drum does not bridge the gap between these two orbits.

Figure 9. The generating symmetries of a skew-drum.

□

From this result, we can construct a Ramsey set that can be used to prove
Theorem 2.13 (and by extension, Theorem 2.12) using Křiž’s theorem.

Proof. Let T be a trapezoid with parallel side lengths α and β and height h > 0.
WLOG, assume α < β. Our goal is to construct an anti-drum with top and bottom
faces P , P ′, where an α-edge in P and the β-edge directly above it form a copy of
T .

Consider an arbitrary anti-drum whose bases are (α, β) semi-regular 2n-gons,
and whose bases are a vertical distance d apart. Let eα be an α-edge in P , and
let eβ be the corresponding β-edge in P ′. In the extreme case when d = 0, eα
and eβ are very close together, so the trapezoid formed by these two line segments
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has a relatively small height h0. As |d| goes to infinity, the bases of this trapezoid
stay constant, while its height also goes to infinity, sweeping through every possible
height in the interval (h0,∞). As shown in Corollary A.2, this collection of anti-
drums is Ramsey, so by Proposition 2.3, each of these intermediate trapezoids must
be as well. Thus, it just remains to show that we can achieve an h0 < h with the
right n.

Figure 10. A slice of an (α, β) semi-regular 2n-gon and its circumcircle.

Considering the d = 0 extreme, we can see that h0 is the difference between
the lengths of P ’s apothems (line segments from the center perpendicular to the
polygon’s sides) to α sides and β sides. Consider the diagram in Figure 10. The
apothem lengths aα and aβ correspond to central angles θα and θβ , which add to a
total central angle θα+β = 2π

n . As we raise n to ∞, each of these central angles goes
to 0. Looking at the isosceles triangle formed by the α edge and its two adjacent
radii, we can also see that aα = r cos θα

2 → r as n → ∞; the same holds for aβ
and θβ . Since β > α, we can see that θβ > θα, implying that aα > aβ . Thus,
h0 = aα − aβ > 0 and h0 → 0 as n → ∞, so for any h, we can choose a sufficiently
large n such that h0 < h, allowing us to construct a copy of T within the drum’s
vertex set. □

As previously noted, Theorem 2.13 proves Theorem 2.12. However, a similar
construction using skew-drums can be used to prove Theorem 2.12 directly.
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