AN INTRODUCTION TO BASIC PROPERTIES OF MARKOV
CHAINS

NEAL PANNALA

ABSTRACT. This paper serves to give an introduction to Markov Chains, fo-
cusing on thoroughly building the properties of Markov Chains with a finite
state space. We then extend these properties for infinite state space, going over
a few examples. Specifically, we look at Gambler’s Ruin and other examples
of random walks by using the previously defined properties of Markov Chains.
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1. TIME HOMOGENEOUS FINITE MARKOV CHAIN

Markov Chains are based on the stochastic property which assumes that the
transition probabilities between states depend only on the current state rather
than the past state (Markov property). Each transition is assigned a probability
that defines the chance of the system changing from one state to another.

Definition 1.1. A stochastic process {X,} is defined as a Markov Chain if for all
n € N and sg,...,s, € S,

P(Xn = Sn|X0 = 307X1 = S51,... 7Xn71 = Snfl) = P(Xn = Sn|Xn71 = sn71>

where P(X,, = s,|X,,—1 = sp—1) refers to the conditional probability of being in
state s, at the nth time step given that, at the (n — 1)th time step, the process is
in state s,,_1. Note that S is our set of all the possible states the Markov Chain
can reach.

Definition 1.2. A Markov Chain {X,,} is time homogeneous if for all n € N and
z,y €S,
P(X, =y|Xn_1 =2) =P(X; =y|Xo =x).
1
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For the rest of this paper, every Markov Chain discussed will be time homoge-
nous. For (time homogenous) Markov Chains, we only need to specify the distribu-
tion of Xy and the transition probabilities. For example, the probability of going
from state x to state y can be expressed as follows.

p(z,y) = P(X; = y|Xo = )

This assumption is important as it allows as to us to reduce the Markov Chain
into a finite set of time-independent probabilities (this will be further discussed
in the next definition). Without time homogeneity, we would have to work with
infinite sets of transition probabilities, which would make predicting future events
very difficult as future events may happen at arbitrary times, which we will see
going forward.

Definition 1.3. The transition matrix P for the Markov chain is an N x N ma-
trix, where N refers to the number of states, size of S. Denote the entry as P;;,
where P;; = p(i,j) = P(X,, = j|X,—1 = i) = P(X; = j|Xo = ), due to time
homogeniety. The matrix P is stochastic, that is, each entry is between 0 and 1,

and
> py=1
J

for each ¢. This is because, if the Markov Chain starts at position ¢ at time n, it
must, with probability 1, be at "some” state at time n + 1. Thus, the probability
of all the possible jumps the Markov Chain can make from state ¢ must sum to
exactly 1. The N x N transition matrix is represented as

Py -+ Py
p_| - .
Pyy -+ Pnn

Let m = (m1, ..., mn) be the vector such that m; = P[X, = j]. We call 7 the initial
distribution vector.

A time-homogeneous finite Markov chain (X,,), for n > 0, is entirely determined
by the following:

(1) An initial distribution 7 = (m;);es
(2) A stochastic matrix P = (P;;)i jes, with p;; > 0 for all 4,j € S and
>.;pij = 1for each i

Definition 1.4. We can define n-step transition properties as the probability to
get from state x to state y in n steps. We can notate it as follows:

p"(z,y) = P(X,, =y|Xo = x).

Proposition 1.5. For alln,m € N and for all x,y € S
P () =Y P (w, 2)p™ (2, ).
zesS
Proof. By time homogeneity, followed by the Markov property,
p"(x, 2)p™ (2,y) = P(Xy = 2| Xo = 2)P(Xnpm = y|Xn = 2)
(1.6) =P(X, = z|Xo = 2)P(Xptm = y|Xn = 2, Xo = 2)
P(Xpim =y, Xn = 2|Xo = ).
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Thus,
D M@ )p ™z y) = Y P(Xnpm =y, Xn = 2[Xo = 2)
L7 z€S zeS
( ' ) = P(Xn-&-m = y‘XO = x)
=p" " (x,y).

O

Intuitively speaking, this proposition says the following. Let N be the size of S.
The probability of getting from x to y in n 4+ m steps is equal to the sum of the
probabilities of getting from x to z in n steps and z to y in m steps for each z.
This makes sense because we are guaranteed to be "some” state after n steps. This
gives us N total paths we can take to get from z to y, depending on where we
are after n steps. We can sum over the probabilities of each of our N paths to
determine the total probability of getting from z to y after n + m steps.

2. RECURRENCE AND TRANSIENCE

Definition 2.1. Consider a Markov chain {X,} on a finite state space S. Two
states x,y € S communicate if there exist natural numbers, n and m such that
p"(z,y) > 0 and p™(y,x) > 0. In this case, we write x <> y.

Lemma 2.2. Communication is an equivalence class.
(1) Reflexive: p°(x,z) =1
(2) Symmetric: if x <>y theny <> x
(3) Transitive: if x <>y and y <> z then © < z

Proof. Choose n, m, I, k such that p™(x,y),p™(y,x), p'(y, 2), and p*(2,v)
are all positive. Then

P, 2) = Y p (@, w)pt(w, 2) > p™ (@, y)pt(y, 2) > 0
weS

Similarly, p™**(z,2) > 0. So x > 2.
O

Definition 2.3. We can use the previous definition to define a communication
class C, C' C S, such that, for all s;,s; € C, 5; <+ s;.

Noticing that every state in S is at least in a communication class with itself,
we can use these disjoint communication classes to make a disjoint partition of S.

Definition 2.4. A communication class C' is recurrent if p(z,y) = 0 for each x € C
and each y ¢ C. Essentially, once the Markov Chain enters C, it can never leave.
A communication class is transient if it is not recurrent, i.e., p(z,y) > 0 for some
x € C and each y € C. We say that x € S is recurrent if its communication class
is recurrent, and y € S is transient if its communication class is transient.

As shown in the following examples, we care about recurrence and transience
because they give us more detailed information about how a given Markov chain
operates. By telling how different states communicate with each other, we can
make predictions about how the chain will function over long periods of time.
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Example 2.5. The following transition matrix represents a markov chain where
S=1{1,2,3}

09 01 O
P=]10 05 05
0 1 0

Breaking P into Communication classes, Cy = {1}, which is transient, and Cy =
{2, 3}, which is recurrent.

Definition 2.6. A Markov chain is irreducible if there is only one communication
class (which is necessarily recurrent). In other words, we can always get from any
state to any other state given a sufficient number of steps.

Proposition 2.7. If C is a recurrent communication class, then if {X,} starts in
C', with probability 1, {X,} visits each state in C infinitely many times, that is, for
each x,y € C,

P(X,, =y for infinitely many n | Xo =) = 1.

Proof. Let xz,y € C and assume that Xg = . We want to show that there are
infinitely many values of n such that X,, = y. The idea is that in every long enough
interval of time, we have a positive probability ¢ to hit y. So, the probability that
we don’t hit y after k time intervals is at most (1 — ¢)*, and, as we increase our
number of time intervals, this expression tends to O.

Since C' is a communication class, for each z € C we can choose n, such that
p"=(z,y) > 0. Let

n=max{n, : z € C},q = min{p"*(z,y) : z € C}.
For each k € N let
Ey := {y is visited at a time in{n(k — 1) + 1,...,nk}}.

Then, Ej depends only on where the process is at that time, i.e. X,,(x—1)41,---, Xnk
Now let’s look at the conditional probability of Ey1q given all the past states.

]P’[Ek_;,_l‘Xo = S0, ---aXnk = Snk] = ]P[Ek+1|Xnk = Snk} = P[E1|XO = Snk]-

Thus our first conditional probability, is the same as the probability that a Markov
Chain starting at state s,y visits y before time n. Because s, € C, ng,, <
max{n, : z € C} =n. Thus, ¢ = min{p™(z,y) : z € C} < p"snk (spk,y). Thus,

P[Ek+1|Xo = S0, ...,Xnk = Snk] Z q.
Let Ej, denote the event complement to Fj. Now let M, K € N,M > K. Then,

M
P[E}, does not occur for any k € {K, ..., M}] =TP| ﬂ E;]
k=K

M-1 M—1
(2.8) =PIEY| () B P Ei]
k=K k=K

<(1-q) B[ Bl
k=K
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Iterating this process, we see that
P[E}, does not occur for any k € {K, ..., M}] < (1 —q)M =K.
As M tends to oo, this expression tends to 0, so
P[X hits y after time nK] = 1.
O

Note that this proposition implies that, in an irreducible Markov Chain, with
probability 1, every state will be reached infinite times.

3. STRONG MARKOV PROPERTY

Definition 3.1. A random time 7 € NU oo is called a stopping time if Vn € Ny,
the event {7 = n} is determined by Xo, ..., X,

Intuitively put, a stopping time is a time in a Markov Chain which can be chosen
based on all the previous states the Markov Chain has been in.

Example 3.2. Here are some examples of times based on the Markov Chain, {X,,},
defined in (2.4)

(1) 7 =5 (Stopping Time)

(2) 7 = kth time for which X,, = 2 (Stopping Time)

(3) 7 = last time for which X,, =1 (Not a Stopping Time)
For the last example, as soon as we see that X,, = 1 and X, 1 = 2, we can determine
with certainty that 7 = n. We, however, required n + 1 states to determine that
T =mn, S0 it is not a stopping time.

Loosely put, something qualifies as a ”stopping time” if we can ”stop” the Markov
Chain on the state which that event occurs.

Theorem 3.3. (Strong Markov Property) Let T be a stopping time for our Markov
process. Let nym > 1, let xg, ..., xn, € S such that P[Xo = zg, ..., X; = x,] > 0, and
let y1, ..., ym € S. Then,

]P[XTJrl = Y1y -0y XTer = ym|XO = Ty -y X, = xn]
= P[Xl =, 7Xm = ym‘XO = xn]
For intution, this theorem basically says that, if 7 is a stopping time, what

happens after 7, depends solely on X,. This theorem extends the Markov Property
(which only applied to a fixed time, n) to any stopping time 7.

Proof. We can reformulate the event { Xy = o, ..., X; = 2,,} into the event where
7 =nand {Xy = zg, ..., X;, = x,}. Since 7 is a stopping time, the event that 7 =n
depends only on the values of {Xo, ..., X;;}. So, the fact that

]P[XO =20y, Xy = l‘n] >0

(i. e. that it is possible to stop at x, if we follow this path) implies that if
Xo = xg, ..., X, = x,, then in fact 7 = n. Or, in other words, because our "rule”
for the stopping time is fixed, if we follow the same path, we will stop at the same
point along the path, z,,. Hence,

{XO = Zo, "'7XT = Z’n} = {XO = Zo, 7X’n = xn}?
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and on this event we have 7 = n. Thus,

PIXr 1 = y1, 0 Xopm = Y| Xo = w0, .., X = 1]

(3.4) =PXpi1 = Y1,y Xnndm = Ym| X0 = Zoy vy Xy = T
= P[Xl = Y1, 7Xm = ym|X0 = mn]
O
So why do we care about the Strong Markov Property? Basically, it allows us
to treat the time range between stopping times as their own time steps. In other
words, instead of analyzing the jump from X; to X5, we can analyze the jump

from X, to X,,. Essentially, this allows us to apply useful benefits of the normal
Markov Property to more complicated problems.

Proposition 3.5. Suppose that Xg = x € S and that with probability 1, X, = x
for infinitely many n. Let 19,71, ... be the successive times n for which X,, = x. The
increments (X, ..., X7..,) for k € N are independent and identically distributed.

» T4

Proof. This follows almost immediately from the strong Markov Property. Notice
that every 741 — 7x is the first time after 7, such that X, 4, = x. Thus, we can
say the following for any X, :

P[X7k+1 = Y1, ~-~7X7'k+n = IE‘XO = TQy ---y XTk = 1‘]
= P[Xl = Y1, ;Xn = .’1?|X0 = J}]
Thus, the probability distribution does not depend on k, so each distribution is
iid. (]

4. PERIODICITY
Let {X,,} be a Markov Chain on countable (not necessarily finite) state space S.
Definition 4.1. For xz € S, the period of x is the greatest common divisor of
Jyi={n>1:p"(x,z) > 0}.

Note that, if it is possible to get from x to x in one time-step, then the period
is 1.

Example 4.2. Consider the following Markov Chain P, defined by the following
Transition Matrix on the state space S = {1,2,3}.

0 05 05
P=105 0 05
05 05 O

Here, even though no state can return to itself in one time-step, each state can
return to itself in 2 or 3 time-steps. Thus, the period at each state is the ged(2, 3)
= 1.
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Example 4.3. Consider the following Markov Chain P, defined by the following
Transition Matrix on the state space S = {1,2,3}.

010
P=10 0 1
100

Now we can only return to a state after cycling through the other 2 states so the
period of P at every state is 3.

Let d(x) denote the period of state x.
Proposition 4.4. If x <>y, then d(x) = d(y)

Proof. Choose n,m s.t. p"(z,y) > 0,p™(y,z) > 0. Then p"™™(z,x) > 0 and
p"t™(y,y) > 0. Hence n +m € J, N J, so both d(z) and d(y) divide n + m.

Assume for contradiction that (without loss of generality) d(z) < d(y). Then
Jk € J, not divisible by d(y). We have n+ m + k € J, as we can go from y to y
in n +m + k steps. So, d(y) divides n +m + k and n + m but not k, which is a
contradiction. d

Definition 4.5. A Markov chain is called aperiodic if every state has period 1.

5. RECURRENCE AND TRANSIENCE FOR COUNTABLY INFINITE STATE SPACE
Suppose that the state space S is countably infinite.

Definition 5.1. {X,} is irreducible if for each x,y € S, there exists n such that
p"(z,y) > 0.
Definition 5.2. A state x € S is recurrent if
P[3 infinitely many n > 1 s.t. X, = z|Xg=2] =1
and transient if the state, x, is not recurrent.

Proposition 5.3. If {X,} is irreducible, then either every state is recurrent or
every state 1s transient.

Proof. 1t is sufficient to prove the following statement. If there exists a recurrent
state, x € S, then every state must be recurrent. Assume that Xy = x. Let 7, 7o, ...
be the times of the successive visits to x (these are all finite since x is recurrent).
By the strong Markov property, the increments X, ,..., X, | areii.d.
Consider some y € S. Because {X,,} is irreducible, p"(z,y) > 0 for some n, and
there must exist a k such that 7, < n < 7341. Thus, Ply € {X;,,..., X7, }] >
0. Since the increments (between each 7) are i.i.d., we can define the following
probability, q,

q:=Plye{X5,.... X7 . }]
which is positive and does not depend on k. Since the events {y € {X~,,..., X7, }}
are independent and each has the same probability q, with probability 1 infinitely
many of these events occur. Hence, if we start at Xg = z, then with probability 1
we visit y infinitely many times.

Let ¢ = min{n > 1: X,, = y}. Then Plo < o0|Xy = z] = 1. By the strong
Markov property, {Xo4;};>0 (no matter where we start) has the same distribution
as the original Markov chain started at y. We know that {X,1;};>0 visits y in-
finitely many times if we start at Xo = x, so also {X};>0 visits y infinitely many
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times if we start at Xo = y. Thus if x is a recurrent state, then any other arbitrary
state y is also recurrent. ([

Proposition 5.4. A state x is transient if and only if
o0
Zp"(ac, x) < o0.
n=0

Proof. First, we will do the backward direction. Let the total number of visits to
x be represented as follows (imagine 1 as an indicator variable).

Rz = i ]an:m

n=0

Then, we can make the following statement:

E[R.|Xo = 2] = Y E[lx,—|Xo = ]
(5.5) o
= an(xvx)‘
n=0

Hence, if Y~ p"(z,z) < oo (which we assume for the backward direction) then
E[R.] < oo, and hence R, < oo with probability 1, i.e., = is only visited finitely
many times and is transient.

For the forward direction, we will assume that x is transient. Let 71, 7o, ... be the
times of the successive visits to x. Since x is transient, we know that with positive
probability there is some k such that 7, = co. By the strong Markov property, the
increments 7511 — 7 are i.i.d., so each has the same probability, let’s call it g, to
be infinite.

Note that R, is equal to the smallest k such that 7,41 = oo. Therefore, R, has
a geometric distribution with success probability ¢ > 0. Hence,

. 1
Zp"(m,x) =E[R;|Xo =2z] = p < 00.
n=0

The above statement is what we wanted to prove. The result implies that P[R, <
oo] = 1, and that, with probability 1, x is visited finitely many times. [l

Example 5.6. Consider the Markov chain with state space Ny and transition

probabilities:
1
z,0) = ——, r,x+1)=1— ——.
p(,0) T+ 2 p( ) T+ 2
This Markov chain is irreducible as the chain can always reach 0 and, from 0, can
reach every other state. Assume Xy = 0. We have X,, <n, so at every X,,, we are
anywhere from 0 to n inclusive, so the probability to go to 0 on the next step is at

1 .
least — in every case. Thus,

p"(0,0) >

Hence,
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Therefore, 0 is not a transient state and must be recurrent. Then, by Proposition
5.3, every state is recurrent.

Consider the following random walk on Z:

pz,z+1)=p, plr,z-1)=1-p, Vzel

This random walk models a game where a player bets a dollar each round and
doubles it with probability p. We can make the following proposition about this
specific walk, known as ” Gambler’s Ruin”.

Proposition 5.7. Let N > 1. For each x € {1,...,N — 1},

. (527 -1 1
P[X hits N before 0| X = x] = (1,71,)7]\]_1729 # 3
p
1
P[X hits N before 0|Xo = 2] = %,p =5

Proof. For any x € {1,..., N — 1}, let
a(z) ;= P[X hits N before 0| Xy = z].

The boundary conditions that «(0) = 0, «(N) = 1. Also, we can use conditional
probability to say that

alz) =pa(z+1)+ (1 -pafz—1), Vee{l,..,N-—1}.

This is a system of N + 1 equations with N + 1 unknowns, so there should be a
unique solution. Let us first consider p = 1/2. Then

_alz+1)+alz—1)
alz) = 5 .

This is satisfied for a linear function, a(x) = ax + b for some a, b. The boundary
conditions give b = 0,a = %
For p # %, we try to guess a solution of the form «a(z) = b® for some b. This

gives

b = pb™+! 4 (1 — p)b= L.
Thus,
b=pb* + (1 -p).
Using the quadratic formula to solve for b, we get that
b 1+ (1-2p)
2p

Hence,b=1orb = 1_71’. This gives the general solution:

a(z) = e1 + ¢ (7’)

To satisfy out boundary conditions of @(0) =0, a(N) = 1, we need ¢; = —c2 and

(-]
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6. NULL RECURRENCE VS. POSITIVE RECURRENCE

We previously discussed how, for an irreducible Markov Chain {X,} with an
infinite state space S, every state is recurrent or transient. Thus, we can categorize
every chain as entirely transient or recurrent. We, however, can break down recur-
rent Markov Chains even further based if they contain a stationary distribution,
which we will define next.

Definition 6.1. Let © : S — [0,1] be a probability distribution on S, so that
Y wes Tz = 1. We say that 7 is stationary (a.k.a. invariant) for {X,} if

Ty = Zﬂwp(x,y),‘dy e S.
€S
A stationary distribution describes the long term states of the Markov chain.
We can express it as a row vector m where the i-th entry represents that given
arbitrary long amount of time that X, will be at state ¢ with some probability
7;(i-th component of 7). This implies that all the entries of 7 must sum to one.
Then, if we multiply our infinite transition matrix by , the result is 7.

Definition 6.2. Assume that {X,,} is irreducible and recurrent. We say that {X,,}
is null recurrent if

lim p™(x,y) =0,Vz,y € S.

n—oo

We say that {X,,} is positive recurrent otherwise.

Theorem 6.3. A null recurrent Markov chain cannot have a stationary distribu-
tion.

Proof. Assume for the sake of contradiction that a null recurrent Markov chain,
{X,} has a transition matrix, P, and a stationary distribution, 7. Then,

Tm=mnP
(6.4) = (nP)P = nP?
= ((nP)P)P = P>,

m=nP" Vn e N.
However,
lim p"(x,y) =0,Vz,y € S
n—oo
= lim P"=0

n— oo

= lim «#P"™ =0.

n—oQ
Thus, 7 can only be the 0 vector, which violates the condition that the entries of
7 sum to 1, Thus, a stationary distribution does not exist for {X,,}. |

Theorem 6.5. An aperiodic, positive recurrent Markov Chain will have a station-
ary distribution (existence)

Proof. Let our positive recurrent Markov Chain, {X,,} have an infinite state space
S. Fix z € S and suppose that we start at Xg = z. Let T :=min{n > 1: X,, = z}
be the first time we return to z. Note that this is finite since {X,,} is irreducible.
Forz e S,

7y := E[ number of {n € {0,...,.T — 1} : X, = x}].
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More intuitively put, in the infinite row vector 7, the value for = is the expected
number of times that we reach z, given that we start at z and stop as soon as we
return to z.

We want to show that the row vector 7/E[T] is a stationary distribution for
{X,}. By partitioning the set {0,...,7 — 1} based on the value of {X,}, we see
that ) 7, = E[T]. Therefore, > o7, /E[T] = 1. Next, we need to show that
Vy € S, my = > ,csTep(z,y). The idea of the proof is that 7, is the expected
number of visits to = in {0,...,7 — 1}, so » ¢ mp(x,y) is the expected number
of visits to y in {1,...,T} (this step relies on positive recurrence). This equals the
expected number of visits to y in {0,...,7 — 1} because T is a stopping time, we
can treat time T and time 0 as analogous. The expected number of visits to y in
{0,...,T — 1}, finally, just equals .

Here is the more formal proof. We can use an indicator variable, 1, like we did
before to help us rewrite 7.

T-1
Ty = E[Z Lx, =]
n=0

= E[Z Lx,=zn<T]
n=0

Z Elx,—zn<r]

n=0

> PX, =a,n<T]
n=0

Because T is a stopping time, the event {n < T'} is only determined by the prior
states of {X,}. By the Markov Property, for y # z, and by Fubini’s Theorem for
absolutely convergent sums,

> o mep(a,y) =Y D PX, =a,n < Tlp(x,y)

zeS zeS n=0

- iZIP’[Xn =z,n<T,Xpp1 =Y
n=0x€S

= ZM” <T,Xp41 =y

(=)

—~
o
-3

~—

3

M

Pln +1 < T, X 41 = y](because P X7 = y] = 0)

T
LL

E[]an:y]

I
3 3 3
<
| —-

ac)

5

I

=,

<
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Note that we used the fact that y # z, so P[Xr = y] = 0). What if, however,
y=2z7

Z (T, 2) = Z Pn < T, Xp41 = 7]

zeS n=0

:iP[n—Fl:T]
n=0

=1l=m,

Next, we need to show that the stationary distribution we found is unique.

Theorem 6.9. If 7 is a stationary distribution for an irreducible, aperiodic, and
positive recurrent Markov Chain, {X,}, for any x,y € S,

lim P[X, =y|Xo = 2] = m,.

n—oo
Proof. We use a technique called coupling: define Markov chains started from x
and started from 7 which interact with each other. Coupling is a probabilistic
technique that allows you to consolidate multiple sources of randomness into one
single source. For example, we have 2 Markov chains (2 sources of randomness)
that we combine into one source of randomness.

Consider the Markov chain (X,,,Y,,) with state space S x S, with transition

probabilities

p(z, 2 )p(y,y), ifz #y
p(z,y) (@', y) = { pla,a’), ifz =y,2’ =y
0, ifx =y, a2’ #y
Basically, the coupled Markov chains work as independent Markov Chains on the X

and Y axis until they meet (when x = y), then they move as one along the diagonal.
If z # y, then

PXy =a'|Xo ==Y =yl = Y p(z,2)p(y,y)
(610) y'eS
= p(z,2).
If x = y, then
P[X;, =2'|Xo = z,Yy = y] = p(z,2").

Thus, {X,} has the same distribution has the same distribution as our original
Markov Chain.
Let

T =min{n > 0|X, =Y, }.
Note that X,, =Y, for alln > 7. Let us assume the following claim for any z,y € S:

Plr < 0| Xo=2,Yo=y] =1.

Assuming this claim is correct (we will prove it later), consider (X,,,Y;) where
Xo = = and Yj starts from a stationary distribution, 7. Then Y,, has distribution
7 for all n, and X,, =Y, for all large enough n. Hence for any v,
lim (P[X,, =y|Xo=2z] —my) = lim (P[X,, =y| —P}Y, =y]) =0.
n—r oo

n—oo
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This proves the convergence part of the proposition. The uniqueness follows since
if m, 7 are two stationary distributions, then

7= lim P[X, =y|Xg=2]=1.
n— oo

Now, we just need to prove the assumed claim. Consider (X,,Y,) which move
independently for all time (even after they meet). It suffices to show that this
Markov chain is irreducible. Let z,z’,y,y" € S. Since our original Markov chain is
aperiodic, there exists kg such that p¥(z,z) > 0 for any k > k. Since our original
Markov chain is irreducible, there exists n such that p™(z,z’) > 0 and there exists
m > n + ko such that p™(y,y’) > 0. Since X,; and Y,, are independent,

(6.11)
P{(Xom, Yi) = (xlv y/)|(X07 Yo) = (z,y)] = p™ (x, x/)pm(% yl)
>p" (@, 2)p" (2, 2")p" (v, y) > 0.

Thus, if we set ' = 3/, we can see that there is a positive chance the coupled chains
will meet; therefore, they will meet with probability 1 in a finite time. O

Thus, positive recurrence means that a stationary distribution exists, and null
recurrence means that a stationary distribution does not exist. This is useful as
a unique stationary distribution can help us make useful predictions about the
evolution of a Markov Chain.

As seen in the next example, often times the easiest way to determine if an
infinite Markov Chain is positive recurrent or null recurrent is to see if a has a
stationary distribution.

Example 6.12. Consider the biased random walk, { X,, } on Z, which has transition
probabilities:
plz,z—1)=1-p plz,z+1)=p
Xo=0
This is clearly irreducible. Is it positive recurrent, null recurrent, or transient?
Proof. We can look to our Gambler’s Ruin result for inspiration. For x > 1,

1

Dz

(55" -1 1
P[X hits N before 0| Xg = 2] = —2—— —.
[X hits N before 0| X = z] oy 1 P# 3
. T 1
P[X hits N before 0| Xy = z] = N P=3
Sending N to oo from our Gambler’s Ruin example, we see that
1
P[X does not hit 0| Xy =2] =0, p< 7
. 1—p 1
P[X does not hit 0| Xg =2]=1—-(—=)*, p> 3
p
1
P[X does not hit 0| Xy =2] =0, p= 7

So then what happens when Xy = 07 First, let us consider what happens when
p > % Then, X; will be 1 with probability p, and, from there, the chain has
a positive chance to never return to 0, making the chain transient. Next, let us
consider what happens when p < % Then, X; will be —1 with probability 1 — p.

Using symmetry, 1 — p is greater than % Thus, if the chain gets to —1 (which has
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a positive chance), it has a positive chance of not getting back to 0. Therefore, the
whole chain, considering Proposition 5.3, when p < % has a positive chance of not
returning to 0. So, when p # %, the chain is transient.

So, what happens when p = %? Then, X; will equal 1 or —1. If it equals
1, we can use the formulas above to see that will return to 0 with probability 1.
Furthermore, by symmetry, if X; = —1 it will also return to 0 with probability 1.
Thus, when p = %, the chain is recurrent.

We need to know, however, if this chain is null recurrent or positive recurrent.
As previously explained, the easiest way to do this would be to check if a stationary
distribution exists. However, the chain is NOT aperiodic and has a period of 2,
so, even if the chain was positive recurrent, a stationary distribution would not
exist. To get around this problem, however, we can check if {X5s,}, the version of
this random walk where we take two steps at a time (or just look at {X,,} every 2
steps), has a stationary distribution. Notice that our state space, S = 2Z. Then,
the stationary distribution, 7, would have to satisfy the following property:

1 1
Ty = 171';5_2 + 571'1- + Z?Tl-_t,_g
1
= Ty = §7T$—2 + §7Tx+2~

From here, let’s consider 2 cases regarding the values of m_o and ms:
Case 1: m_o = my. Then, clearly, mg = w_o = w9 which implies using the formula
above, that m, = m,,Vx,y € S. Then, >  _q7m, # 1, so a stationary distribution
does not exist.
Case 2: m_o # mo. Without loss of generality, let 7_o < mo. Then, m_o < 7y < 2.
Let mg — mg = d. Then, n_4 = w9 — 2d, and 7_s,, = 9 — nd. Thus, by Archimedes
Principle, there exists an n € N such that 7_s, = m9 — nd < 0, which contradicts
the notion that all entries of 7 are positive, so a stationary distribution does not
exist,.

Therefore, no matter what, a stationary distribution cannot exist for {Xs,}, so
{X5,} is null recurrent which implies that {X,} is null recurrent. O

Example 6.13. Now, let’s consider an unbiased random walk on Z?, with the
following probability distribution:

1 . . .

=, if y is adjacent to x
p(z,y) =1 2 :

0, otherwise

Is the random walk on Z¢ positive recurrent, null recurrent, or transient?

Proof. Notice that we answered this question in the previous example for the d = 1
case, but it seems difficult to expand our previous argument to higher dimensions,
so let’s try another approach which will hopefully be generalizable.

Assume Xy = 0. Let’s try calculating ZZO:O p"(0,0) directly to determine
whether the sum is infinite or not. Recalling that we can only to 0 on even steps, we
can try to calculate P[Xa, = 0]. Notice that, to return to 0, there must be exactly
n positive steps and n negative steps. Furthermore, out of the 2n total steps, we
must choose n of them to be in the positive direction. Thus, there are (2;) possible
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paths, each with a (3)"(3)™ probability of happening. Therefore,

Plxw =01 = (M) () = RGP

Unfortunately, it is rather difficult to calculate this infinite sum as written, so we
will use, without proof, Stirling’s Approzimation (displayed below) to help us out.

ntl
nl~+vV2mn 2 e "

2
P X5, =0] ~ -
PRon =0~ ey
1 2n+1 -1
(6.14) =973 pz o
V2
1

Tin

Note, that we can use Stirling’s Approximation, because both the approximation
and the factorial behave similarly as we tend to infinity. Thus, they would either
converge or diverge together. Thus, because we can only return to 0 on even steps,

- n 700 2n 7DOL7
T;p (0,0>—;p (W—éﬁ—oo

Additionally, lim,, ., p™(0,0) = lim, \/% = 0 meaning that, when d = 1,
the chain is null recurrent, which is consistent with conclusion from the previous
example.

Now, let’s consider d > 2. There are d components. By the law of large numbers
(which we can use in our infinite sum), in 2n steps, about 27" are in each component.

Thus, we can redo the approximation for P[X;, = 0] for the i-th component
specifically using 27" steps. Then, we can raise the result to the d-th power to get

the probability that all d components are at 0. So then, what is P[X;,, = 0] for
one component specifically? Because we expect to take only % steps in the positive
and negative direction instead of n, we can replace n with 4 in the formula. Thus,

1

d

P[X;,, = 0] ~

i2n

1
Using our power series convergence rules, we see that > - n= diverges when
d = 2, but converges when d > 3. Thus, when d >3, "7 p"(0,0) < oo, meaning
that the random walk is transient.

On the other hand, Y7 p™(0,0) = co when d = 2, so that random walk is
recurrent. But is it null recurrent or positive recurrent?

Note that, lim,_ . p™(0,0) = lim,, n3 = 0.
Additionally, for all n € N,s € S\ {0}, p?*(0,s) < p**(0,0). Thus, for all s € S,
lim,, o (0, s) = 0, so the chain is null recurrent. a

P[X9, =0] ~ ( )¥ = constant - n7.
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