GAUGE THEORY AND THE CHERN-SIMONS ACTION

RYAN O’FARRELL

ABSTRACT. This paper builds up the mathematical foundations necessary for
understanding Chern-Simons theory, a type of field theory fundamental to
modern quantum condensed matter physics.
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INTRODUCTION

Why is the universe the way that it is? While this is a question that has been
asked for as long as humans have been asking questions, the best answer physicists
have been able to come up with so far is gauge theory, which suggests that the
fundamental particles and interactions of the universe ultimately arise from local
symmetries of the universe.

However, collections of interacting particles can produce emergent behaviors not
seen at the microscopic level. These can be described by effective gauge theories.
In recent decades, it has become apparent that many of these theories are sensitive
to topological properties of spacetime. In this paper, we will describe one kind of
topological quantum field theory, Chern-Simons theory, and see how considerations
from gauge theory and topology give rise to the (integer) quantum Hall effect.
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1. BUNDLES ON SPACETIME

1.1. Principal Bundles. Local symmetries are described mathematically by the
action of Lie groups on principal bundles.

Definition 1.1. A Lie group is a topological group with the topology of a smooth
manifold such that group operations (multiplication and inversion) are smooth.

Example 1.2. Translation invariance (R™), rotation invariance (SO(n)) and phase
invariance (U(1) ~ S') are common symmetries described by Lie groups.

For simplicity, every topological space in this paper will be a smooth manifold.
Additionally, we will only consider matriz Lie groups, i.e. those that are Lie sub-
groups of GL(n,C) for some n, as these are the ones that appear most commonly
in physics. As it turns out, we don’t lose much.

Theorem 1.3. FEvery compact Lie group is a matrix group.

Proof. This is Theorem 4.2 in [2] and is an immediate consequence of the Peter-
Weyl theorem. O

A general gauge theory requires a spacetime manifold M and some internal
information about G at each point of M. This is captured by a fiber bundle.

Definition 1.4. A fiber bundle' is a space E equipped with a continuous surjective
map 7 to the base space M such that for every x € M

e 7 1(x) is homeomorphic to the fiber F
e There exists a neighborhood U of x such that there is a trivialization, that
is, a diffeomorphism

ov:Ey - UXF
from a subset Ey = 771 (U) of E satisfying
T o =T
where 7 : U X F' — U is the canonical projection of the first element.

Fiber bundles as objects are generalizations of product spaces. Of course, to the
aspiring category theorist, what really matters is morphisms between bundles.

Definition 1.5. Between two fiber bundles (Fy, E1, w1, M) and (Fa, Ea, mo M)
over the same base space, a bundle map ¢ is a smooth map Fy — Fs, such that
T 0 ¢ =1

A symmetry of the bundle under a Lie group G implies some kind of action of
G on our bundles. For this, we need to ensure that it is a principal bundle.

Definition 1.6. A principal G-bundle P is a fiber bundle with fiber G and two
additional pieces of structure

e A right action of G on P that restricts to an action 7~ !(z) x G — 7~ 1(x) on
each fiber. Moreover, this action is transitive in that the map G — 7~ 1(x)
given by g — xg is a bijection.

1Sometimes spelled “fibre bundle”, but in general English is nonabelian.
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o The existence of a principal bundle atlas: charts ¢; : Py, — U; x G satisfying
¢i(p-g) = ¢i(p) - g
where g acts on the second element of ¢;(p).

We will denote by r : P x G — P the action (p,g) — pg. We will denote by
rg : P — P the action p — pg. We will denote by Orb, : G — P the orbit map
g — pg. The following theorem will not be proven here. It is neat, though.

Theorem 1.7. If two manifolds M and N are homotopy equivalent, then their
isomorphism classes of principal bundles are in bijection.

Proof. Lots of theorems about principal bundles can be proven much easier with
the theory of classifying spaces, which will not be discussed here. This is one of
them, so I will leave a reference [3]. O

1.2. Aside: The Hopf Bundle. In light of the following corollary, it may seem
a little pointless to introduce the general theory so quickly.

Corollary 1.8. If M is contractible, then every principal bundle over M is trivial
(isomorphic to M x G).

Proof. Contractible spaces are homotopy equivalent to a point, and the point only
has one G-principal bundle isomorphism class over it. ([l

Physicists typically only care about the case where M = R*, which is con-
tractible. However, the general theory becomes important when stranger space-
times are considered (e.g. in string theory). Additionally, quantum mechanics
hosts an unexpectedly well-known example of a principal bundle.

Consider unit vectors in the Hilbert space C?, the space of which is topologically
S3. If we identify vectors up to global phase, i.e. make the identification

(c,d) ~ (e?c,ed),f e R

then we get the space of qubits, which is topologically the Bloch sphere S%. With
this “phase-forgetting” projection map 7 : % — S2, we exhibit S® as a nontrivial
U(1)-principal bundle over S2. This is known as the Hopf bundle.

1.3. Tangent Bundles and Forms. Equipped to every manifold M is a special
bundle called the tangent bundle T'M, which is the fiber bundle whose fibers are
the tangent vector spaces at every point.

If we have a map ¢ : M — N between manifolds, the derivative D¢ assigns to
each point of M a linear transformation between vector spaces. This means the
derivative is a map D¢ : TM — TN between their corresponding tangent bundles.

The tangent space to a Lie group is special.

Definition 1.9. A Lie algebra g is the tangent space to a Lie group G at a point.

Lie algebras are equipped with an operation [-,-] : g X g — g known as the
Lie bracket. There is a lot that can be said about the algebraic structure of Lie
algebras, of which very little is relevant to this paper. Since we’re only working
with matrix Lie groups, a Lie algebra is just some vector subspace of the matrix
group Mat(n x n, C). g has a natural action from G by the adjoint representation.
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Definition 1.10. The adjoint representation of G is the map G — Aut(g) given
by the action of conjugation. We use g — Ad, for this map, where

Adg(M) = gMg™"

That Ad,(M) is in g follows from it being the derivative of the map h +— ghg™"

at h = Id.? This is not to be confused with the fundamental representation

Definition 1.11. The fundamental representation of G is the mapping G —
GL(n,C) = Aut(C") given in the definition of G

Example 1.12. Consider the matrix Lie group U(1), which is defined by
{U e GL(1,C),UTU =1d}

The fundamental representation is the “obvious” injection U(1) < GL(1,C) ~ C*.
However, since the group is abelian, the adjoint representation is trivial.

A map w: TM — R is called a (differential) 1-form. Correspondingly, a map
w:TM — gis called a g-valued 1-form. In general, we can write a g-valued 1-form
as a tensor product w ® X, where w is an R-valued 1-form and X € g.

A particularly natural g-valued 1-form on G itself is the Maurer-Cartan form

pe =g 'dg
dg is the identity map TG — T'G, and g~! translates a vector from T,G to T,G ~ g.

Elements of the Lie algebra act like infinitesimal versions of elements of the Lie
group. This is seen by the following definition.

Definition 1.13. For an element X € g, the fundamental vector field X associated
to X is defined at p € P to be DigOrb,(X)

In this way, each element of the Lie algebra determines an “infinitesimal action”
on P.

1.4. Ehresmann connections. The action of G provides a way to move along
fibers. But what’s the natural way to move between fibers? As it turns out, there’s
no canonical way to do this, so we have to be a bit clever. This will eventually lead
to the notion of a “field on spacetime”.

If we take the derivative of the projection map = : P — M we get a map
Drn : TP — TM between tangent bundles. The kernel of this map picks out a
subbundle VP C TP, called the vertical bundle. At each point p € P, we can
therefore decompose the tangent vector space as a direct sum

T,=V,P® H,P
where H,P is the horizontal bundle. Besides ensuring that V,P and H,P are
complementary, we’re very free to pick H,P.
Definition 1.14. An Ehresmann connection is a smooth choice of H,P for each
point p € P.

There’s an alternate definition of a connection. Observe that instead of defining
H,P directly at each point, we can first define a map w, : T,P — V, P and define
H, = ker(w,). But note that V,,P is basically the same as the tangent space to our
Lie group T,G. We can therefore define an Ehresmann connection entirely as the

2This is the definition of the adjoint representation for non-matrix Lie groups.
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kernel of a map w : TP — g, a Lie algebra-valued 1-form. In order to ensure that
we get a smooth definition of H, P, we put two restrictions on w.

e woDry= Ady-1 ow. This asserts that horizontal subspaces can be related
by the action of G.

e w(X) = X. This asserts that w acts like the identity on the vertical sub-
space.

We call w a connection 1-form. Note that the Maurer-Cartan form is a connection
1-form of the principal bundle where M is a single point. In fact, it is the unique
such connection!

2. GAUGE TRANSFORMATIONS

2.1. Sections. We can move from space-time M to this “higher” space E with a
choice of section.

Definition 2.1. A (local) section on U C M is a map s : U — P satisfying
mTos=1idy.

A choice of section is called fizing a gauge, and a change of section is called a
gauge transformation.

Observation 2.2. If P is a principal bundle, then given two sections s, s’, we can
always write s = r4(,) 0 5, where g(x) applies the transitive group action to every
fiber to “slide” everything to its correct image.

The derivative of a section s gives us a map Ds : TU — T'P. Combined with
the connection w, we can associate to each section a Lie algebra-valued 1-form on
M known as the local connection 1-form A = w o Ds.

Theorem 2.3. Under the transformation s 14,y o s, A transforms as
A Adyro A4 gt - dg
Proof. We must compute w o D(r o (s,g)). Observe that with
D gyr: TeM & TyG — TpgM
by linearity we have
D(z’g)r(X, Y) = D(I’Q)T(X, 0) + D(xyg)T(O, Y)
= (Darg)(X) + (DgOrbg )(Y)
Hence, by the chain rule
Ds(m),g(m)(r o (s,g)) = (Ds(m)rg) oD,,s+ (Dg(m)OTbm) o Dpg
By the first constraint on connection 1-forms, we have that
wo (Dyimyry) = Adg-1 ow
For the second term, we have that
(Dg(m)Orbm) oDpg= (DIdOrbm) opug o Dpg

which is just the fundamental vector field associated to po D,,g. Again using the
defining property of a connection 1-form,

w o (Dg(m)Orby,) © Ding = pig © Ding = g 'dg
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Hence we get the full transformation law
A Ady-10A+g " dg
O

2.2. Aside: Electromagnetism as a U(1) gauge theory. Consider a U(1)
gauge theory. We can identify u(1l) ~ iR and define an R-valued 1-form A where
w = iA. The transformation law tells us that under a change of section given by
g(x) = €@ A transforms as

A =A+do

which is exactly the conventional gauge transformation of electromagnetism. We
can pick a set of coordinates and take derivatives to turn A : TM — R into a
map A : M — R that we can identify as a typical “field on spacetime” called the
gauge boson field. In the (3 4+ 1)-dimensional U(1) case A is the electromagnetic
4-potential, and from it all other interesting quantities in electromagnetism can be
derived.

Observe that we get one gauge boson field for every generator of our Lie algebra.
Since u(1) is 1-dimensional, there is only one photon. The full Standard Model is an
SU(3) x SU(2) x U(1) gauge theory, whose Lie algebra has 12 generators: 8 gluons,
3 weak force bosons (W* and Z°) and 1 photon (although this is complicated by
Higgs mechanism considerations).

2.3. Curvature. Given a connection, we can define its corresponding curvature
2-form. Unlike for R-valued forms, the normal way of defining the wedge product
does not work for Lie algebra-valued forms since Lie algebras do not have a notion
of “multiplication”. We do, however, have the Lie bracket. Given two g-valued 1
forms

dim g dim g

azZa”@Tn b=Zb”®Tn
n=1 n=1

where {T,,} is a basis for the Lie algebra, we can define the Lie bracket

dim g
[a,b] = > (a" Ab") @ (T4, T

m,n=1

which is a g-valued 2-form. We can then use this to define the curvature 2-form of
a connection w

1
F,=dw+ §[w,w]

Just like the local connection 1-form, we can define a local curvature Fn =
F,(Ds, Ds). Under changes of section (gauge transformations), F4 transforms as

FAI—)Adgfl o Fy

In physics this is also known as the “field strength tensor”. In the U(1) case,
this is known the Faraday tensor and is manifestly gauge invariant since Ad,-1 is
trivial.
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3. CHERN-WEIL THEORY

There are conventional ways of constructing gauge invariant theories from gauge
fields and their corresponding curvatures (e.g. Yang-Mills theories). We are not
interested in those.

3.1. The Chern-Weil Homomorphism. Recall that the space 2 of differential
forms on M is a graded algebra with a product given by the wedge product A.
Additionally, we have the exterior derivative map d : Q — € satisfying d*> = 0. A
form w € Q is closed if it is in the kernel of d (i.e. dw = 0) and ezact if it is in the
image of d (i.e. w =dg for 5 € Q).

Definition 3.1. The de Rham cohomology of M is the quotient of the closed forms
on M by the subgroup of exact forms on M. It is a graded ring with product given
by the conventional wedge product A.

On any vector space we can define

Definition 3.2. A symmetric k-linear function is a map Q : V¥ — R that is
invariant under the reordering of variables.

Invariant k-linear functions form a graded ring with the symmetric product o,

which we denote I*(G)

1
(Q10Q2)(v1,...,V4e) = (L Z T1(Vo(1ys -+ Vok)) T2 (Vo (ht1)s - - - s Vo (kte))
' UeSk-HZ

The adjoint representation gives us a natural action of G on the vector space g*
by applying the adjoint action to each copy of g.

Definition 3.3. An invariant k-linear function® @ is symmetric k-linear function
that is invariant under the adjoint action.

We can let V' be the space of g-valued 2-forms by defining for w; € Q(M), X; € g
Q(w1 ®X1,...,wn ®Xn) = (w1 ARER /\wn)Q(Xl,...,Xn)
and extending by linearity to all g-valued 2-forms. Alternatively, we can define a
product-like operation on two g-valued 2-forms
(w1 ® X1) A (w2 ® X2) = (w1 Awa) @ (X1X2)
Note that X7 X5 is not typically in g, but generically takes values in some matrix
group. Q now assigns to every curvature 2-form a corresponding 2k-form on E by
writing
Qu ::Q(Fwa“-;Fw)

Observe that a choice of section turns @, into a 2k-form on M. Since F4 trans-
forms under the adjoint representation with respect to changes of section and @ is
invariant under the adjoint action, @), can be identified with a unique 2k-form on
M. We call this form the characteristic form associated to @), a name justified by
the following surprising theorem.

Theorem 3.4. (Chern-Weil)
e (), is closed.

3Sometimes confusingly called an “invariant polynomial”



8 RYAN O’FARRELL

e The cohomology class w(E;Q) = [Q.] does not depend on the choice of
connection.

o The map w(E,—) : (I*(G),0) = (Hjzr(M),N) is a ring homomorphism
(the Chern-Weil Homomorphism,).

Proof. All of these are found in [4]. O
An immediate corollary is the following.

Corollary 3.5. For any two connections wi, wa, the form Q(FF) — Q(FE) is
ezact and can be written as dCSq for some form CSg

We call C'Sg the Chern-Simons form associated to (). Note that we have
Lemma 3.6. (Poincaré) If M is contractible then Hb, (M) is trivial for k > 0.

As a result, in order to construct interesting Chern-Simons forms, we should look
at spacetimes with nontrivial topology.

3.2. The Chern-Simons 3-form. Let’s take a look at a specific Chern-Simons
form. One classic example of an invariant polynomial on the space of matrices is
Q(A,B) = tr(AB)
Observe that it is invariant under permutation and the adjoint action.
tr(AB) = tr(BA) tr((GAG™')(GBG™Y)) = tr(AB)
Chern-Weil theory then tells us we should look at
tr(Fa A Fa) = 87%cy
and this form is independent of the choice of section used to define F'4. This turns
out to be 872 times the second Chern class, an important object in the general

study of characteristic classes [5]. What’s relevant here is that Chern-Weil theory
tells us it must have a corresponding Chern-Simons 3-form

CS:tr(dA/\AJrgA/\A/\A)

such that on local patches
co =dCS
Observe that under gauge transformations
A? =g Ag+ g dg
we get after a lot of algebra that the Chern-Simons term transforms as
1 .
CS(A9) =CS5(4) +/ d(tr(Adgg™t) — 7/ tr((g~tdg)?)
M 3Jm

Two cases that are especially relevant to physics are when G = SU(N) or G =
U(1). For G = SU(N), we can choose M = S3 as an “interesting” spacetime
manifold. Since the second term is a total derivative, it vanishes. The third term,
however, does not vanish. It turns out to equal 872 times the the degree of the map

g:S® — G! Therefore, this integral takes values in m3(G), and when G = SU(N),
we have a stunning result

Theorem 3.7. If G is a compact connected simple Lie group (like SU(N)), then
T3 (G) =Z.
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Gauge transformations that are not homotopic to the identity are called large
gauge transformations. Under these gauge transformations, the Chern-Simons term
shifts by 872n for n € Z!

Another common gauge group in physics is U(1). Even though 73(U(1)) = 0, if
we choose M differently, for example M = S x S? we get nontrivial results. ([6]
describes this as compactifying space to S? and making time periodic as S*.) Now,
the relevant quantity is winding numbers of maps S x.S? — U(1), which take values
inm (U(1)) = Z. We've seen from Section 2.2 that U(1) gauge transformations take
the form

A A+do

SO
/d(A+d¢>)A(A+d¢):/ CS+/ dA N do
M M M

If ¢ does not wind around the S*, the integral does not change. However, if ¢ is a
large gauge transformation, there is an additional contribution of 27 - 47 = 872 to
the integral for each time the gauge transformation winds around S* x S?, so once
again, large gauge transformations shift the Chern-Simons term by 872n.

4. 241D U(1);, CHERN-SIMONS THEORY

As a treat, we will now see some of the unusual physical consequences of a system
with an action containing a Chern-Simons term.

Definition 4.1. A Chern-Simons theory is a field theory whose Lagrangian density
is proportional to a Chern-Simons form

This means they are governed by a Chern-Simons action

k
S=— cSs
47 M
k is called the level of the Chern-Simons theory. To be a quantum field theory
means the system is governed by the partition function®

ZNeiS

A rigorous treatment of quantization is not presented here, since it is more witchcraft
than mathematics. The most striking feature of Chern-Simons theories is that, un-
like most physical theories, they make no reference to a metric on M. They are
purely topological quantum field theories!

The second most striking feature of Chern-Simons theories is that, in order for
Z to be gauge invariant, k must be quantized to integer values only. Since gauge
transformations send S +— S + 27wkn, we must have this constraint in order for Z
to remain invariant. This constraint ends up having observable consequences.

As above, consider a G = U(1) Chern-Simons theory. A = > a,idz, is a
1-form with values in u(1). Since the Lie algebra is abelian, we can simplify a lot

4Not to be confused with the partition function in statistical mechanics, which is somewhat
related, or the partition function in number theory, which is completely unrelated.
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and write the action (after a lot of algebra with forms) as a sum over permutations
of (t,x,y)

Scs[A] = %/ Z sgn(0)as(1) 00 (2) @0 (3)
T JMm
o€ES3

Treating A as a kind of electromagnetic 4-potential, we can compute the current
density in space

0ScslA k k
= %[] = o (Oyar — Oray) « %Ey
where F is the electric field. This describes a system with a Hall conductivity of %
Strikingly, this quantum Hall effect has been observed in real materials, matching
the predicted value from Chern-Simons theory to a precision of one part in one
billion [6]!

Ja
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