GROUP ACTIONS ON BOOLEAN ALGEBRAS

LEO LONG

ABSTRACT. This paper provides an introduction to Boolean algebra and group
actions on it. We first define the Boolean algebra B, and some key concepts
regarding partially ordered sets. We show that the Boolean algebra B, is
graded of rank n, rank-symmetric, rank-unimodal, and Sperner. We then
introduce the quotient poset By, /G and show that it also has the four properties
of By,. Finally, we demonstrate two applications of By, /G in graph theory and
combinatorics, respectively.
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1. INTRODUCTION

Boolean algebra, the power set of a finite set equipped with inclusion partial
order, is a fundamental algebraic structure with a wide range of applications in
logic, set theory, graph theory, and combinatorics. One may notice that Boolean
algebras have some beautiful properties: since (Z) = (nﬁ k) for all natural numbers
n > k, if we divide a Boolean algebra into “levels” based on the number of elements
in each subset, we will obtain a “symmetric” diagram such that the number of
subsets at level k is the same as that of level n — k; since (Z)7 as a function of k,
first increases, attains its maximum at & = |3 ], and then decreases, the diagram
obtained will have most elements in the middle level and least elements at top and
bottom. These two properties correspond to rank-symmetry and rank-unimodality,
which we will define rigorously in the next section. Along with the Sperner property,
which we will also define later, these three beautiful properties enable us to solve
some problems in an elegant way using Boolean algebras.

However, in many cases, we are interested in the quotients of Boolean alge-
bras. That is, we may group subsets that are equivalent under a specific group
action, which leads us to consider the structure of the resulting quotient poset.
Surprisingly, three beautiful properties we mentioned previously: rank-symmetry,
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rank-unimodality, and the Sperner property, still hold for the quotient poset. This
enables some further applications of Boolean algebras, some of which will be dis-
cussed later in the paper.

We will demonstrate two applications in graph theory and combinatorics, re-
spectively. First, we will show that the set of isomorphism classes of simple graphs
on a vertex set is isomorphic to some quotient of Boolean algebra, which leads to
applications in the enumeration of nonisomorphic graphs and solves a problem in
extremal graph theory. Second, we connect quotients of Boolean algebras to in-
teger partitions and rectangular Young lattices, which results in an application in
combinatorics.

2. BOOLEAN ALGEBRAS
We first review some key definitions about partially ordered sets.

Definition 2.1. A partially ordered set (poset) P is a finite set equipped with
a partial order <, which is a binary relation such that for all z,y,z € P, we have
(1) z <z, (2)  <yand y <z implies x = y, and (3) z < y and y < z implies
x < z.

One can see that for all finite collections of sets P, we can turn P into a poset
by defining, for all z,y € P, x <y if x C y. In this paper, we are interested in a
particular type of collection of sets: Boolean algebra, which is defined as follows.

Definition 2.2. P is called a Boolean algebra of rank n if it consists of all
subsets of an n-element set S and x < y in P if and only if z C y.

In this case, we denote P by Bg. In particular, if S = {1,...,n}, we denote
Bgs by B,. By the previous argument, all Boolean algebras are posets. In this
paper, we will denote sets using the abbreviated notation when it does not lead to
confusion. For example, we may denote {1,2,3} simply by 123.

Definition 2.3. Let P be a poset. For all x,y € P, we say y covers z if x < y
and there does not exist z € P such that z < z < y. We write x < y.

Note that z < y means z < y and = # y. The notion of cover provides us a way
to represent posets graphically. Since the relation < is transitive, given all cover
relations, we can uniquely determine all relations of a poset. The Hasse diagram
is a diagram that depicts covering relations of a poset. In the Hasse diagram of a
poset P, if x <y in P, then an edge is drawn between x and y with y drawn above
x. By the previous argument, we can recover all relations of a poset from its Hasse
diagram. Figure 1 shows the Hasse diagram of the Boolean algebra Bs.

Definition 2.4. We introduce the following definitions regarding posets.

(1) Two posets P and @) are isomorphic if there exists a bijection ¢ : P — @
such that x <y in P if and only if ¢(z) < ¢(y) in Q. The bijection is called
an isomorphism between P and Q.

(2) An automorphism of a poset P is an isomorphism ¢ : P — P.

(3) Let P be a poset. A chain C in P is a totally ordered subset of P. That
is, for all x,y € C, we have either z < y or y < x.

) We say that a finite chain has length n if it has n + 1 elements.
(5) A chain is maximal if it is not contained in a larger chain.
(6) A poset P is graded of rank n if every maximal chain in P has length n.

—
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FIGURE 1. Hasse diagram of the Boolean algebra Bs.

(7) A chain zg < 1 < -+ < x, is saturated if z; < ;41 for each i.

(8) Let P be a graded poset. We say « € P has rank i if the largest saturated
chain in P with top element = has length i. We denote this by p(x) = i.

(9) Let P be a graded poset. Then P, = {x € P : p(x) = i} is the ith level
of P.

Example 2.5. We now present examples corresponding to the definitions intro-
duced in Definition 2.4.

(1) For each n-element set S, Bg is isomorphic to B,,. Therefore, in this paper,
we will often only show that certain results hold for the Boolean algebra
B,,, since then the results can be easily generalized to all Boolean algebras.

(2) An automorphism ¢ of By is defined by ¢(@) = @, ¢(1) = 2, ¢$(2) =1, and
$(12) = 12.

(3) {9,1,12,123} is a chain in Bs while {&,1,23,123} is not.

(4) The chain in (3) has length 3. Note that each chain of length n can be

written in the form zg < 1 < -+ < 2.

5) The chain in (3) is a maximal chain in Bs while @ < 1 < 12 is not.

6) B, is graded of rank n.

7) 2 < 23 is a saturated chain in Bs while @ < 1 < 123 is not.

8) p(12) = 2 in Bj since the largest saturated chains in Bs with top element
12are o <1< 12and @ < 2 < 12.

(9) (Bn)o ={@} and (Bp), = {{1,...,n}} for all n.

Note that each maximal chain in P has the form xzy < z1 < --- < x,, where
x; € P; for each i. After defining these basic concepts concerning posets, we are
now ready to deduce some properties of Boolean algebras. The first two properties
are rank-symmetry and rank-unimodality.

Definition 2.6. A graded poset P of rank n is rank-symmetric if |P;| = |P,_;|
for all 0 <4 < n and rank-unimodal if there exists 0 < j < n such that

[Pol < [Pi| <+ < P > |Paa| = -+ > | Py,
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To show that B, is rank-symmetric and rank-unimodal, we can calculate the
size of each level of B,, explicitly, which requires the following proposition.

Proposition 2.7. p(z) = |z| for all z € B,,.
Proof. Let x = {x1,...,2} € B,. Then |z| = k. Since
o <A{xi1} <{x1,m} < - <{x1,...,78} =2

is a saturated chain with length k& and top element x, we have p(z) > k. To show
p(x) < k, suppose there exists some chain C' in B,, with length greater than k& and
top element x. Then C has at least k+ 2 elements. Since |z| = k, all elements in C'
must have sizes less than or equal to k, and there exist two distinct elements in C
of the same size. However, a finite set cannot be a subset of a different set with the
same size. Thus, C is not a chain, a contradiction, and we must have p(z) < k. O

Hence, we have |(B,);| = [{z € B, : |z| = i}| = (7}). Since (}) = (,",) for all
0<i<mnand (3) < (?) <. S (m?z]) 2 (Ln/;lJ-H) 2 2 (Z)v we obtain the
following theorem.

Theorem 2.8. B,, is rank-symmetric and rank-unimodal.

In many combinatorial problems, we are interested in an extremal question: how
large can a collection of subsets be if none of them is contained in another? This
question leads us to the concept of an antichain.

Definition 2.9. Let P be a poset. An antichain A in P is a subset of P such
that for all x,y € A, x and y are not comparable. That is, we do not have x < y
for all z,y € A.

We first show a basic yet important property of graded posets regarding an-
tichains.

Proposition 2.10. If P is a graded poset, then each level of P is an antichain.

Proof. Suppose that for some level P;, there exist x,y € P; such that x < y. By
definition, there exists a saturated chain C' with length ¢ and top element x. Thus,
C U {y} is a chain with length ¢ + 1 and top element y, contradicting p(y) =d. O

Let us return to our previous question. Notice that the question is equivalent
to asking: What is the size of the largest antichain in B,? By Proposition 2.10,
we know that each level of B, is an antichain; by Theorem 2.8, we know that the
largest level of B, is its [ § |th level. Therefore, one guess is to choose all subsets
of size | § ], which gives us an antichain of size (|,’,). However, is this the largest
antichain that we can choose? Motivated by the conjecture, we are now ready to

define the Sperner property.

Definition 2.11. We say that a graded poset P of rank n has the Sperner prop-
erty or is Sperner if

max{|A| : A is an antichain in P} = max{|FP;| : 0 <i < n}.

Therefore, our conjecture is equivalent to stating that B, is Sperner. We will
spend the rest of this section showing this result. While there are direct proofs
of the Sperner property of B,,, we will use the order-matching method, since it is
much easier to generalize to the quotient posets that will be introduced later.
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Definition 2.12. Let P be a graded poset. An order-matching from P; to P,1;
is an injective function u : P; — P,y such that < u(x) for all x € P;. Similarly,
an order-matching from P; to P;_; is an injective function p : P; — P;_; such that
wu(z) < x for all x € P,.

Example 2.13. An order-matching u from (By); to (By)s2 is defined by p(1) = 12,
w(2) =23, u(3) =13, and p(4) = 14.

In the rest of the paper, for all finite sets S, we will use RS to denote the real
vector space with basis S.

Definition 2.14. Let P be a graded poset. A linear transformation U : RP; —
RP; 1, is an order-raising operator if Uz € span{y € P,y : z < y} forallx € P;.

We can think of an injective order-raising operator as a “weighted” order-matching.
Instead of choosing one y € P;y; that satisfies © < y to match x, we assign weights
to all y € P41 such that x < y. One may ask a question: Does the existence of
an injective order-raising operator imply the existence of an order-matching? The
question leads to the following proposition.

Proposition 2.15. Let P be a graded poset and U : RP; — RP;+1 an order-raising
operator. If U is injective, then there exists an order-matching p: Py — Piyq1; if U
is surjective, then there exists an order-matching p: Piy1 — P;.

Proof. Assume U is an injective order-raising operator. Consider the matrix of U
with respect to bases P; and P;1;. Since U is injective, rank(U) = |P;|. Thus, [U]
has | P;| linearly independent rows. Let A be the |P;| x |P;| matrix obtained from
choosing the |P;| linearly independent rows of [U]. Let x1,...,2|p, be elements
of P; by the order they appear in columns of A, and let yy,...,yp, be elements
of P;11 by the order they appear in rows of A. Since the rows of A are linearly
independent, det(A) # 0. By the definition of determinant, there exists o € S|p,
such that ai o1y~ a|p,|,0(p,) # 0. Hence, for all 1 <k < [Pi], ag o) # 0. Since
U is an order-raising operator, yx > Ty () for all k. Therefore, there exists an
order-matching ju : P; — Pjyq defined by pu(zx) = yo-1(x) for all 1 <k < |P;[. The
case when U is surjective is proved similarly. O

After showing this key proposition, one question remains: Why do we care about
the existence of an order-matching at all? How is it related to the Sperner property?
Consider a graded poset P with only two levels, Py and P;. Suppose there exists
an order-matching u : Py — P;, and we wish to build an antichain larger than the
size of P; across two levels. Thus, we must choose some elements in Py. Say we
include k elements in Py, namely {z1,...,2x} C Py, in our antichain. Then by the
definition of order-matching, k elements in P;, namely pu({z1,...,zr}), cannot be
included in the antichain. Therefore, including elements in Py does not increase the
size of our antichain since it results in elements in P; being excluded. Hence, the
largest antichain we can choose is P;. Extending this notion gives us the following
proposition.

Proposition 2.16. Let P be a graded poset of rank n. If there exist order-matchings
Py— P, — - — P, Pyy1 < -« P, for some 0 <k <mn, then P is rank-
unimodal and Sperner.

Proof. Since order-matchings are injective, we have
Pol < P < < |Pi| 2 |Pisal 2 - 2 |Pal,
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and P is rank-unimodal.

To show that P is Sperner, we will decompose P into disjoint chains. Let p;
denote the order-matching from P; to P;y; for all 0 <4 < k — 1, and let p; denote
the order-matching from P; to P;j_; for all k41 < j < n. We will construct chains
as follows. For each x € Py, construct the chain

x < po(®) < (1o po)(@) < -+ < (pr—1 00 po)(x) € Pr;

for each x € P,,, construct the chain
> pin(&) > (in 0 i 1)(2) > - > (i 0+ 0 1) (2) € P
for each x € Py \ po(Fy), construct the chain
x<p(z) < <(ug—10--0pg)(x) € Py;
similarly, for each € P,,_1 \ pn(Py), construct the chain
T > fin-1(x) >+ > (prg1 00 0 pin—1)(x) € Py

Continue this process until we reach P, where we combine chains that intersect in
Py, and construct a singleton chain for each element in Py not included in any pre-
vious chains. Hence, each element of P is in at least one of the chains constructed.
Since order-matchings are injective, the chains are disjoint. Therefore, we have
partitioned elements of P into disjoint chains that start or end in Py. Hence, the
number of chains is at most |Py|. Let A be an antichain. Since A can intersect each
chain at most once, we have |A| < |Pg|. Thus, Py is the largest antichain in P, and
P is Sperner. ([

We now give an explicit example of how we construct disjoint chains in the proof
of Proposition 2.16.

Example 2.17. Consider the Boolean algebra Bs. One can verify that one set of
order-matchings is given by

po(2) =1,
pa(1) =12, p1(2) =23, (3) =13, @i (4) = 14,
13(123) = 12, p3(124) = 14, p5(134) = 13, pug(234) = 23,
1 (1234) = 123.

Using the algorithm in the proof of Proposition 2.16, we decompose B, into six
disjoint chains, namely @ < 1 < 12 < 123 < 1234, 2 < 23 < 234, 3 < 13 < 134,
4 < 14 < 124, and singleton chains 24 and 34. Figure 2 shows the disjoint chains
graphically.

Combining Proposition 2.15 and Proposition 2.16 yields the following corollary.

Corollary 2.18. Let P be a graded poset of rank n. If, for some 0 < k < n, there
exist order-raising operators

U U Uk— Uk U Up—
RPy =% RP, =% ... 5 RP, —5 RPyyy —— - 5 RP,,

where U; is injective when @ < k and surjective when i > k, then P is rank-unimodal
and Sperner.



GROUP ACTIONS ON BOOLEAN ALGEBRAS 7
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FIGURE 2. Hasse diagram of the Boolean algebra Bs. Colored
paths indicate disjoint chains. Note that 24 and 34 are singleton
chains.

Therefore, to show that B,, is Sperner, we need to find appropriate order-raising
operators U; : R(B,); — R(By,);+1 for all 0 < i < n. Fortunately, a simple linear
transformation will do the job. For each 0 < ¢ < n, define the linear transformation

U,z = Z y

yE€(Bn)it1
<y
for € (By);, which is by definition an order-raising operator. Since the largest
level of By, is (By)|n/2), we wish to show that U; is injective when i < % and

2
surjective when 7 > 5, which is the following proposition.
Proposition 2.19. U; is injective when i < 5 and surjective when i > 3.

Proof. For each i, consider the linear transformation D; : R(By,);+1 — R(B,); of

U; defined by
D,y = Z z.
z€(By);
<y
Note that
1 ife<y

0 otherwise

(Uiz,y) = (z, Diy) = {

forall 0 <i < n, z € (By);, and y € (By)i+1 under the standard inner product.
Hence, D; is the adjoint of U;, and we have [D;] = [U;]T for all i. We also define
U,=D=U,=D,=0.

Now consider the operators D;U; and U;_1D;_1, which are positive semidefinite
and thus have nonnegative eigenvalues by the previous statement. Let x € (By,);.
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Then we have

DiUi.’E :Di Z Yy

YE(Bn)it1
<y

> Dy

YE(Bn)it1
<y

YE(Bn)it1 2€(Bn)s
<y z<y

If z = x, there are n—1 choices of y € (By,);+1 such that z = z < y; if |zNa| =i —1,
there is one choice of y, namely y = = N 2z, such that z < y and z < y; otherwise,
there does not exist y € (By)i+1 such that © < y and z < y. Therefore,

DUz = (n —i)x + Z z.
2€(Bn)i
|zNz|=1

Similarly, we have

Uileifll' =1x+ Z zZ.

Ze(Bn)i
lzNz|=1

Hence,
DU, =U;_1D;_1 + (n - Qi)I
for all 4. Since U;_, D;_1 has nonnegative eigenvalues, D;U; has positive eigenvalues
when i < 3. Therefore, D;U; is invertible and U; is injective if ¢ < 3.
We also have
U1D1 = Di+1UZ‘+1 + (QZ +2— 7’L)I

for all 4. Similarly, since D;4+1U;+1 has nonnegative eigenvalues, U; D; has positive
eigenvalues when ¢ > 5. Thus, U;D; is invertible and Uj is surjective if 1 > 5. [

By Corollary 2.18 and Proposition 2.19, we have the following theorem and
corollary.

Theorem 2.20. B,, is Sperner.

Corollary 2.21. Let S be an n-element set. Let A be a collection of subsets of S
such that none of the elements in A is contained in another. Then |A| < (Ln72J)'

3. THE QUOTIENT POSET B, /G

In many situations, we are interested not only in the behavior of the Boolean
algebra B, itself, but also in its structure under symmetry. For instance, we can
uniquely represent a simple graph with n vertices as a subset of (B,,)2, and we
consider two simple graphs to be isomorphic if their edge sets are “equivalent”
under the permutation of vertices. Such examples motivate the study of B, /G,
where G is a subgroup of S,, that acts on B,,. We first review some key definitions
concerning group actions. In the following definitions, let G be a group acting on
a set X.
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Definition 3.1. We say that z,y € X are G-equivalent if there exists g € G such
that gxr = y.

Note that G-equivalence is an equivalence relation. Hence, it makes sense to
define the orbit under a group action.

Definition 3.2. The orbits of X under the action of G are the equivalence classes
resulting from G-equivalence. The set of orbits of X under G is denoted X/G.

Example 3.3. Consider § € R acting on R? by a counterclockwise rotation of 9
radians. Then we have R?/R = {C, : r > 0}, where C, is the circle centered at
(0,0) with radius r.

We will denote the orbit of X under G containing € X by Gx = {gx : g € G}.
Notice that for z,y € X, Gx = Gy if and only if x and y are G-equivalent.

Now we want to define the quotient poset B,,/G. As we mentioned at the begin-
ning of the section, our interest in the behavior of B,, under certain permutations
of its elements motivates the study of B,,/G. Thus, G should be a subgroup of S,,.
But how should we define the action of G on B,? Since B, is a poset, a natural
requirement of the action is that it must preserve the partial order. In other words,
for all 0 € S, the action of ¢ on B,, should be an automorphism. Consider the
action defined by

o{xy,...,xp} ={o(x1),...,0(xk)}
for all o € S, and {x1,...,2x} € By. Then for x,y € B, such that  C y, we have
ox C oy for all o € S,,. Thus, the action of ¢ is indeed an automorphism. Now we
are ready to define B, /G.

Definition 3.4. Let G be a subgroup of S,,. The quotient poset B, /G is the
set of orbits of B,, under the action of G defined above, equipped with the partial
order defined as follows. For all O, 0’ € B,,/G, define O < O’ if there exist z € O
and y € O such that x < y in B,.

In the remainder of this section, unless otherwise specified, assume G is a sub-
group of S;,. We now show that < is indeed a partial order.

Proposition 3.5. The relation < defined above is a partial order.

Proof. Let 0,0',0" € B,,/G.

(1) Take any € O. Then O < O follows from z < z.

(2) Assume O < O’ and O < O. Then there exist z1,22 € O and y1,y2 € O’
such that z; C y; and yo C x2. Then we have |z1| < |y1| = |y2| < |z2|. Since
|z1| = |x2|, we must have |z1| = |y1| and thus z1 = y1. Hence, O = O'.

(3) Assume O < O and O < O”. Then there exist x € O, y1,y2 € O, and
z € 0" such that x C y; and y3 C z. Take o € G such that oy; = y2, and we have
ox C oy1 = y2 C z. Therefore, O < O”. O

Example 3.6. Let G = ((1 2 3 4)) < S4. Then By/G = {{o},{1,2,3,4},
{12,23,34,14},{13,24},{123,234,134,124},{1234}}. Figure 3 shows the Hasse di-
agram of By/G.

Recall that the Boolean algebra B, is graded of rank n, rank-symmetric, rank-
unimodal, and Sperner. One may wonder: Does the quotient poset B, /G have
similar properties? The answer is yes. In the remainder of this section, we show
that these properties also hold for B,,/G. We first show that B, /G is graded of
rank n and rank-symmetric.
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[1234]

[123]

/ N\

[12] [13]

FIGURE 3. Hasse diagram of the quotient poset By/((1 2 3 4)).
Note that each orbit is represented by an element of the orbit. For
example, {13,24} is represented by [13].

Proposition 3.7. B, /G is graded of rank n, and p([x]) = |z| for all z € B,,.

Proof. By the definition of the action of G on B, we have |oz| = |z| for all 0 € G
and x € B,,. Hence, elements of the same orbit in B,,/G must have the same size,
and it makes sense to define |[z]| = |z| for all € B,,.

Let Op < 01 < -+ < O be a maximal chain in B,/G. Since [&] < O <
{1,...,n}] for all O € B, /G, we have Oy = [@] and O = [{1,...,n}]. We
now claim that |O;11] = |O;] + 1 for all i. We have |O;41| > |O;] + 1 by the
definition of B,,/G. By means of contradiction, assume there exists j some that
|Oj41] > |0j| + 2. Take v € O; and y € Oj41. Since |y| — |z| > 2, there exists
z € B, such that © C z C y. Therefore, O; < [2] < Oj41, contradicting that the
chain is maximal. Thus, the size of the elements of the orbits increases from 0 to n
with an increase of 1 for each orbit. Hence, the chain must have length n, and
B, /G is graded of rank n.

The proof of p(z) = |[x]] is similar to that in Proposition 2.7, except we consider
[x] instead of z. O

The previous proposition implies that (B, /G); = (B,);/G for all 0 <i < n.
Proposition 3.8. B, /G is rank-symmetric.

Proof. Consider the complement function
c: B, = B, x> {1,...,n}\z.

For all o € G, since o is a permutation of B,, we have oc(x) = c¢(oz). For each
0 <i < n, define

fi:(Bn)i/G = (Bn)n-i/G 2] = [e(x)].
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Note that if cx = y for some o € G and x,y € (B,,);, then

filly]) = [e(y)] = [elox)] = [oc(x)] = [e(z)] = fi(x).
Therefore, f; is well-defined. Since f; has an inverse, namely f,_;, f; is a bijection.

Hence, [(B,)i/G| = |(Bn)n-i/G|, and B, /G is rank-symmetric. O

Now we wish to show that B, /G is rank-unimodal and Sperner. Intuitively,
we want to mimic the approach we used to show that B, is Sperner. That is,
define appropriate order-raising operators from R(B,,/G); to R(B,,/G);+1 for each i.
However, in (B,,/G);, we wish to take a vector for each orbit that treats each element
in the orbit equally. A natural choice is the orbit sum

v = E Z,
z€eO

where O € (B,,/G);. Note that vp is invariant under G since G only permutes its
summands.
For all 0 € S, and 0 < i < n, we extend o to an action on R(B,,); by defining

o E x| = E CpeOT

"L'E(Bn)'i "L'E(Bn)’i

for real numbers ¢,. Then each element in R{vp : O € (B,/G);} is invariant
under G. Consider the subspace

R(B,) = {v e R(B,); : ov = v for all o0 € G}
of R(B,,); in which each element, by definition, is also invariant under G. We claim
that R{vp : O € (B, /G);} = R(B,)§.
Proposition 3.9. {vp : O € (B,,/G);} is a basis for R(B,,)¢.
Proof. Assume there exists co € R for all O € (B,,/G); such that
Z Covp = 0.
O€(Bn/G)i
Expanding the LHS gives
> w¥em Y o
Oe(Bn/G)1 ze0 xe(Bn)i

Since (B,,); is linearly independent, co = 0 for all O, and vp’s are linearly inde-
pendent.

We have oz € O for all 0 € G, O € (B,/G);, and z € O. Since o is a
permutation of (B,,);, it also permutes the elements of @. Hence, cvp = vp, and
vo € R(B,)¢ for all O. It suffices to show that {vp : O € (B, /G);} spans R(B,,)$.
Let v=73", c(p,) 2T € R(B,)¢. Since ov = v for all 0 € G,

S cor= Y = Y oo
x€(Bn)i z€(Bn)i 2€(Bn)i
and we have ¢, = ¢y, for all x € (B,,);. Thus, we can write
D LS ST S
0€(B,/G); z€O 0e(Bn/G):
Therefore, span{vep : O € (B,/G);} = R(B,){. O
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The above proposition gives us good candidates for the order-raising operators
from R(B,/G); to R(B,/G)ir1. Since vp’s form a basis for R(B,)§ and O’s
form a basis for R(B,,/G);, R(B,)¢ and R(B,,/G); are isomorphic vector spaces.
Recall the order-raising operator U; : R(B,); — R(By);+1 defined in the previous
section. Consider its restriction to R(B,,)¢. If we can show that U; maps R(B,){

to a subset of R(Bn)ﬁ_l, we can naturally define the operator U; according to the
following commutative diagram.

U,
(RB){ ———— (RBy){4

{ k

Hence, we need the following proposition.
Proposition 3.10. U;v € R(B,,)$,, for all v € R(B,)f.

Proof. Let o € G. Since ¢ is an automorphism of B,,, for all z,y € B,, z < y in B,
if and only if oz < oy. Then for all z € B,

oUix =0 Z Y

yE€(Bn)it1
<y

- Y o

ye(Bn)H—l
ox<oy

= UiO'{E.
Therefore, cU;v = U;ov = Usv for all v € R(Bn)iG. O

Thus, for all O € (B, /G);, by Proposition 3.9 and Proposition 3.10, we may
uniquely write
Uivo = Z COOVor,

O'€(Bn/G)it1
where coo:’s are real. Then we define the linear transformation U; : R(B,/G); —
R(B,/G)iy1 by

UZO = Z COO/O/
O/G(Bn/c)i+1

for all O € (B,,/G);. We show that U;’s are the appropriate order-raising operators.

Proposition 3.11. U; is an injective order-raising operator if i < § and a surjec-
. i el
tive order-raising operator if i > =

Proof. To show that U; is order-raising, we need to show that coor # 0 implies
O < @'. Since U; is order-raising, if coor # 0, then there exist x € O and 2’ € O’
such that z < z’, which is exactly the definition of O < (’. Hence, U; is order-
raising for all 7.

By Proposition 2.19, U; is injective when ¢ < . Thus, its restriction to R(B,) is

also injective when i < Z. Note that U; restricted to R(Bn)iG and Ul are the same
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¢ and R(B,/G);.

transformation under the natural isomorphism between R(B,,)$

Therefore, U; is injective if i < 2.
Similar to Uj, since for all O € (B,,/G);+1, we can write

Divo= Y doo0,
O’€(Bn/G)i

we may define D; : R(B,,/G)is1 — R(B,/G); by
Dio= > doo?
O'€(By/G);
for all O € (B,/G)iy1. Since U; is surjective when ¢ > & and D; = UJ, D; is
injective when 4 > 4 and so is its restriction on R(Bn)icil. Therefore, D; is injective
when 7 > % Since Ui = ﬁf, (A]l is surjective when i > % O

Combining Corollary 2.18 and Proposition 3.11 gives the following theorem.
Theorem 3.12. B, /G is rank-unimodal and Sperner.

4. APPLICATIONS

In the preceding section, we have shown that for each subgroup G of S, the
quotient poset B, /G is graded of rank n, rank-symmetric, rank-unimodal, and
Sperner. The last section of the paper gives two applications of these properties
of B, /G.

4.1. Graph Theory. The first application concerns graph theory. Before we dive
into the application, we first recall some important definitions. For a set S and a
nonnegative integer n, we denote by (5) the set of n-element subsets of S.

Definition 4.1. A simple graph is an ordered pair G = (V, E), where V is a
finite set, whose elements are called vertices, and E C (‘2/) is a set of 2-element
subsets of V', whose elements are called edges.

We can think of simple graphs as graphs with no loops and no multiple edges.
Note that in this subsection, G, by default, denotes a simple graph rather than a
subgroup of S,,. Given a simple graph G, we may denote its vertex set and edge
set by V(G) and E(G) respectively.

Definition 4.2. Let G = (V, E) and G’ = (V', E’) be two simple graphs. We say
G and G’ are isomorphic graphs if there exists a bijection ¢ : V' — V'’ such that
for all w,v € V, {u,v} € E if and only if {¢(u), ¢(v)} € E'.

Intuitively, two graphs are isomorphic if they are the same graph up to a per-
mutation of vertices.

Definition 4.3. Let G = (V, E) be a simple graph. A simple graph G' = (V' E’)
is a spanning subgraph of G if V' =V and F' C E.

That is, a spanning subgraph of G is a graph that maintains all the vertices of
G while possibly deleting some edges. Figure 4 gives an example of a spanning
subgraph. Note that for any collection C' of graphs, we can turn C' into a poset by
defining, for all G,G’ € C, G < G’ if G is a spanning subgraph of G’.

We are interested in two questions regarding simple graphs. The first is about
the number of edges: Given the number of vertices n, how many nonisomorphic
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FIGURE 4. The right graph is a spanning subgraph of the left.

simple graphs with ¢ edges exist? For all 0 < i < (Z), denote this number by f, ;.
Then we obtain, for each n, a sequence (fno,...,f, ()) From Figure 5, we see
2

that for n = 4, the sequence is (1,1,2,3,2,1,1).

\\0>
o

® ©

® ® ©

YT

F1GURE 5. All 11 nonisomorphic simple graphs with 4 vertices.

Calculating the exact value of f,; for large n is a notoriously difficult question
in graph theory. In fact, there is no known closed-form formula for f, ;. However,
from the result we calculated for n = 4, one may guess whether the sequence
(fr,i)o <i<(y) is symmetric and unimodal for all n. The answer is yes, and this will

be the first result we prove in this subsection.

Theorem 4.4. The sequence (fn,l-)0<i<(n) is symmetric and unimodal for all n.
=M=\ 2

The second question is a famous problem in extremal graph theory: Given the
number of vertices n, what is the largest collection of simple graphs we can build
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such that none of them is isomorphic to a spanning subgraph of another? From
Figure 5, we see that for n = 4, the three graphs with 3 = %(3) edges form a
collection that satisfies the requirement. In fact, for n = 4, this collection is the
largest we can take. But is it true that, for all n, the largest collection of graphs
that satisfies the requirement is the set of nonisomorphic graphs with | (%) ] edges?

2
This will be the second result we prove in this subsection.

Theorem 4.5. Fiz n € N. Let A be a collection of simple graphs on n vertices
such that none of the graphs in A is isomorphic to a spanning subgraph of another.
Then |A| is mazimized by choosing the family of nonisomorphic simple graphs with

L% (Z)J edges.

We first formally define the poset of nonisomorphic simple graphs on a vertex
set. Let V. ={1,...,n} and G, = {simple graphs on the vertex set V'}/ 2, the set
of isomorphism classes of simple graphs on the vertex set V. We can naturally turn
G, into a poset by defining, for all [G], [H] € G,, [G] < [H] if there exist G’ € [G]
and H' € [H]| such that G’ is a spanning subgraph of H'. One can verify that <
here is indeed a partial order. Figure 6 demonstrates the Hasse diagram of the
poset Gy.

1
(D

©)
@)

FIGURE 6. Hasse diagram of G4 with graphs labeled as in Figure 5.

We now show that G, is a graded poset.

Proposition 4.6. G, is graded of rank (), and p([G]) = |E(G)|, the number of
edges of G, for all [G] € G,,.

Proof. Since |E(G)| = |E(G')| for all G = G’, we can define |[G]| = |E(G)| for all
[G] € Gy. Let [Go] < [G1] < -+ < [G] be a maximal chain in G,,. Note that for all
graphs G on the vertex set {1,...,n}, F, is a spanning subgraph of G and G is a
spanning subgraph of K,,, where E,, is the edgeless graph on n vertices and K, is
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the complete graph on n vertices. Thus, we must have |[Go]| = 0 and |[Gy]| = (3).
The rest of the proof of the proposition is analogous to that of Proposition 3.7,
except that we are working on G,, instead of quotients of Boolean algebra, and the
partial order is defined by spanning subgraphs rather than inclusion of sets. [

Let us return to our two main questions in this subsection. By Proposition 4.6,
we see that showing Theorem 4.4 and Theorem 4.5 is equivalent to showing that G,
is rank-symmetric, rank-unimodal, and Sperner. Therefore, if we can show that G,
is isomorphic to By, /T for some m and I < S,,,, then Theorem 4.4 and Theorem 4.5
follow immediately from Proposition 3.8 and Theorem 3.12.

Proposition 4.7. Set m = (Z) Then G,, is isomorphic to By, /T for someT < Sp,.

Proof. Recall that G,, is the set of isomorphism classes of simple graphs on the
vertex set V = {1,...,n}. Let G,, denote the set of all simple graphs on the vertex
set V. Consider E(K,) = (‘2/), the edge set of the complete graph K,,. Note that
each simple graph in G, is uniquely determined by its edge set E C F(K,), and
each subset FE of F(K,) uniquely defines a simple graph G = (V, E) in G,,. By the
definition of the poset of simple graphs, we also have, for all G,G’ € G,,, G < G’
in Gy, if and only if E(G) < E(G') in Bgk,,). Thus, G,, = Bg(k,,)-
Consider the map

Qb:Sn‘)SE(Kn) o— 0,
where 6 : E(K,) — E(K,) is defined by

o{i,j} ={o(i),0(j)}-
Then ¢(S,) is a subgroup of Sg(k,) isomorphic to S,. Intuitively, ¢(S,) is the
group of permutations of edges in F(K,,) induced by permutations of the vertex
set V. Let ¢(Sy) act on Bk, by defining, for all 6 € ¢(S,) and E C E(K,),
6E ={6(e) : e € E}. By the definition of isomorphic graphs, for all G,G’ € G,,
we have G = G’ if and only if F(G') = 6E(G) for some 6 € ¢(S,). Hence,
G, = BE(K7L)/¢(Sn)

Since |E(K,)| = () = m, we have Bg(k,) = By,. Let E(K,) = {e1,...,en}
Note that each 6 € ¢(S,,) corresponds to some 7 € S,, defined by 7(¢) = j such
that o(e;) = e;. This defines an injective homomorphism 7 : ¢(S,) — Sp,. Set
I = 7(¢(Sn)) < Sy. Then we have T' = ¢(S,,), and thus G, is isomorphic to
B, /T. O

Combining Proposition 4.7, Proposition 3.8, and Theorem 3.12 gives Theorem 4.4
and Theorem 4.5 as desired.

4.2. Rectangular Young’s Lattice and Combinatorics. In this subsection,
we introduce the rectangular Young’s lattice and illustrate its relationship with
quotients of Boolean algebras. We then apply properties of rectangular Young’s
lattices to solve a problem in combinatorics.

Definition 4.8. Let n be a nonnegative integer. A partition of n is a nonincreasing
sequence A = (A1, Az, ...) of nonnegative integers such that > .., A\; = n.

We write [A\| = nor A F nif A is a partition of n. Note that we usually omit 0’s in
a partition. For instance, we may write (3,3,2,2,1) in place of (3,3,2,2,1,0,...).
In this paper, we use an even more abbreviated notation when it does not lead to
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confusion. For example, we denote (3,3,2,2,1) by 33221. The partition (0,0,...)
is denoted by 0.

Example 4.9. There are five partitions of 4: 4, 31, 22, 211, and 1111.

Just as we use Hasse diagrams to visualize posets, we can use Young diagrams
to represent partitions geometrically.

Definition 4.10. The Young diagram of a partition A, denoted D()), is a left-
justified array of squares with \; squares in the ith row.

The term “left-justified” in the definition above indicates that all rows of a Young
diagram are aligned along the left edge, so that each row begins in the same column.
Hence, given a partition A\, we can uniquely determine the shape of D()). Figure 7
shows the Young diagram of the partition 5331 - 12.

FIGURE 7. Young diagram of the partition (5,3,3,1).

We are now ready to define the rectangular Young’s lattice.

Definition 4.11. Let m,n € ZT. The rectangular Young’s lattice L(m,n) is
the set of partitions with at most m parts and no part greater than n equipped
with the partial order < defined as follows: for all A\, u € L(m,n), A < pif A; < p;
for all i.

One can verify that < here is indeed a partial order and thus makes L(m,n) a
poset.

Example 4.12. L(2,3) ={0,1,2,3,11,21,22,31,32,33}. Figure 8 shows the Hasse
diagram of the poset L(2,3).

Young diagrams provide us with a good way to interpret the poset L(m,n): Note
that L(m,n) is the set of partitions with Young diagrams contained in an m X n
rectangular grid, and for all A\, u € L(m,n), A < p is equivalent to D(A) C D(p).

Using the approach in Proposition 3.7, one can show that L(m,n) is graded
of rank mn, and p(A) = |A| for all A € L(m,n). We also show that L(m,n) is
rank-symmetric.

Proposition 4.13. L(m,n) is rank-symmetric.
Proof. Consider the complement map ¢ : L(m,n) — L(m,n) defined by
C()\)z _ n— Am-l—l—i le S 1 S m
0 if ¢ >m.

Since ¢(c(A)) = A for all A € L(m,n), ¢ is a bijection. Note that geometrically,
mapping A to ¢(\) is equivalent to mapping its Young diagram to its complement
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33

32
22 31

21

N

11

VNN
NSNS

0

FIGURE 8. Hasse diagram of L(2,3).

(rotated 180 degrees) in an m X n rectangular grid. Figure 9 depicts how ¢ maps
421 to 32 in L(3,4).
Therefore, for all A € L(m,n), we have
p(c(A) = le(N)] = mn — [A] = mn — p(X).

Since c is a bijection, L(m,n) is rank-symmetric. O

FIGURE 9. Depiction of ¢ mapping 421 to 32 in L(3,4). The
shaded region represents the partition 421, and the unshaded re-
gion represents the partition 32.

Given our previous discussion of quotients of Boolean algebras and the fact that
L(m,n) is a rank-symmetric graded poset, one may naturally wonder: Is L(m,n)
isomorphic to some By /G, where k is a positive integer and G < Si? This is indeed
the case, and since L(m,n) is graded of rank mn, the only possible choice for k
here is k = mn.

Let R(m,n) denote the set of mn squares in the m x n rectangular grid. We can
define the partial order on Br(;, ) by inclusion of diagrams, which turns Br(m, »)
into a poset isomorphic to B,,,. Figure 10 draws R(3,4) with each of its squares
labeled. Note that each partition in L(m,n) corresponds uniquely to a Young
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diagram contained in the m x n rectangular grid, and each diagram contained in
the m x n grid corresponds to a subset of R(m,n). Therefore, instead of B, we
may consider Br(m,n), which is much easier to visualize.

FIGURE 10. R(3,4) with each of its squares labeled.

Hence, the problem now is to find a suitable G < Sg(p,,) and show that
BR(m,n)/G is isomorphic to L(m,n). Since the number of squares in each row
of a Young diagram is nonincreasing, we can uniquely determine a Young diagram
given the set of its rows. Thus, the permutations in G must permute the rows of
R(m,n). Since we only care about the number of squares, rather than the order of
squares, in each row, the permutations in G must permute the squares within each
row of R(m,n). Taking into account these two properties of Young diagrams, we
now define our choice of G.

Definition 4.14. The wreath product of S, and S,,, denoted S,, ! S,,, is a
subgroup of Sg(m, ) consisting of elements in Sg(p,,,) that permute rows of R(m,n)
and then permute squares within each row of R(m,n).

Example 4.15. Assume ¢ and 7 permute Figure 10 to the left and right diagrams
in Figure 11, respectively. Then o € 54153 while 7 ¢ 54153, since some elements in
the same row initially (1 and 3, for example) are in different rows after applying 7.

5 8 6 7 3 8 11 7
12 | 11 9 10 12 3 9 10
3 2 4 1 6 2 4 1

FiGURE 11. Figure 10 after applying o and 7.

Just as we did for Boolean algebras, we define the action of S, 1 Sy on Br(mn)
by
oS ={o(s):s€ S}
for all 0 € S, 1S, and S C R(m,n). We now show that S, 1 .S, is indeed the
correct choice.

Proposition 4.16. L(m,n) is isomorphic to B(mn)/(Sn 1 Sm)-
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Proof. We first show that each orbit in Br(m n)/(Sn ! Sim) contains exactly one
Young diagram. Let A C R(m,n), and suppose that A has A; squares in the ith
row. By definition, elements in S, ¢ S,, can only permute the number of squares
in rows. That is, for all ¢ € S, 1Sy, and 1 < i < m, we have (0A); = Ay for
some m € S;,. Thus, the only possible Young diagram in (S,, 1 S;,)A is the one
representing the partition A = (A1,...,Ap,), where Ay > -+ > A, is the unique
nonincreasing ordering of Aq,..., A,,. We also have 05 = D()\), where o € 5,15,
is the permutation of R(m,n) that left-justifies the rows of S by permuting elements
within each row and makes the number of squares in each row nondecreasing by
permuting rows. Hence, D(\) is in the orbit.
We can thus define a bijection

¢ : L(m,n) = BRrm,n)/(Sn 1 Sm) A= [D(N)].

It suffices to show that ¢ is a poset isomorphism. If A < g in L(m,n), then
D(X\) € D(p) by definition and therefore [D(A)] < [D(u)]. Now assume for some
0,0" € Brm,n)/(Sn 1 Sm), there exist D € O and D’ € O such that D C D'.
Then for each 7, the ith largest row of D’ is at least as large as the ith largest row
of D. Hence, the Young diagram in the orbit of D is contained in that of D’, and
we have ¢~ 1(0) < ¢~ 1(O). O

By Proposition 4.16 and Theorem 3.12, we have the following theorem.
Theorem 4.17. L(m,n) is rank-unimodal and Sperner.

Finally, we present an application of Theorem 4.17 to combinatorics. Let k be a
positive integer, S a finite subset of R*, and x > 0. Define

{sfe@):zs:m}‘.

seS’

fk(S’ ZE) =

For example, f2({1,2,3,4},5) =2, since 1 +4 =2+ 3 =5.
We are interested in maximizing fi(S,x) by varying x and the elements of S
with k and the size of S fixed. Let

My (n) = max {fk(S,:z:) .S e <R;;),:r > o} .

Let us consider the n = 4 and k = 2 case. Note that when S = {s1 < s2 < $3 < 584}
is a set with equal gaps, that is, s;41 —s; is fixed for all 4, we have f5(S, s1+s4) =2
since $1 + $4 = 82 + s3. Since Ms(4) < 2 by definition, the optimal choice here is
indeed making S an arithmetic progression. For the sake of convenience, we may
take S ={1,2,3,4}.

We claim that it is optimal to choose S = {1,...,n} = [n] for all n. That is, there
exists y € RT such that for all S € (R:) and z > 0, we have f;(S,z) < fr([n],y).
We first determine our choice of y.

Proposition 4.18. fi([n],z) < fx([n], L@J) for all k and n.

Proof. Let > 0. Let S = {s1 < --- < s} C [n] such that s; +---+ s = z. Since
1 <351 <--- <8 <n, if we define \; = s; — i for each i, we have

0< A<l < <n-Fk
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and

k+1
)\1+---+/\k=x—< —2|_ )

One can also show that we can recover some S € ([Z]) in which elements add up to
x given a sequence (Mg, ..., Ag) satisfying the two properties above. Thus, fi([n], )
is equal to the number of sequences (A1,...,\;) with the two properties. For all
S e ([Z]) in which elements add up to x, we denote the corresponding sequence by
A(S).

Note that sequences with the two properties are exactly the partitions of x— (”'2“)
with at most k parts and no part greater than n—k. Hence, the number of sequences
is the number of elements in the (x — (k;rl))th level of L(k,n—k). Since L(k,n—k)
is rank-symmetric and rank-unimodal by Proposition 4.13 and Theorem 4.17, the
largest level of L(k,n—k) is the L@Jth level. Therefore, fi([n],x) is maximized

by takin
v g B k(n—k) E+1\ k(n+1)
o ()

and the result follows. O

Now we are ready to prove our final theorem.

Theorem 4.19. f(S,z) < fr([n], L@J) forallk,neZ*, S e (RJ), and z > 0.

Proof. Suppose S = {s1 < --- < s,}. Let Ay,..., A, be distinct k-element subsets
of S whose elements sum to the same value. For each ¢, if A; = {s;, <--- < s;,},
then define A; = {j1,...,jx}. Then we have A(A;) € L(k,n—k) for all i. We claim

that for all i # j, A(4;) and A(A;) are incomparable in L(k,n — k).

By means of contradiction, assume A(A;) < A(A;) for some i and j. Suppose
A, ={iy < -+ <1} and Aj ={j1 <--- < jg}. Since i, —r < j,. —r for all r, we
have ¢, < j, and thus s;, <'s;, for all . But since s;, +--- 4 s;, = 55, + -+ + 55,
we must have s; = s;_ for all r, contradicting that A; and A; are distinct.

Therefore, {\(A1),...,A\(An)} is an antichain in L(k, n—k). By Proposition 4.13

and Theorem 4.17, the largest antichain in L(k,n—k) is its ijth level, which

has the size f([n], L@j ). Thus, we have m < fi([n], LWJ ), and the theorem

follows. 0
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