TWISTING MAPS AND ADAMS SPECTRAL SEQUENCE

JIKUN LI

ABSTRACT. In this paper, we develop a new construction that enables discrete
computation of n-ary Steenrod algebras and establish an explicit relationship
between this and the computation of the Ej,1-page of the F-Adams spectral
sequence. As an application, we demonstrate how hidden extensions in the

Adams spectral sequence detect extensions of homotopy groups.
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1. INTRODUCTION

1.1. Motivations. In [Bau06], Baues introduced and computed the secondary
Steenrod algebra as a differential graded algebra. Nassau simplified this construc-
tion in [Nas12], and his model was used to develop an algorithm for computing the
Es5 page of the Adams spectral sequence in [CPT122] by Chua. The basic ideas are

as follows:

The secondary Steenrod algebra A;SJQ) is defined as a differential graded Z/p*-

algebra, namely
By

Jar
By.

Furthermore, there is an exact sequence

B
0= A+1] = B L5 By 25 A, — 0,

where A, denotes the Steenrod algebra and (Ap[+1])x = (Ap)k—1-

there is a map of right AI(,Q)—modules

T EAI(?) [+1] — Ag)
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Specifically,
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that induces a splitting
By ~kermg & Ap{7r}
as a right Bp-module, where 7 has degree |7] = 1.
Given a spectrum X, to compute its do differential, we first compute its Fs-page
whose (s,t)-term is Ey' = Exti{ZH(H*(X;Fp)JE‘p). This can be computed from
the projective resolution of H*(X) as an Aj,-module, given by

0(2) o)

X X X(0) H*(X;F,).

By [CPH22, Lemma 8.23], this chain complex can be lifted to a chain of free
A](DQ)—modules

6(2) F) 1
X{S) 1 X§2) 1 Xfl) 1 XfO)

ld(fi) ld@) ld(l) ld(o)

3 2 1 0
x¥ e Xé)%Xé)T x
9]

The do differentials are captured by a specified null-homotopy of the composition

88") o ag"“), namely by the maps h that make the following diagram commute:

3 oY (2) Xfo
(0)

(3) @ — (0)

X S X0 e XM —— X§

o a<1>

There are exact sequences
0— XM {7} — x™ o x[m 5 x) I, )

so we can decompose the target of h("*2) as ker T(n) © X("){T}. We can identify

the projection of h("*?) onto ker m(,, with 6(()"+2) o 6(()"“) by commutativity. The
essential information is captured by the map into the 7-component, which we denote
by h(T"H). Since h(Tn+2) sends ker 7,42y to zero, the map h(Tn+2) can be regarded

as an Ap-module map from X" o Y(n){f}. As stated in [CPH22, Lemma 9.2],
these maps determine the dy-differentials.

Therefore, one has an algorithm for all do-differentials by inductively determining
h(Tn). The heart of Secondary Steenrod algebra is giving an explicit formula for the
difference

tnyo = 0 o B+ _ p(n+1) o ln+1)
to simplify the computation of all do-differential into a procedural computation.
However, all the procedures shown above rely heavily on the fact that Al(yz) is an
algebra over Z/p?, which allows it to have a model as a differential graded algebra.
It seems unclear why the maps A, should be defined so.
In this paper, we design a concrete quasi-category for the modules over the n-
ary Steenrod algebra' as in Theorem 2.16. Then, we present a canonical way to

1Actually, we do not deal with the category of modules over the n-ary Steenrod algebra directly,
but rather with its dual in some sense, namely Modc,» in the category of synthetic spectra.
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define h, and ¢, and generalize them to higher Steenrod algebras. See Definition 3.5
for the precise definition of the twisting maps t of modules over higher Steenrod
algebras. Finally, in Theorem 6.11, we justify our construction as a generalization
of the secondary Steenrod algebra by relating the first twisting map we define to
the key formula

) o p(n+2) _ p(n+D) ¢ ln+1)

that appeared above.

1.2. Conventions.

Notations 1.1. Throughout this paper, we put C to be a stable presentable
oo-category equipped with a symmetric monoidal structure and a separated t-
structure. Assume that the unit object 1 € € belongs to C>q, that the tensor
product ® : € x € — C preserves small colimit separately in each variable, and that
® carries C>o x C>¢ into Cxg.

Notations 1.2. We use 7<, to denote the standard t-structure truncation of C
and 7, 5 to denote 7< 0 7>,. Unless otherwise specified, we use 7 (X) to denote
the n-th homotopy group with respect to the ¢-structure and X<,, to denote 7<,, X.

Notations 1.3. Let A be a connective algebra object in €. We denote by Mod 4
the category of bounded below left A-modules in C.

Throughout this paper, co-categories should be regarded as quasi-categories and
all limits and colimits are taken as homotopy limits and colimits in the co-category
sense.

1.3. Outline of the paper. Given a symmetric monoidal oco-category € and a
connective algebra object A, one can always define a quasi-category as the oo-
category of left modules over A. However, it is typically difficult to understand the
information encoded in higher simplexes, unless the algebra A is discrete. In [LH17],
Lurie and Hopkins introduced the functor © and a natural transformation 7 from
© to the identity functor. In [PV22], Pstragowski and Vankoughnett applied these
functors to construct an equivalence of co-categories ([PV22, Theorem 3.8]):

Moda_, ~©-Secta_, .

The right-hand side is a subcategory of Fun(A% Moda_,_,), which means that we
can use a diagram of A<, _;-modules to represent a A;n—module.

This motivated the author to repeat this construction to identify Moda_, as a
subcategory of Fun((A?)", Mod 4 _,). In many favorable cases, the category Mod 4 _,
is purely algebraic and equivalent to some oo-derived category, so that one can
understand each simplex explicitly. This idea is fully discussed and generalized to
a symmetric monoidal version in Section 2.

Concretely, for any m,n such that n < 2m + 1, we have a fiber-cofiber sequence

F — Agn — Agm
and a pullback square of associated algebras

Agn —_— Agm

.

Agm _ Agm @ XF,
0
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where d and d are all sections of the natural projection p : A<, ® LF — A<yy.
This induces a pullback square of categories of modules over the corresponding
rings:

MOdAS” e MOdAgm

Lo

MOdAgm — MOdASm@ZF-
Definition 1.4 (Definition 2.2). We define the functor ©7,7"" : Moda_,, — Moda_,,
as O~ = d.dj.

Definition 1.5 (Proposition 2.4). There is a natural transformation 7 : © — Id
induced by the natural map d.djM — d.p.p*diM.

We then construct an oco-operad as the homotopy pullback in the following
square:

Construction 1.6 (Construction 2.12).

On-m-Sect® — Fun(A?, Moda_,,)®

| |

J\/[od§<m — Fun(A3, MOdASm)@)'

Here the horizontal map sends M to the diagram
M oM
Y‘i /
M .
We then have the following symmetric monoidal equivalence:

Theorem 1.7 (Theorem 2.16).

or—™m Sect® ~ Mod%gn.

Hence, one can iterate this identification to obtain a simplicial set model of
Mod 4, for each n.

With this construction, it is natural to ask what these higher simplexes represent.
For technical reasons, we restrict our attention to shift algebras and periodic objects.
With a grading on the entire category, we can define:

Definition 1.8 (Definition 3.2). A shift algebra is an associative algebra A €
Alg(@) equipped with a map 7 : X A[—1] — A of right A-modules which induces an
isomorphism 7, (A) ~ mo(A)[7], where the latter is the graded algebra in €% given
by (mo(A)[r])k ~ mo(A)[—K].

Definition 1.9 (Definition 3.3). For a fixed shift algebra A and 1 < n < oo, we say
X is a periodic n-module if M € Mod_, satisfies that mo(A) ®a4_, X is discrete.
When n = oo, we also refer to it as a periodic module.

The main feature of periodic modules is that their ¢-structure truncation coin-
cides with their left tensoring with A<,, over A. This simplifies the computation of
Agn R4 X.
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One finds that the essential homotopical information is always captured by the
sections:

s: X - 0X.

The intuition is as follows. Given a t-structure and a periodic object X over a
periodic algebra 1, there are fiber-cofiber sequences:

Ym(X) = 70,y X — mo(X),
and we are always concerned with the connecting map:
mo(X) — X271 (X).
However, this map typically lives in Mody _, and we cannot describe it algebraically.

The functor © can help. Indeed, Omo(X) is the fiber of a 1<p-map mo(X) —
371 (X), so the connecting map can be factored as:

To(X) = Omo(X) — 211 (X),
where the first map can be described completely algebraically. Therefore, we should

think of © as a way to record the effect of 7o (X) on 7 (X') so that one can be specific
about the connecting map.

As an application, we work in the category of synthetic spectra S/yT”LlFP and develop
a method to record the information of the n-ary Steenrod algebra algebraically. For
any spectrum X, the section

5:0T@v(X) = 6CT (X))
can be regarded as a map between chain complexes of injective A;,/ -comodules:

(id,d$>)

Xo Xo @ Xa[-1]
|
X, (id,d{®) X, & Xs[-1]
|
X D X[
|
X, D L Xs[-1].
Then the maps d® are exactly the duals of h, introduced in Section 1.1. Moreover,

the map ¢ is recorded by ©} and can be seen from the fiber-cofiber sequence:

elCrav(X) S CreovX) S 22 10r @ v(X),
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where the second map expands into a map between chain complexes:

(2)
Xo #) Xg[—l]
+(2)
X; — 2y X[ 1]
o
Xy —2—— X5[-1]
+(2 l
X3 —2 5 Xq[—1].

This gives the dual of ¢ := 9" o R _ pnt) o 5nt1) | We generalize the map
t for higher Steenrod algebras in Definition 3.5 and call it the twisting map. Hence
the formula designed by Baues is actually one choice of the twisting map for ©}:

Theorem 1.10 (Theorem 6.11). Given a A} -comodule M’ and its dual A,-module
M, the free resolution of M is given by:

M©) M
with its dual being an injective resolution in Comod, Ay -

0 r’ Mo Y e

Suppose that M can be lifted to a periodic CT?-module. Then the first twisting
map

1@ M o M) [
has a dual
(@)Y . Me+3) 5 M) [+1]

sending each generator g to
> Al 9PV (g0)),
where 3" +3)(g) = 3" alg; if we write {g;} for the generators of M(n+2).

Example 1.11 (Example 6.14). We recover the differential da(hg) = hoh? in the
F2-Adams spectral sequence of the sphere. By computing the twisting map

(t®)" (hoh3) = S¢'° + 5¢1 + 54102,

the commutative square

{1 (1) & ((h§) ® (h?) © (hoha) -+ )[-1]

[ |

(ho) ® (h1) @ (ha) @ -- ((ho) ® (1) @ ---) ® ((h§) ® (hghe) ® ---)[-1]

(id,0)

. %
(id,d®)
implies the first differential da(hs) = hoh3.

To discuss the explicit relationship between the sections and Adams differentials,
we define a variation of the Adams spectral sequence as follows:
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Construction 1.12 (Construction 5.5). For a spectrum X, we define
VN (X) = Ty (CTF L @ UX)

and we focus on the (2% 4+ 1)-th pages. By considering the connecting map in the
fiber-cofiber sequence:

2020 @uX - CrP  levX - 0 @uX - 220 @uX,
we can define the differential di,i’fl as

(X) = 7Tt7t+5(CT2k®I/X) — Tt—1,t+s+2k (CTQk ®Z/X) = €s+2k+17t_1(X).

Syn | gps,t
d2k+1 1 ¢ ok 41

2k 41
In this case, the underlying object of 63: crrevXisCrevXext—2 ot e
vX, so the connecting map is recorded as part of the data:

S 7Tt’t+S(CT2k X I/X) — 7rt’t+s(@§:7107'2k X I/X)

This allows us to work on the connecting map in the category Mod, .« rather than
MOdCT2k+1 .
This also allows us to easily determine extension problems of the Adams spectral

) to be any lifting of

k
sequence using the product structure. Suppose we choose h(()2
(ho)zk along
2k 0 k 2k 0
€2k+1(S) = 71'0’219 (072 ) — 71'0’219 (CT) = @2 (S)
Then we have:
Theorem 1.13 (Theorem 5.11). There is a long exact sequence:
Syn
k+1
Tt t+s+2k (Xor) = T pps(Xortr) = g5 (Xok) —— T—1,t+s+2k (Xon).

This reduces to a short exact sequence:

Syn s,t Syn
0 — coker(dyty ) syor ¢ — €oiiy — ker(dyfly)se — 0.

The extension is detected by h((fk) (=) ker(di,ﬁ’fl)&t — coker(di,?jfl)s+2k7t.
Example 1.14 (Example 5.13). By the hidden extension
h$?h2 = Thody
and Theorem 5.11, we can deduce the first ds-differential:
d3(hoha) = hodo.

The relationship between this variation and the classical Adams spectral se-
quence is already known and discussed in [BHS19, Theorem 9.19], and we provide
a refinement in Theorem 5.9.
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2. A SIMPLICIAL MODEL FOR THE CATEGORY OF MODULES OVER TRUNCATED
ALGEBRA

In this section, we will construct a quasi-category as a concrete model of Mod4 _,,
so that one can understand each simplex algebraically. We also discuss the symmet-
ric monoidal structure and ¢-structure of the co-category so that we can completely
identify this model with Mod ., .

We follow Lurie’s treatment in [Lurl7, 7.4.1] of square-zero extensions and treat
the Postnikov tower of an algebra as a sequence of square-zero extensions. We
list the basic definitions and properties of square-zero extensions in Appendix A.
Hereafter, we fix an Eg-algebra A € Alg®) (@) such that mo(A) # 0 and denote
the category of bounded below left modules over A<, by Moda_, .

As shown in [Lurl7, Corollary 7.4.1.27], A<, - A<, is a square-zero extension
if n < 2m+1. Suppose its fiber is F'. Then there is a pullback square of Ex-algebras
as in [Lurl7, Remark 7.4.1.7]:

Agn —_— Agm

O

Agm —_— Agm & XF.
0

Here A<,, @ £ F is the trivial square-zero extension of A<,, by ¥ F, and d and dy
are both sections of the natural projection p : A<,, ® XF — A<, so do = (id,0)
and d = (id, der). der is a derivation determined by the structure of A<,,.

This induces a commutative square of co-categories of left modules:

Proposition 2.1. The commutative square of co-categories of left modules induced
by the diagram (%) is a pullback square of co-categories.

Mod a n > Mod m

I

MOdA<m = MOdA<méBEF

That is, there is a canonical equivalence between Moda_, and the oo-category of
triples (M, N,«), where M,N € Moda_  and o : diM ~ d*N. Furthermore,
since d* and dfy are symmetric monoidal functors, this pullback can be viewed as a
pullback square of symmetric monoidal categories.

Proof. This first appeared in [LH17] and was restated in [PV22, Proposition 3.5].
Here we slightly generalize the statement to fit our needs and mimic the original
proof. There is an adjunction

F:Mody_, = Moda_,, XModa_, osr Moda_,, : G,

where F' is induced by base change along the diagram (%) and its right adjoint G
is given informally by the formula
(M,N,Oé) — M XdéM N.

Here the right-hand side is taken as a limit of modules over A<,,. To show that F'
and G are categorical equivalences, we first show the unit of the adjunction is an
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equivalence:
M ——— A ®a, M

| !

Agm ®ASH M — (ASm @EF) ®ASn M

is a pullback square for every M € Mod 4_ . In fact, (x) can be viewed as a pullback
square of A<,-bimodules or a pushout square as bimodules since BMod_, is
stable. By tensoring with M on the right, we get a pushout-pullback square of left
A<,-modules.

Then we show that G is conservative. Similar to the argument above, G preserves
cofibers, so it suffices to check that if (M, N,a) is a triple such that M xgsa N
vanishes, then M = 0 and N = 0. Otherwise, we can assume M is nontrivial and
take its lowest nontrivial homotopy group. Notice that dy and d induce identity
maps on mg, so M and djM share the same lowest nontrivial homotopy group.
Since d*N =~ diM, we have that d*N and thus N also have the same lowest
nontrivial homotopy group. This implies that M x4z N is nontrivial, which is a
contradiction.

For the symmetric monoidal structure, we can view this diagram as a square
over N(Fin,), which gives the equivalence as symmetric monoidal categories. O

Now we introduce the key functor of this paper, which was first introduced
in [LH17] and used to develop obstruction theory in [PV22].

Definition 2.2. We define the functor © : Moda_,, — Moda_,, as © 1= d.dg.

Warning 2.3. Here we slightly abuse notation because © actually depends on n
and m. We shall use ©].~" to specify when needed.

Proposition 2.4. There is a natural transformation from © to 1d, denoted by .

Proof. Let p : A<y, @ XF — A<y, be the projection map. Then dy and d are
sections of p. There is a natural transformation given by:

OM = d.djM — d,p.p*dsM = M.

Here the first map is the unit of the adjunction and the second equivalence follows
from the fact that dy and d are sections of p. ([

Clearly, the underlying object of ©M is OM = (A<,, ® XF) ®a_,, M since d.
does not change the underlying object.

Definition 2.5. We define the co-category O], ""-Sect as the oo-category of triples

(M, s, h), where M € Moda_,,, s: M — OM is a section, and h is a homotopy
from o s to Id,y,.

Construction 2.6. We regard all co-categories mentioned below as quasi-categories.
Then the co-category O~ ™-Sect is defined rigorously as the homotopy pullback of
the diagram:

Op™-Sect — Fun(A? Moda_,,)

| !

Moda.,, — Fun(A%,ModASm).
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Here the bottom horizontal map sends M to the diagram:
M oM
xf /
M .

Since A2 — A? is a cofibration in the Joyal model of simplicial sets, Fun(A2, Moda_ ) —
Fun(A3, Mod,_, ) is an inner fibration. Then the pullback of this map, namely
On=m_Sect — Moda_, , is still an inner fibration, so ©"™-Sect is a quasi-category.
Specifically, @%‘m-Séct is the strict pullback of this diagram.

Theorem 2.7. There is an equivalence of co-categories
Moda.,, =~ O, ™ -Sect.

Proof. This is a formal variation of Proposition 2.1 and the proof is similar to [PV 22,
Theorem 3.8]. As in Proposition 2.1, we can identify Mod4_, as the category of
triples (M, N, ), where a : d*N — d§jM is an equivalence. By adjunction, this
corresponds to a map o : N — ©OM as A<,,-modules.

Actually, « is an equivalence if and only if the composite moa’ : N — OM — M
is. Under the identification p*d*N ~ N and p*diM ~ M, the map m o o’ can
be written as p*a : p*d*N — p*dgM. Since p : A<, @ XF — A<y, induces an
isomorphism on 7y, p* is conservative. Therefore, p*« is an equivalence if and only
if o is. It follows that Mod 4_, is equivalent to the oo-category of triples

D~ {(M,N,a")|M,N € Moda_,,,a" : N = ©M such that moa’ is an equivalence}.

We can also define the oo-category of quintuples & := {(M,N,o’,5,h)} as
in Construction 2.6, where M, N, o’ are as above, § is an A<,,-module morphism
from M to N, and h is a homotopy witnessing m o o’ o 8 ~ idys. The functor from
€ to D:

f:&€—=D:(M,N,d,B,h) — (M,N,d)

is a Cartesian fibration whose fibers are co-groupoids. We claim the fibers are all
contractible so that f is an equivalence of oco-categories. Indeed, the fiber over
(M, N,a') is the space of pairs

(B:M — N,h:moa of~idy),
which is the homotopy fiber of the composition map
(moa'), :Moda_, (M,N)— Moda_,,(M,M)

over the identity. Since 7 o o’ is an equivalence, this fiber is contractible.
Similarly, the map

g:&—On""Sect : (M,N,a’,3,h) — (M,a’ o 3, h)

is also fibered in spaces. The fiber over (M, s, h) can be identified with the space
of objects N equipped with an equivalence 5 : M ~ N, which is also contractible.
Therefore, g is an equivalence of oco-categories, implying the theorem. O

Now we can inductively define the simplicial set model of Mod4_, we want.
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Construction 2.8. Let A be the abelian category of m(A)-modules in €%. If A
admits enough projective objects and Moda_, >~ D~ (A), then we can start from
a concrete quasi-category D~ (A) := Ngyz(Ch™ (AP™))). Here Ch™ (AP™J) is the
category of bounded below chain complexes of projective my(A)-modules in CY.
The advantage of this description of co-derived categories is that we can concretely
describe all simplices and maps between them.

Suppose the model of Mod_,, is defined. Then for n < 2m + 1, we can ap-

ply Theorem 2.7 and define Mod 4_, as a simplicial set whose k-simplexes are given
by: -

FUH(AQ X Ak’ MOdAgm) XF‘un(Angk,ModASm) Fun(Ak’ MOdAgm)7

where the maps defining the pullback are the same as those in Construction 2.6 and
the face maps and degeneracy maps are induced by the face maps and degeneracy
maps of AF.

Therefore, we have Moda_, ~ ©}-Sect and we treat ©f-Sect as the model of
Mod4_,. Then we apply:

O1-Sect ~ Moda_,,
©73-Sect ~ Moda_,,
O7-Sect ~ Moda_,

to obtain the models for Moda_,, Moda_,, and Mod4_,. Inductively, we obtain
the model of MOdASn for all n > 0.

Remark 2.9. In the construction above, we define several different models for

Mod 4_, . We shall use @EZE’Z":_’_)—Sect to denote the category we obtain after induc-

tively applying ©% , 0% .. to Mod, <a, - Clearly, we should require a;11 = a; +b;

a1’ Yagr

bl’bQ""’b’“))—Sect ~ Moda., ., - In applications, we will use the

and we have ©!
(al,az,...,ak

models @Eéi;; associated with the tower:

"'—>AS3—)A§2—>A§1—>ASO

(1,2,4,8,...)
0,1,3,7,...)

"'_>A§7_>AS3_>AS1_>A§0

to get the full information and © associated with the tower:

to simplify the computation.

To strengthen the above construction, we need to give the description of some
additional structures in view of what should be enjoyed by Moda_,. Now we
further assume A to be E,, to ensure d, is lax symmetric monoidal and we will
define the symmetric monoidal structure of ©-Sect and promote Theorem 2.7 to be
a symmetric monoidal equivalence.

Before giving the construction, we need to refine the properties of ©.

Proposition 2.10. 0% := d.dj is a lax symmetric monoidal functor from M0d§<m
to M0d§<m. There is a natural transformation ™ over N(Fin,) from ©% to the

identity ﬁmctor.

Proof. The first property is clear. For the second one, we observe that m is given
by composing with the unit of a pair of (lax) symmetric monoidal functors, so 7
can be refined to be a natural transformation over N(Fin,). O
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Lemma 2.11. Let O be a base co-category, and let F : C — € and G : D — &
be functors between coCartesian fibrations over O. Suppose G is an inner fibration
preserving coCartesian arrows.

For any object C € € lying over X € O, and any morphism u : X — X', let
C — w(C) be a coCartesian arrow lifting w. The image of wy under F admits a
factorization F(C) — wF(C) = F(w/(C)), where F(C) — wF(C) is a coCartesian
arrow in & lifting w. (The morphism wF(C) — F(w(C)) is well-defined up to
homotopy and is called the Beck-Chevalley morphism.)

(x) Suppose that there are enough G-coCartesian arrows in D lifting wF(C) —
F(w(C)). Then the pullback P := C x¢ D is coCartesian over O.

Proof. For (C,E,D) € Cx¢D lying over X € O and any morphism v : X — X', we
define C’" := w(C), E' := F(w(C)), and D’ such that wi(D) — D’ is coCartesian
over the Beck-Chevalley morphism w F(C) — F(u(C)). This gives an element of
C x¢ D lying over X’ since wyF(C) — F(u(C)) is exactly wi(E) — E’. Now we
obtain a morphism (C,E,D) — (C',E’,D’) lying over X — X’'. We check this
morphism is coCartesian over u: Notice that for any (U, W, V) € P lying over Y,
we have pullback squares:

Mape(C’',U) — Mape(C,U)

l l

Map@ (X/> Y) — Map@ (Xv Y)a

Map, (D/> V) — Mapy (’LL! (D)7 V)

l |

Mapg (F(u(C)), W) — Mapg (wF(C), W),
and similarly
Mapy (D, V) ~ Mapqg, (ui(D), V) XMap, (x,v) Mape (X', Y),
Mapg (F/(C), W) = Mapg (w(F(C)), W) XMap, (x,v) Mape (X', Y).

Then we have

Map?((cla E/a D,)a (Uv Wa V)) = Ma‘pe(clv U) ><Ma,pg (E"\W) MapD (D/a V)

~ Mape (X', Y) XMap, (x,v) Mape(C, U) XMap, (u (F(C)),w) Mapg (u (D), V)

~ Mapo (){I7 Y) XMapO(X,Y) Mapy((C, .E7 D), (U7 M/, V)),

which completes the proof of the lemma. O

Construction 2.12. We promote Construction 2.6 to be diagrams of symmet-
ric monoidal oco-categories. Suppose we have a coCartesian fibration Mod§< —

<m

N(Fin,). Then we define 7 ™-Sect® to be the homotopy pullback of the diagram:

@%—m—Sect@’ — FuIl(AQ,j\/EOClAgm)®

| !

Mod§<m —— Fun(A3, Moda_,,)®.
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Here the horizontal map sends M to
M oM
N A
M )

As shown in Proposition 2.10, 7 : @ — Id is a natural transformation over N(Fin,),
so the lower horizontal map is lax symmetric monoidal. The symmetric monoidal
structures of Fun(A2?, Mod4_, )® and Fun(A3,Mod4_, )® are the standard ones
by [Lurl7, Remark 2.1.3.4], so the right vertical map is symmetric monoidal and is
still an inner fibration.

Lemma 2.13. The vertical functor
p: Fun(A% Moda_,,)® — Fun(A3, Moda_,,)®
satisfies the condition (x) in Lemma 2.11.

Proof. Given a morphism u : (n) — (m) in N(Fin,), suppose that v’ : M, —
w(M,,) = My, is the coCartesian map in Mod 4 _,, lifting u. Then the corresponding
Beck-Chevalley morphism is given as part of a tetrahedron:

Ou M, ,

where f is the Beck-Chevalley morphism of functor ©, since © is lax symmetric
monoidal and wym = 7 o f since 7 is a natural transformation over N(Fin,). After
filling the front triangle with (w/M,,s,h), where s : wM, — wOM,, we define
the left triangle to be the composition of f and s. Now we can fill the whole
tetrahedron by using the lifting property of quasi-categories. This is exactly the
p-coCartesian lifting in Fun(A? Mods_,, )® of the Beck-Chevalley morphism in
Fun(A2,Moda_, )®. O

Proposition 2.14. ©77™-Sect® is coCartesian over N(Fin,), making O™ -Sect®
a symmetric monoidal stable co-category. Furthermore,

F: 0™ Sect® — Mod%sm
is symmetric monoidal.
Proof. This follows from combining Lemma 2.11 and Lemma 2.13. (]
Remark 2.15. Informally speaking, the tensor product of
M s—— OM N

t—— ON

M and N
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is

BC-
M, N 2% 0M e, ONFO(M®4_, N)
\ id . /
~ —
M ®Ac,, N
Now we can promote the equivalence in Theorem 2.7 to a symmetric monoidal

equivalence.

Theorem 2.16. There is a symmetric monoidal equivalence
O™ Sect® ~ Modﬁgn.

Moreover, under this equivalence, the extension of scalars Moda_, — Moda_,,
corresponds to the forgetful functor F : ©77™-Sect® — Mod§<m sending (M, s, h)
to M. =

Proof. We only need to promote the equivalence in Theorem 2.7 to be symmetric
monoidal. First, as in Proposition 2.1, we have a symmetric monoidal equivalence
Mod?is" o~ J\/[od%gm X Mod?® Mod%Sm, so we can still identify Moda_, with

<mOZF
the oo-category of triples (M, N, a), where o : d*N — d§ M is an equivalence.
Similar to Construction 2.12 and following the notations in Theorem 2.7, we can

define D® and €% whose product structure can be informally given by
(My, Ny, o)) ® (Mg, No, ay) = (M1 ®a_,, Mo, N1 ®a_,, Na, BCg 0 ® o),
(MlaNlaallthhl) & (MZaN270/27ﬁ2ah2)
= (M1 ®a.,, My, N1 ®a_,, No, BCo 0 oy @ ay, 1 ® B2, BCrr 0 hy ® hs).
Here BCg is the Beck-Chevalley morphism of the lax symmetric monoidal func-
tor © and BCY is the Beck-Chevalley morphism of the functor IT : Moda_,, —
Fun(Al,ModASm) sending M to my; : OM — M.
Now, the functors f : € — D and g : € — O, ™-Sect can be modified to
2 €% = D2 and g% : €2 — O ™-Sect®. One can check that both of them

preserve the coCartesian morphisms, so the equivalence of co-categories is now an
equivalence of coCartesian fibrations over N(Fin,). O

To complete the induction, the only remaining part is the symmetric monoidal
oo-category Moda_,. There is a condition to ensure that Mods_, is the derived
category:

Proposition 2.17. When Moda_,, is generated by discrete objects, the left modules
over the zero-truncated ring A<o are given by the derived co-category over my(A)
in the 1-category Modm}(A)(Go), which is

Moda_, = D™ (Mod.r,(4)(CY)).
The underlying category of the following has a concrete model:
D™ (Modyry(4)(€7)) 2 Nag (Ch™ (Modr, (4)(€7)P"))).
Proof. This is a corollary of [Lurlg, C5.4.11]. O

To compute the homotopy groups, we need to further define the ¢-structure of

©-Sect.
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Construction 2.18. We begin with the t-structure of D~ (Mod,(4)(€")), which
is clearly given by the homology of chain complexes.
Suppose that the ¢-structure of Moda_,, is given by

((Moda_,,)>0, (Moda_,,)<o0)-
Then we define
(O ™-Sect)>o := F~'((Moda_,,)>0),
where F': ©7,7"-Sect — Mod4_,, is the functor defined in Proposition 2.14.

Proposition 2.19. When mo(A) # 0, under the equivalence Moda_, ~©-Secta_,,
there is an equivalence of subcategories

(MOdAgn)ZO ~ (O ~™-Sect)>q.

Proof. For simplicity of notation, we write Ind for the extension of scalars. It
suffices to show that Ind~"(Moda_,,)>0) = (Moda_,)>0. Given M € Moda_,,
we have a spectral sequence

BP9 = Tor;*(AS")(ﬂ'*(Agn—l),W*(M))q = Tpiq(Ind(M)).

Then clearly the connective modules are sent to connective modules. If the lowest
degree of the nontrivial homotopy groups of M is negative, denoted by k, then
EYY = (m.(A<m) @, (Acy) T+(M))) is nontrivial since mo(A) is assumed to be
nontrivial. Therefore, Ind(M) is not connective and we complete the proof. (I

Now we can identify the co-category @Ezll’,l;22”'.':.”b;:)—Sect defined by induction with
the original co-category Mod_,. This gives us a concrete model to understand
each simplex in Mod 4 _,, discretely, allowing us to be precise about the elementwise
computation, which will be shown in the following sections.

3. COMPUTATIONAL METHODS FOR PEROIDIC OBJECTS

This section will be devoted to the explicit computational method. Though the
construction in Section 2 works for general stable co-categories, it is not often the
case that the t-structure truncation and the extension of scalars along the Postnikov
tower coincide, leading to computational difficulty. Therefore, we further restrict
A to be a shift algebra. We still take € as in Notations 1.1.

Definition 3.1. A grading on € is a choice of distinguished autoequivalence which
we denote by ¢ — ¢[1], together with a natural equivalence ¢[1] ® d ~ (¢ ® d)[1].

Definition 3.2. A shift algebra is an associative algebra A € Alg(C) equipped with
amap 7 : LA[—1] — A of right A-modules which induces an isomorphism 7, (A) ~
7o(A)[7], where the latter is the graded algebra in €% given by (mo(A)[T])x
WQ(A)[—]{]

Definition 3.3. For a fixed shift algebra A and 1 < n < oo, we say M is a periodic
n-module if M € Mod_,, satisfies that mo(A) ®a., M is discrete. When n = oo,
we also refer to it as a periodic module.

12

Now we fix a shift algebra A and the modules mentioned below are all modules
over proper truncations of A. First we show a special property enjoyed by periodic
modules, which says the left tensoring with truncation of A is ¢-truncation itself,
making the computation easier.
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Proposition 3.4. Given a periodic n-module M, there is a map induced by exten-
sion of scalars:

M ~ Agn ®A§n M — Agm ®A§n M ~ TgmM.
Then this map coincides with the t-structure truncation of M itself.

Proof. The cofiber sequence
A<, ®Ac, M — A<, RPAc, M — ET{7n+17n]A RPAc, M ~ ET[m+1,n]M

proves the claim, where the last equivalence uses the property of periodic n-modules.
O

Then we want to be more concrete about the functor ©. Instead of computing
from the definition, we associate it with an intrinsic map of modules.

Definition 3.5. Given a periodic m-module M, we can compute the cofiber of x:
or M 5 M 5 3, M (m + 1)].
We will refer to the map t as the twisting map of M.

Remark 3.6. The twisting map is only defined up to an automorphism of M.
However, we do not need to worry about the choice since any choice works for the
computation of @M.

Remark 3.7. In [PV22], the authors showed the equivalence of @} ™-Sect and
Mod 4, to show that a periodic m-module M can be lifted to a periodic n-module
if and only if the twisting map of M is nullhomotopic, since the existence of the
lifting is equivalent to the existence of a section M — O]~ M. Here we emphasize
the nullhomotopic map ¢ since this enables us to compute the section M — O]~ M
and this nullhomotopy prevents ©7 " M from being M & 37(;, 41, M.

m

Proposition 3.8. Given a periodic n-module M, put M' := A<y, ®a_, M. Then
there is an equivalence OM' ~ M' © X141 )M as left A<y, -modules. Suppose M
corresponds to the triangle

M — oM’

N

Then the composition M' = OM' — STm41,m)M coincides with the map in the
fiber-cofiber sequence
M — M — ZT[m+1’n]M,

where the first map is t-structure truncation. The map from M’ to T, q1 )M will
be called the differential map.

Proof. Consider the square as in Proposition 2.1:

M —m— A ®a_, M

| !

Acmn ®@a., M — (A<n ®EF) ®a_, M

which is a pushout-pullback square in Moda_,,. Unwinding the definition, © M "is
exactly (A<, @XF) ®a, M when treated as a left A<,-module. Since A<, ®XF
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is the trivial square-zero extension, this is the equivalence we want. For the second
part, it suffices to pass to the underlying objects and notice that the lower horizontal
map M’ — M' © X741, M is (id, 0). O

Now we can do elementwise computation and try to write down the representa-
tion of M € Mod 4 <n- Let us start with the simplest case when n = 1.

Example 3.9. Given an A<o-module M, regarded as a chain complex of projective

objects

) 01 do

M2 Ml MQ M_1 —_

(2)
Then ©M can be written as the fiber of M s Y3M[-1]:

84 83 7] 2

M4 Mg M2 Ml

~ ~ >~
<) tf)\) ® té,”\) ® t;”\ @

- —— Ma[-1] % My [-1] EXE=] Mo[—1] 2t M_y[-1] —— -

where tg) are the twisting maps.

Then any A<j-module M satisfying A<g ®ac, M = M, regarded as an object
in ©}-Sect, can be written as

Miso Mo ® My[—1]
‘L (id,diZ) ) i
Mg —————— Myy1 @ My _1[—1]
l > id o (140 - l
Y/ — Migpr------ > My, & My_o[—1]
l ~ id l (id,0) l
My_q ——---- M,{f{——% My & My _3]-1]
I i | o) |
My—2 M1 - Mjo—2 © Mi—g[~1]
l
My

where the map from My o ® Mi[—1] to My11 ® My_1[—1] is exactly the one in the
illustration of © M. In particular, we have

d](f) o ak+1 = 8k_1[*].] o dﬁh + t/(€2-i)-1 oid.

Remark 3.10. The section map is named d® because it is exactly the do-differential
of the Adams spectral sequence if we take C to be the category of synthetic spectra,
which we will discuss in Section 5. In applications, we usually consider periodic
1-modules. Then M_j ~ 0 for all k£ > 1, so all twisting maps and the first nontrivial
d® from My to My[—1] determine all the d® maps.

For larger n, we have similar results:

Theorem 3.11. Given a periodic n-module M, under the equivalence

Moda_, =~ @Eé:t::::i)_l)—Sect,
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we can inductively write down the representation of M. First we determine mo(M)
and compute its projective resolution as a mo(A)-module, then we determine the
first twisting map
t@ (M) — S370(M)[—1]
and compute the section
5@ : mo(M) — Fib(t?)
s0 that we have the description of A<1 ®a., M:

5@

Fib(t(?))

Aco®@a_, M
™
Aco®a., M
With this description, we can write down the second twisting map as
t®) Ay @a, M — Shmo(M)[-2),
regarded as a map in ©}-Sect, and organize A<s ®ac, M as

3

A1 ®a., M Fib(t®)

A1 ®a., M
Inductively, we can write down the representation of M as an object of

11 -Sect € Fun((A2)", Nyg (Ch™ (Mod?'¢, (€7)))).

To determine Fib(¢(®)), we should first write down the representation of £*+ o[ (k—
1)] as an A<j_o-module. This requires the computation of pullbacks along the Post-
nikov tower, namely the tower of Ei-algebras:

-n—)ASg—)ASQ%ASl—)ASo,

where each map is a square-zero extension. A slightly more general result is given
as follows:

Proposition 3.12. Given a periodic n-module M, then mo(M) ~ A<o ®a., M
can be computed as the colimit of the chain of modules

s SR N[ (n 4 2)] — SHIM[—(n+1)] ——— SM[-1] — M,

where the (2m + 1)-th term Xop 1 is X TDFM[—m(n+1) — 1] and the (2m)-th
term Xop, is ™) M[—m(n 4 1)].

Proof. First one notices that the truncation map 7<¢ : Moda_, — Moda_, gives
the map from M to my(M), inducing the map from the colimit of this chain to
mo(M). Since the t-structure is separated, we only need to check the homotopy
groups.

The chain is designed to satisfy that colimmg(X,,) ~ 0 unless £ = 0 and
colimmo(X,,) =~ mo(M). Since the ¢-structure is compatible with filtered colim-
its, the homotopy group of the colimit is the one we want. O

Remark 3.13. The representation of A<;, ®4_, M can be computed similarly by
canceling the t-structure homotopy groups with 7.
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In algebraic topology, we are always concerned about the mapping space be-
tween two objects. We will illustrate how to understand the mapping space for two
periodic modules.

Proposition 3.14. For any two periodic modules M and N, there is a sequence
of mapping spaces

MapASO(MSO,NSO) < MapAgl(MShNﬁl) e MapASk(MSk’NSk) < e
such that Map,_ (M<p—1, N<n—1) < Map,_ (M<n, N<y) has fiber
Map 4_, (mo(M), X" mo(N)[—n]).

Furthermore, if the t-structure is complete, the limit of this sequence is exactly
Map 4 (M, N).

Proof. Actually, there are equivalences
Map 4 (M, N<n) 22 Map 4 (M<n, N<y) = Mapy_ (A<n ®4 M<n, N<yp).

Tensoring with M<,, as an A-A<,-bimodule, the fiber-cofiber sequence A>, 1 —
A — A<, induces a fiber-cofiber sequence

A2n+1 XA Mgn — Mgn — Agn XA Mgn.
Furthermore,
MapASn (Agn ®A MS”’ NSTL) - Ma‘pAgn (MS’n) NS’!L)
—>MapA§n (A2n+1 Ra Mgn,Ngn) ~(

is a fiber-cofiber sequence. Hence, Map,_ (M<n, N<y) >~ Map,(M, N<,,). Now
the sequence can be interpreted as -

Map 4 (M, N<g) < Map 4 (M, N<1) < -+ <= Map (M, N<y) < -~
where the map Map 4 (M, N<,,_1) < Map 4 (M, N<,,) has fiber
Map 4 (M, X" 7, (N)) ~ MapASO(WO(M), Y mo(N)[—n]).
O

Remark 3.15. The above proposition can be promoted to a spectral sequence;
see [PV22, Corollary 4.13].

For shift algebras, we have a simpler way to determine the category over its
zero-truncation.

Proposition 3.16. [PV22, Theorem 3.11] Let A be a shift algebra. Suppose Mod 4
is generated under colimits by periodic modules. Then the left modules over the
zero-truncated ring A<o are given by the derived co-category over my(A) in the
1-category Modm(A)(GO), which is

Moda_, = D~ (Mod,r,(a)(€Y)).

Therefore, the mapping space Map 4__ (mo(M ), X"mo(N)[—n]) can be computed
as the derived mapping space in the derived category D~ (Mod, A)(GQ)).
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4. APPLICATION IN THE CATEGORY OF GRADED SPECTRA

In this section, we try to use our framework to study spectra. As mentioned
before, we prefer to deal with a shift algebra, so we will not work in the category
8p = Modg but work in the category of graded spectra Sp9”. We will first embed
Sp into $p9” and identify them with their image as periodic modules over the image
of S. However, the embedding is merely an E;-monoidal functor, which prevents
us from comparing the symmetric monoidal structure.

Definition 4.1. We regard Z as a discrete symmetric monoidal category. Then
the category of graded spectra Sp9” is defined to be Fun(Z, Sp).

Proposition 4.2. We can endow Fun(Z, 8p) with a symmetric monoidal structure
by Day convolution.

Proof. This is the combination of [Glal6, Definition 2.9] and [Glal6, Proposi-
tion 2.11]. Furthermore, as mentioned in [Glal6, Proposition 2.12], commutative
monoids in Fun(Z, 8p)® can be identified with lax monoidal functors from Z% to
Sp®. O

Definition 4.3. We define the t-structure of Sp9” to be given by the homotopy
group in each degree. The grading [k] is given by S%* @ (-).

One can check that Sp9” satisfies the conditions in Notations 1.1.

Notations 4.4. We will use {X,}, to denote the graded spectrum whose n-th
degree is a spectrum X,,. We use S*’ to denote the graded spectrum with S* in
degree b and 0 in other degrees.

Lemma 4.5. [CPH22, Lemma 4.4] There is a cocontinuous Eq-monoidal functor
O : 8p9” — 8pI”, sending {Xp}x to {Z7FXp .

Definition 4.6. We define lax E;-monoidal functors ®™ : 8p — 8p9” for all
0 <n < o0, sending X to {7'[07,,_112”“X}k.

Now we take A to be S(°°) := &(>)(S), which is a shift algebra with 7 given by
t-structure truncation in each degree:

T ZS(OO)[—I] = {E_kTZk+IS}k — {E_kTZkS}k =S,

Recall that a spectrum is uniquely determined by its homotopy groups and the
k-invariants between the homotopy groups. Classically, given a spectrum X, the
n-th k-invariant is defined as the connecting map in the fiber-cofiber sequence

S 11 (X) = T X = D' (X) 5 2027, (X).

However, there is no way to be more specific about this map since this is not an
H7Z-module map but a S<;-module homomorphism. Working in the graded sense,
we define the graded k-invariant as follows:

Definition 4.7. Given a spectrum X, we define the graded k-invariant of X to be
the connecting map in the fiber-cofiber sequence

20O (X)[-1] —» 2D (X) = 2O (x) & £200) (X)[-1].

Now the graded k-invariant is a S(Y-module homomorphism, so that we can
write it concretely in Modga) =~ ©}-Sect. However, as in Proposition 3.8, this map
should have been seen when we try to determine ®(1) before writing down the map
PO(X) - 220 [~1]. First we identify the category Modgo) .
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Lemma 4.8. There is an equivalence of oo-categories:
MOdS(o) ~ D_(Modii(s)).
Proof. This is a corollary of Proposition 3.16. O

Then we can invoke Example 3.9 to be specific about the graded k-invariant:

Theorem 4.9. Given a spectrum X, we can write the projective resolution of m,(X)
as a graded 7, (S)-module as

) o1

Xo X1 Xo 0

Then the graded k-invariant is exactly d@ in the illustration:

(id,dZ),)
Xiro ———— Xpp2 © Xp[~1]

(id,di%),) l
X1 —— X1 @ Xp—1[—1]

|

(id,d®)
- Xk ® Xp—a[-1]

X

(id,d(> ) l
Xpg ———— Xpp1 © Xp3[—1].

Remark 4.10. The twisting maps ¢(®) prevent the maps d®) from being a 7, (S)-
module homomorphism and almost determine d(®). However, little is known about
the twisting maps in the category of spectra, so we can only give a formal result
here and wait for further study.

Fortunately, we do have some known computations if we replace S by the E;-ring
End(F,), and the result is known as the secondary Steenrod algebra. In [Bau00],
Baues introduced and computed the structure of the secondary Steenrod algebra.
We will not dive into the details of that book but only extract from [CPH22] the
way to compute the twisting map, which will be discussed in Section 6.

5. APPLICATION IN THE CATEGORY OF SYNTHETIC SPECTRA

In this section, we take C = @LFP and A = vS = S%0, which is the synthetic
analogue of S in the category Syn. See [Pst18] for the definition and properties of
synthetic spectra. The main feature of the synthetic category we use here is that its
t-structure truncation gives the information of (co)homology and the organization
of the t-structure homotopy groups can be viewed as the organization of different
pages of the Adams spectral sequence. For the convenience of the reader, we list
the basic properties we use:

Proposition 5.1. (1) @LFP admits a natural separated t-structure whose heart
is isomorphic to the abelian category Comod 4,

(2) S/yEFP is a presentable stable symmetric monoidal co-category with the unit
SO0 ¢ (Syng,)>o0-
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(8) There is a canonical functor v : 8p — S/y?L]Fp whose images are periodic
v(S)-modules.
(4) Syng, is generated under colimits by the periodic v(S)-modules.

(5) There is a canonical map 7 : S%~1 — SV which is the I1-connective
covering. We will denote the cofiber of this map by C.

By [LLurl7, Theorem 7.4.1.26], we have a tower of square-zero extensions of E.-
algebras:

v(S) == Cr" == 072 = O,

inducing the symmetric monoidal equivalences

Modgrn >~ @Eéﬁ:::::?fl)—Sec‘c.

As a corollary of (1) and (3), we have the following identification:
Modg, ~ D_(GomodAp)®,
and we shall not distinguish these two categories in this chapter.
Corollary 5.2. Given any spectrum X, X,, := Ct"®v(X) is a periodic n-module.

Warning 5.3. When we try to apply Construction 2.8 to the category of synthetic
spectra, there is a small subtlety. Since Comod 4, does not admit enough projective

objects, we do not have D~ (Comod4,) ~ Ngg(Ch™ (Gomodir;j)) but the equivalence

DF(Comody,) ~ ng(Ch+(€0m0diAfli )). However, what we will compute is mainly
restricted to the two-sided bounded case, so we can still use the injective resolutions
to represent the maps in D~ (Comoda, ).

Notations 5.4. Given a spectrum X, we can apply v to get its synthetic analogue
vX, which is a periodic module over vS. Then we have C7" @ vX =~ 7<,_1(vX),
which we will simply denote by X,,.

In the following, there will be two different ways to denote the bigraded shifting.
One is given as X%, indicating the tensor product with S**; the other is given as
¥* X [v], which we use to denote the categorical suspension and the grading. These
two notations can be converted to each other by the following formula: X%'X =
YsTtX ).

The main purpose of this section is to apply the framework we developed in
the previous chapter to the category of synthetic spectra and try to understand
how various classical homotopy phenomena combine and interplay with each other.
Then we shall realize why the explicit computation of © should lie at the center of
the study of the Adams spectral sequence. Before doing so, let us recall a variation
of the Adams spectral sequence, which is called the 7-Bockstein spectral sequence.

Construction 5.5. Given a spectrum X, we define the 7-Bockstein spectral se-
quence of X to be

EN(X) = meags(Xeo1) ~ moMapyoa,, ,_, (ZHH O Xy ).

In particular, €' = 7,1 4(X,) = Exty " (F,, H.(X)) is the Fy page of the

@omod,‘\zD
classical Adams spectral sequence.
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As we have shown before, X can be written as a triple (Xx_1, s, h), where s is
a CtF l-module map Xj_; — @i,ng—l- Taking the homotopy of this map, we
get a morphism

W*,*(kal) — 77*,*(911C72Xk71) = 7T>n<,>»<(‘Xk71) X 7T*,1’*+k,1(X1),
which is the identity on 7, .(X,—1) and induces differentials
dy. : @Z’t(X) =Ty 14s(Xp—1) = Te—1 p4stb—1(X1) = @§+k’t71(X)~

Remark 5.6. This can be viewed as a variation of the Adams spectral sequence.
Informally, this spectral sequence has the following characters:

(1) The synthetic differentials are essential geometric information of the spec-
trum and can be recovered to give the differentials in the classical Adams
spectral sequence.

(2) The €& page can be viewed as a bigraded ring over Z/p" !, containing
the information of the extension problem in the classical Adams spectral

sequence.
(3) €.7(X) can be viewed as a (left) module over €;*(S).

k—1

Variation 5.7. To simplify the computation, we restrict our attention to the (2% +
1)-pages €or 1. We have
st
€;k+1 (X) = Tt t+s (X2k )
Under the identification

® ~ 0l24,..2" ®
MOdCTz(kH) ~ 0475 Tk -Sect”,

there is a section map of 072" -modules
X2k — @g:ilek.
Similarly, passing to bigraded homotopy groups gives the differentials

S 2 2k 41,t—1
dglzc!-’fl : Qf;kt+1(X) = 7Tt,t+s(X2k) = T—1,t+s+2F (ng-) = G;L_l"' k (X)

Remark 5.8. This variation has three advantages:

(1) The source and target of the differential lie on the same page.

(2) The differential di,i’fl encodes the information of dox 1, dor o, ..., dgr+1 in
the classical Adams spectral sequence. As a result, this spectral sequence
converges much faster than the classical one.

(3) @gilezk is the fiber of +(2) : Xor — Z2k+2X2k [—2*], so we no longer need
to compute the pullback along the Postnikov tower as in Proposition 3.12.

The following theorem relates the synthetic spectral sequence to the classical
Adams spectral sequence.

Theorem 5.9. Given a spectrum X, let €." and E,’" denote the k-th pages of its
synthetic and classical Adams spectral sequences, respectively. Then:
(1) ES" = BxtS5 T (Fy, Ho(X)) = me1s(X1) = €5, and —dy = d5"".
(2) There are Z-linear maps Tx : stLE o @5t induced by 7:X071X — X.
Moreover, TF=1 = 0 on the &-page.
(3)
E,i’t = G;’t/ker(T,f_Z).
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(4) If X is Fp-nilpotent complete, then Jim et~ (X)) forall s <0.

Proof. (1) The first statement is contained in [BIS19, Theorem 9.19].
(2) Concretely, the map on bigraded homotopy groups is

Toats (S0 Xp) = mags (X)),

induced by 7% : X0=kCr* — O7*. Tt suffices to show that my _x(CTF) =
@,;_]:’10(8) = 0, which follows by induction.

(3) This follows from [BHS19, Theorem 9.19]. The vanishing of the differentials
da,...,dp_1 on z € €' is equivalent to the existence of a lift of z to Q‘Ei’t.
Thus @Z’t can be described as the extension of such liftings by 7-multiples.
Since T1571 = 0 on the k-th page, all T-multiples lie in ker(7’,ff2). To identify
the elements hit by differentials, note from (3a) of [BHS19, Theorem 9.19]
that if x is hit by d, (1 <r <k —1), then any lifting of = in @Z’t is a 777 1-
torsion element. By (2b), if x is not hit by any differential, then 742z # 0.
This proves the claim.

(4) By [BHS19, Proposition A.13], X is Fp-nilpotent complete if and only if
the canonical map

v(X) — @CT”@V(X)

is an equivalence. Hence

T (X)p = T pps (VX)) = i 14 (CT" @ v(X)) = Jim €4 (X)

for all s < 0, where the first equivalence follows from [Pst18, Corollary
4.12].
O

For

L(2F)
Xop —————

2k
Xokt1 = X(i /
X

o2

2k71X2k'

we may understand the map s2") as a variation of the classical Adams differ-
ential. However, the module structure provides more information, such as the
p-multiplication.

Lemma 5.10. In the category Modg .+, multiplication by p is induced by the p-fold
multiple of the identity map of CT*. Concretely, for any map

f:M— N e Modgr,
the map p - f is given by

p-f:C"®@c M (n_f)> Ct* @cr N.

Proof. This follows directly from the linearity of the tensor product. O
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Suppose the map p2k o2 5o s expressed as

K 2k k
or? = eCr?
(2%)
0 hg, 0
k L(2F) k
or? = Clels

k
This corresponds to an element héQ ) e 0,2k (OT2k) = (’35:131(8).
Now, for any Cr2" module homomorphism f : M — N lifting f, the essential
information of f can be represented by

2"k
R S— P
M— oM
i h of
- NG T
N—Y 6N

Then p2" - f : M — N is determined by the square

(25
M i oM
™~ y
~
oh ecr? ®@per ON 0
s(2k) \
N x ON

where
— 25 @ F
h o= hg R p2k (Sﬁ o f)
This calculation provides a way to solve the extension problem in the 7-Bockstein
spectral sequence.

Theorem 5.11. There is a long exact sequence
Syn
k41
7Tt7t+s+2k (ng) — Tt t+s (X2k+1) — 7Tt7t+s(X2k) —_— 7Tt_17t+s+2k (sz),
which reduces to a short exact sequence
Syn s,t Syn
0 — coker(dity ) stk ¢ — €y — ker(dyll s — 0.

The extension is detected by h(()2k).

Proof. All abelian groups under consideration are p-groups, and both ker(di,?jfl) and

coker(dg’,i’fl) are naturally Z/(p?" )-modules. To determine the extension of these
two modules, it suffices to compute the ka—multiple of a lifting f € my y45(Xon+1)

of an element f € ker(dgfjfl).
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2k+1

Taking M = XHt+sCr and N = Xok41, we view any diagram

k @) k
Zt,t+sc«7_2 S Et,t+s@c7.2
i h of
X2k~ ®X2k

as representing an element f € m;4qs(Xort1) lifting f € ker(dii’:l). Then the

p?" -multiple of f is given by

k k
Et,t+sC7_2 Et,t+s@CT2

ol h§,2’€><(sgf’“>o?> lo
Xop ———— OXg

Since the p2k—multiple of f is independent of the homotopy h, we obtain a well-
defined map

(zk) -k Syn
hy - (_) : er(d2k+1)s,t — T tyst2k (@sz).

This map is a restriction of the natural action
T (OCT) X 7, (OXor) = Ty 2 (O X1 ).

Forgetting the module structure and passing to the underlying object, the product
k k f—
héQ ). (sg? )o f) yields an element

2" 7
ho . f S 7Tt7t+s+2k (XQk)

O

Remark 5.12. For k& = 0, this recovers the classical Adams case, showing that
ho = hél) detects Z/p-extensions.

Example 5.13. Now we show the 14-th and 15-th columns of the &3-page of the
sphere as an example to show how the product structure in the &3-page helps us to
determine higher differentials. The product structure can still be computed by the
secondary Steenrod algebra as shown in [CPH22]. Here we directly use the result
in [BHS19, Proposition A.20]. We will use T to denote any chosen lifting of = €
€57(S) in €3"(S), and the elements listed are the generators of the corresponding

)

—~2
abelian groups. Under such notation, we have h((J2 = hp and a hidden extension

—~2 ~
h() h% = 2d0 = Thodo.
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The full diagram is given as:

)2
|
7,4
Y L
o do 72 /A ho hohs
_ | o
Iodo 74\ ZJ4 o hohs
\ \
d 7/4 7/4  ho hohs

N | R
hoh2,7dy  Z/2®Z)2 \ Z/A  hohohy
| |

2 7/2 Z/4  hoha
7)2  Thoha
—2—~—
Invoking Theorem 5.11, ho hZ is either the generator or zero in coker(dgy"),

so there must be a differential hitting 250 = Thodg. By degree reasons, the only
possibility is dgy" (Thohy) = Thody. This differential is completely hidden but can
be easily recovered to give the classical Adams differential ds(hohs) = hodg by the
Leibniz rule.

So far, we have seen how the twisting maps nearly determine the differentials.
This highlights the importance of explicit computations for the ©-functor. More
concretely, let us unpack the essential data needed.

Given a spectrum X, to emphasize the homological feature of X, write

H.(X):= H.(X1;Fp) € D(Comod.ay )

for CT® X. Since we must keep track of actual maps rather than homotopy classes,
we regard H,.(X) as the injective resolution of H,(X) as a comodule. Then the
O-functor is determined by:

(1) A map H.(X) — ¥3H,(X)[—1], corresponding to O H,(X).
(2) Maps H.(X) — X*H,(X)[-2] and H.(X) — 230} H,(X)[—2] witnessing
the homotopy

H.(X) ———— 6j(H.(X))

(X
! Jo

SUH, (X)[-2] —— SO H, (X)[-2]

1,2
for O3 H.(X).
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(3) A map H.(X) — X°H,(X)[—4], together with all homotopies fitting into
the diagram

/

—

H.(X) O4(H.(X))
[_

Fib(f) i Fib(6; f)
SOH, (X)[—4] ‘ Y004 (H.(X))[—4]
36 Fib( f)[—4] SO Fib(O4(f))[-4]

(4) In general, maps H,(X) — $2+2H,(X)[—2*] for all k > 0, together with
the higher cells witnessing the corresponding homotopies.

6. RELATIONSHIP BETWEEN THETA-FUNCTOR AND N-ARY STEENROD ALGEBRA

In this section, we first recall the definitions and basic properties of the n-ary
Steenrod algebra (see [CPH22, Section 4] for details). We then derive a formula for
the first twisting map from the computation of the secondary Steenrod algebra.

Definition 6.1. For all 1 < n < oo, the n-ary Steenrod algebra A is defined as
®WEnd(F,), which is an Ej-algebra in 8p9”. The n-ary cohomology functor

H™ : 8p — Mod ym)
sends a spectrum X to <I>(")Map5p(X7 Fp,).

Notations 6.2. We use MapSp to denote the mapping spectrum, and End(F,,) for
the E;-ring of endomorphisms of F,.

As computed by [Bau06], the secondary Steenrod algebra is an algebra over

S]i”l ~ Z/p*. Consequently, it can be expressed as a differential graded Z/p?-
algebra

together with a short exact sequence

B
0 — Ay[+1] — By L5 By 28 A, — 0.
For B, to be a differential graded algebra, By must be a Z/p?-algebra and B; a

Bp-bimodule. As a right By-module, B; decomposes as

B = ker(mp) @ Ap[+1].
The left action is given by

a- (T7p) = (G/T, A(TFB(G,)’T) + ﬂ—B(a‘)p)7
where
A: Ap ®z kermg — Ap[+1]

is a nontrivial bilinear map.

In [CPH22], Chua provides explicit generators and relations for this differential
graded algebra in the case p = 2. These presentations are sufficient to compute all
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do-differentials. Here we recall only the material relevant for computing twisting
maps.
The dual of By can be identified with

(Bo)sx = Z/A[Ek, 26k0 | 0 <k <, & = 1],
whose coproduct is encoded by the power series
f(z) = ZSkIQk + Z 264122 2.
k>0
Accordingly, By itself is described as follows:
Definition 6.3 ([CPH22|, Definition 8.6). Define Sq(R) and Yj,; to be the dual

elements of £% and 2€j,1, respectively, where R denotes a multi-index in Milnor’s
basis.

Remark 6.4. Chua uses the notation Sq(R) both for elements of By and for those
of A,. We follow this convention, but note that the products differ: in general, the
multiplication of Sq(R)Sq(S) depends on whether it is taken in By or in A,.

Lemma 6.5 ([CPT122], Lemma 8.7, 8.8, 8.10). The generators satisfy the following
relations:

(1) ms(Yis) = 0 and ms(Sq(R)) = Sq(R).

(2) YopYea =0 forall a,b,c,d, and 2Y, . = 0.

Definition 6.6. [CPH22, Definition 8.11] Let X = (z;;) be a matrix indexed on

the non-negative integers. Define

m(X):Z?xij? Sj(X):injv tn(X) = Z Zigs
J i itj=n
R(X):(Tl(X)vr2(X)7"')7 S(X):(SI(X)’32(X)?"')7 T(X):(tl(X)v'")v
b(X) = HH:?J" cz

We put 7T : AZ ® A, — A, to be the contraction operator, then in Milnor basis,
we have

T(ng SQ(S)) = SQ(S - R)a

where Sq(S — R) is zero if any entry is negative.

Theorem 6.7. [CPH22, Theorem 8.13]

Sa(R)Sa(9) =Y S Yarrnsn T2 €2, Sq(R)T (€541, Sa(S))

kE>00<m<n

+ > b(X)Sq(T(X)).

R(X)=R,S(X)=S

Remark 6.8. As By — A, is a map of algebras, we have
m5(Sq(R)Sq(S)) = m5(Sq(R))ms(Sq(S)),

which recovers Milnor’s result in [Mil58, Theorem 4b].

Finally, we describe the function A:
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Lemma 6.9. [CPH22, Lemma 8.14] We have
A(a 2) = T(&,a),
a Ykl Z Zk—i—z l+] 5 ’ )

4,70
A(a,rSq(R)) = A(a,)Sq(R),
where Z; = Sq(Ak + Ay) if k> 1 and Z,; = 0 otherwise.

When n = 2, we have described .A,(f) as a differential graded algebra, so the
category Mod ,(») is purely algebraic. This allows us to reinterpret computations
P

in Modc,2, which is a topological category, as computations in Mod which is

-Ag(n2) )
algebraic.

To carry this out, one must construct a cofibrant replacement of H() (X ) in
Mod AD- This can be achieved by lifting a free resolution of H*(X) as an A,-
module.

More generally, suppose we are given an A,-module M. We aim to find a cofi-
brant A,(,2)—m0dule M such that
Ap @ 40 M = M.
Let o
00 3 0D, 150 i

be a free resolution of M. As mentioned in Section 1, to make this lift homotopically
meaningful, we must also specify the homotopies, i.e. a diagram

s M@ 22

o a< ) €]

M® M@ MY A o

h® M@ Mz) M
(3) (2)
)

ok

satisfying the relations
A=) = 9{al®),
aésfl)a(()s) _ d(572)h(s)7
oo = h9d)
R~V = a2,
Given such homotopies h, we obtain a cofibrant replacement of M in the form

8(3) d(2) 6(2) d(1>
_p3) 78( ) ) _h® 78(1)

. 8(1) d(())
MO @ a? M @ 10 M @ A CR

M.
One verifies directly that this is a cofibrant object with the correct homotopy type.
For our purposes, however, it suffices to analyze the diagram to understand the
meaning of the homotopies h.

By decomposing Ml(") as

Ml(n) = ker(ﬂ(o)) ¥ M(")[+1],
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the map h("+2) separates into two components. The commutativity of the diagram
forces the ker-part to be determined by 8{" "2 (")

is the map

, so the essential contribution

hy: MY s MO [41],
In fact, since 9" 729" (ker d"+2)) = 0, the map h, factors through

he: M2 M) [41).

The degree of h, coincides precisely with the degree of the ds-differential and
the connecting map X — X2X[—1]. This is no accident: in [CPH22, Section 5],
Dexter Chua constructs a comparison functor

op
Hsyn Modgrn — Mod 'y

extending the n-ary cohomology functor on 8p, fitting into the commutative dia-
gram

Sp
v AN
Cr"Qu(—) 724(n)
' >
(n) op
Modepn M), —— Mod”,,

with #(™ almost fully faithful.

Theorem 6.10 ([CPH22], Theorem 5.6). For any X € Modc,» andY € ModcTn,
the map

H(Sz)n Ma‘pMOdCTn (X7 Y) — MapModoAp(n) (H(SZn( ) %Syn( ))

is an equivalence. Here Modng is the full stable subcategory generated by {CT" ®
vP} for finite type spectra P.

Applying this when n = 2, one sees that h. detects the da-differential as in [CPT22,
Lemma 9.1]. Indeed, if the resolution of H*(X) is chosen to be minimal, then each
Es-class is represented by a generator of A,, and a nontrivial d2 occurs precisely
when A, maps one generator to another, up to nullhomotopies.

Finally, this leads to the formula for the first twisting map:

Theorem 6.11. Let M be a AX—comodule, with dual Ap-module M. Suppose the
free resolution

0B, ) 22, 3 M

s M) 92

is dual to an injective resolution in C’omodAIv), and that M’ lifts to a periodic
Ct2-module. Then the first twisting map

1@ M M) ]
has dual

(t(2))v: M@+3) —y prn) [+1],

sending each generator g to

S A, a5 (g0)),

where 0+3)(g) = 3" alg; with {g;} generators of M(n+2).
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Proof. From the discussion above, the dual of

AP M L My 1]
is identified with
B2, BEGTD y A 4],
Commutativity of the chain map M @5Hv then implies
DRI (g) = B9+ (g)) + (¢3) Y (g).

By [CPH22, Corollary 8.29], the left-hand side expands as

Dk ge) + 37 el o0 (),

hence we identify

(t(Q))V(g) _ ZA(ai’ 8én+2)6én+1)(gi)).

O

Remark 6.12. We expect that the above result should remain valid without assum-
ing that 7" can be lifted to a periodic Cm2-module. However, since the function

g > Al "8 ()
lacks a functorial definition, at present it can only be compared in an ad hoc manner.

Remark 6.13. This result clarifies what the secondary Steenrod algebra is actually
computing. As pointed out by Chua, By is not canonical; it is chosen large enough
to support a nontrivial function A. Our result explains how this enlargement in-
teracts with the function A to recover the canonical functor ©. Consequently, our
construction provides a practical method for performing elementwise computations
in higher Steenrod algebras.

We conclude with an example that illustrates how to compute the first ds-
differential on the sphere by hand. (Further computations can be found in [Chu22].)

Example 6.14. We recover the differential dy(hy) = h0h§ in the Fo-Adams spectral
sequence. To this end, we consider the diagram of Aj-comodules. Here we use (a)
to denote one copy of Ay, with Steenrod algebra elements written in the Milnor
basis:

(1) (20 (1) & ((h3) & (h2) & (hoha) & ---)[~1]

| |

(o) © (ha) @ {he) @ -+~ == ({ho) @ (hn) @ ) @ ((5) © {higha) &) (1]

To detect d® ((hy)) via (hoh3), we compute the image of (hs) under t). Since
direct comodule calculations are cumbersome, we instead dualize to As-modules
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and apply the formula in Theorem 6.11. This yields
(t2)Y ((hoh3)) =A(Sq"? + S¢©3) Yy 1 +28¢°)+

A(Sq™? Y515¢% 4 28¢* + 25¢H D)+
A(Sq"Y Yo 25¢" +28¢° + 2S¢ M)+
A(Sq” + Sq ¥  Y515¢° + 28¢° + 25¢@P )+
A(Sq® + 5S¢ Y 1(Sq" + Sq*Y 4 S + ) 28¢°+
Y0735q1 + Q(ng + Sq(G,l) 4 Sq(O,B) 4 Sq(2"0’1) 4 Sq(3’2)))+
A(Sq" + Sq 4 §¢0:0-1), Y0,1(Sqs + Sq(2’2)) + YO,QSQ(B’U‘F
Y1725q5 + 2(Sq10 + Sq(7’l) —|—Sq(1’3) + Sq(S,O,l) + Sq(4’2)))—|—
A(Sq", Yo,18¢" +2(Sq"® + Sq¢'™® + S¢“ 1))

Although this expansion already contains many terms, further application of the
defining formula for A produces nearly 60 terms. A direct calculation shows that
the result simplifies to

Sq'® + Sqlo1V) + 8¢ € (1),

Since the following square commutes:

(1) (1) & ((h) @ (h?) & (hoha) & - -)[-1]

[ |

{ho) & (h1) & (h2) ® -- ((ho) @ (h1) @ ---) @ ((h}) & (hiha) & -+ )[-1]

(id,0)

. <;
(id,d®)

we conclude that

dy - €212(S) — e3M(s)

sends hy to hoh3, recovering the first do-differential on the sphere.

Remark 6.15. Although the explicit computation is lengthy, one can quickly verify
that the formula for (£(2))V (hoh3) contains only a single term, Sq'¢, since no other
products contribute in this degree. As S¢'6 is the unique generator in degree 16,
this suffices to detect the first differential.

APPENDIX A. SQUARE-ZERO EXTENSION

In this Appendix, we introduce the basic definitions and properties of the square-
zero extension we use in Section 2

Definition A.1 (Stable envelope). Let € be a presentable co-category . A stable
envelope of € is a categorical fibration u : ¢’ — € with the following properties:

e The category € is stable and presentable.

e The functor u admits a left adjoint.

e For every presentable stable (pointed) oo-category &€, composition with «
induces an equivalence of oo-categories RFun(€, €’) — RFun(€,€). Here
RFun(&, ') denotes the full subcategory of Fun(&, ") spanned by those
functors which admit left adjoints. and RFun(&, €) is defined similarly.

More generally, suppose that p : € — D is a presentable fibration. A stable
envelope of p is a categorical fibration u : ¢’ — € with the following properties:
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e The composition p o u is a presentable fibration.

e The functor u carries p o u-Cartesian morphisms of €’ to p-Cartesian mor-
phisms of C.

e For every object D € D, the induced map €, — €p is a stable envelope of
Cp.

Definition A.2 (Tangent bundle). Let C be a presentable co-category. A tangent
bundle to € is a functor Te — Fun(Al, €) which exhibits T as the stable envelope
of the presentable fibration Fun(At, €) — Fun({1},C) ~ €.

Definition A.3 (relative version of adjoint functors). Suppose we are given a
commutative diagram

of oco-categories, where the maps p and ¢ are categorical fibrations. The following
conditions are equivalent:

e The functor G admits a left adjoint F. Moreover, for every object X € C,
the functor ¢ carries the unit map ux : X — GFX to an equivalence in €.
e There exists a functor F': € — D and a natural transformation u : ide —
G o F which exhibits F' as a left adjoint to G, and has the property that
g(u) is the identity transformation from ¢ to itself.
We will say that G admits a left adjoint relative to € if the equivalent conditions
above are satisfied.

Proof. This is [L.url7, Proposition 7.3.2.1] |

Proposition A.4. Let C be a presentable co-category, and consider the associated
diagram

Fun(Al,G) ﬁ Te
N
e

where q is given by evaluation at {1} C Al. Then G admits a left adjoint F relative
to €.

Proof. By the definition of the tangent bundle T¢, the functor G carries p-Cartesian
morphisms to g-Cartesian morphisms. Since for each object A € €, the fibers
Sp(€/4) and €/, admit final object, so p and ¢ are locally Cartesian categorical
fibrations. The induced functor G4 : Sp(€,4) — €4 admits a left adjoint X>°, so
we can apply [Lurl7, Proposition 7.3.2.6] to get a left adjoint of G relative to &,
which we will denote by F'. (]

Definition A.5 (Absolute cotangent complex functor). Let € be a presentable
oo-category, the absolute cotangent complex functor L : C — Te is defined to be the
composition

€ — Fun(A',€) & Te,
where the first map is given by the diagonal embedding. We will denote the value
of L on an object A € € by La € Sp(C4), and will refer to L as the cotangent
complex of A.
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Definition A.6 (trivial square-zero extension). Let C® be a stable symmetric
monoidal co-category (such that the tensor product on € is exact in each variable)
and let A be an O-algebra object of C, then the trivial square-zero extension of an
A-module is defined to be the composition

Fune (O, ModS) ~ Sp(Algn(C)/4) 2 Algy(€)/ 4.

This functor associates to each M € Funp (O, Mod9) a algebra which we will denote
by A® M.

Remark A.7. Since the diagonal embedding admits a right adjoint Fun(Al, €) —
Fun({0}, €) ~ €, we have a right adjoint of L

€ < Fun(Al, @) & Te.

When € is the full subcategory spanned by all O-monoidal algebra object in a
symmetric co-category € and let A € € with M in its fiber 8p(€/4) =~ Mod§ (€).
Then this right adjoint sends M to its trivial square-zero extension A & M.

Definition A.8 (Tangent correspondence). Let € be a presentable co-category
and let G : Te — Fun(A!,€) be a tangent bundle to €. We define the tangent
correspondence s : MT(C) — Al to be the Cartesian fibration associated to the
functor

Te <5 Fun(Al, €) — Fun({0},€) ~ €.

Proposition A.9. Let C be a presentable co-category. Then:
(1) MT(@) equips with a functor q : MT(C) — €, restricting to (MT(€))y ~

e e, @ and (MT(@))1 ~ Te — Fun(A', €) — Fun({1},€) ~ €.

(2) The projection M (@) DAL x @ isa categorical fibration.

(8) The map p is also a coCartesian fibration, accociated to the cotangent
complez functor L : C — Te.

Definition A.10. Let € be a presentable co-category, and let p : M7 (C) — Al x @
denote a tangent correspondence to €. A derivation in € is a map f : A — M7T(C)
such that p o f coincides with the inclusion Al x {A} C Al x €, for some A € C.
In this case, we will identify f with a morphism n : A — M in M7T(C), where
M € Te xe {A} ~ Sp(C/4). We will say that n: A — M is a derivation of A into
M.

We let Der(€) denote the fiber product Fun(A', M7 (€)) Xpum(ar,arxe) €. We
will refer to Der(C) as the oco-category of derivations in C.

Remark A.11. A derivation n: A — M can be identified withamap d: Ly — M
in the fiber Te xe {A} =~ 8p(€/4) since A — L, is a coCartesian map in M7 (€).

Definition A.12. Let € be a presentable co-category, and let p : M7 (C) — Al x €
be a tangent correspondence for C. An extended derivation is a diagram o

A1 4

L b

00— M

in M7 (€) with the following properties:
(1) The diagram is a pullback square.



36
(2)
3)

(4)

JIKUN LI

The objects A and A belongs to € ¢ M7 (@), while 0 and M belong to
Te C MT(G)

Let f : A’ — @ be the map which classifies the morphism f appearing in
the diagram above, and let e : A' x A’ — Al be the unique map such that
e 1{0} = {0} x {0}. Then the diagram

Al x AV 2 MTe) X Al xe

|- _ |

Al / e

is commutative.
The object 0 € Te is a zero object of Sp(C/ ).

We let Der denote the full subcategory of

Fun(A" x A*, M7 (C)) Xpun(atxat,atxc) Fun(A', €)

spanned by the extended derivations.

Proposition A.13. Let € be a presentable oo-category. Then the forgetful ¢ :
Der(€) — Der(C) is a trivial Kan fibration.

Definition A.14. Let C be a presentable oo-category, and let ® : Der(C) —
Der(€) — Fun(Al, @), where the first map is any section of the trivial fibration
and the second map is induced by the inclusion A! x {0} C A! x Al. We will
denote the image of a derivation (n: A — M) € Der(C) under ® by (A" — A).
Let f: A — A be a morphism in €. We will say f is a square-zero extension
if there exists a derivation n : A — M in €, and an equivalence A ~ A" in the

oo-category €/ 4. In this case, we will also say that A is a square-zero extension of
A by M[-1].
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