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Abstract. In this paper, we develop a new construction that enables discrete
computation of n-ary Steenrod algebras and establish an explicit relationship
between this and the computation of the En+1-page of the Fp-Adams spectral
sequence. As an application, we demonstrate how hidden extensions in the
Adams spectral sequence detect extensions of homotopy groups.
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1. Introduction

1.1. Motivations. In [Bau06], Baues introduced and computed the secondary
Steenrod algebra as a differential graded algebra. Nassau simplified this construc-
tion in [Nas12], and his model was used to develop an algorithm for computing the
E3 page of the Adams spectral sequence in [CPH22] by Chua. The basic ideas are
as follows:

The secondary Steenrod algebra A(2)
p is defined as a differential graded Z/p2-

algebra, namely
B1

B0.
dB

Furthermore, there is an exact sequence

0→ Ap[+1]→ B1
dB

−−→ B0
πB−−→ Ap → 0,

where Ap denotes the Steenrod algebra and (Ap[+1])k = (Ap)k−1. Specifically,
there is a map of right A(2)

p -modules
τ : ΣA(2)

p [+1]→ A(2)
p
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that induces a splitting
B1 ' kerπB ⊕Ap{τ}

as a right B0-module, where τ has degree |τ | = 1.
Given a spectrum X, to compute its d2 differential, we first compute its E2-page

whose (s, t)-term is Es,t
2 = Exts,s+t

Ap
(H∗(X;Fp),Fp). This can be computed from

the projective resolution of H∗(X) as an Ap-module, given by

· · · X(2) X(1) X(0) H∗(X;Fp).
∂(2) ∂(1)

By [CPH22, Lemma 8.23], this chain complex can be lifted to a chain of free
A(2)

p -modules

· · · X
(3)
1 X

(2)
1 X

(1)
1 X

(0)
1

· · · X
(3)
0 X

(2)
0 X

(1)
0 X

(0)
0

∂
(3)
1

d(3)

∂
(2)
1

d(2)

∂
(1)
1

d(1) d(0)

∂
(3)
0 ∂

(2)
0 ∂

(1)
0

The d2 differentials are captured by a specified null-homotopy of the composition
∂
(n)
0 ◦ ∂(n+1)

0 , namely by the maps h that make the following diagram commute:

· · · X
(3)
1 X

(2)
1 X

(1)
1 X

(0)
1

· · · X
(3)
0 X

(2)
0 X

(1)
0 X

(0)
0

∂
(3)
1

d(3)

∂
(2)
1

d(2)

∂
(1)
1

d(1) d(0)

h(4) h(3)

∂
(3)
0

h(2)

∂
(2)
0 ∂

(1)
0

There are exact sequences

0→ X(n){τ} → X
(n)
1 → X

(n)
0 → X(n)

π(n)−−−→ 0,

so we can decompose the target of h(n+2) as kerπ(n) ⊕ X(n){τ}. We can identify
the projection of h(n+2) onto kerπ(n) with ∂

(n+2)
0 ◦ ∂(n+1)

0 by commutativity. The
essential information is captured by the map into the τ -component, which we denote
by h

(n+2)
τ . Since h

(n+2)
τ sends kerπ(n+2) to zero, the map h

(n+2)
τ can be regarded

as an Ap-module map from X
(n+2) to X

(n){τ}. As stated in [CPH22, Lemma 9.2],
these maps determine the d2-differentials.

Therefore, one has an algorithm for all d2-differentials by inductively determining
h
(n)
τ . The heart of Secondary Steenrod algebra is giving an explicit formula for the

difference
tn+2 := ∂(n) ◦ h(n+2)

τ − h(n+1)
τ ◦ ∂(n+1)

to simplify the computation of all d2-differential into a procedural computation.
However, all the procedures shown above rely heavily on the fact that A(2)

p is an
algebra over Z/p2, which allows it to have a model as a differential graded algebra.
It seems unclear why the maps hτ should be defined so.

In this paper, we design a concrete quasi-category for the modules over the n-
ary Steenrod algebra1 as in Theorem 2.16. Then, we present a canonical way to

1Actually, we do not deal with the category of modules over the n-ary Steenrod algebra directly,
but rather with its dual in some sense, namely ModCτn in the category of synthetic spectra.



TWISTING MAPS AND ADAMS SPECTRAL SEQUENCE 3

define hτ and t, and generalize them to higher Steenrod algebras. See Definition 3.5
for the precise definition of the twisting maps t of modules over higher Steenrod
algebras. Finally, in Theorem 6.11, we justify our construction as a generalization
of the secondary Steenrod algebra by relating the first twisting map we define to
the key formula

∂(n) ◦ h(n+2)
τ − h(n+1)

τ ◦ ∂(n+1)

that appeared above.

1.2. Conventions.
Notations 1.1. Throughout this paper, we put C to be a stable presentable
∞-category equipped with a symmetric monoidal structure and a separated t-
structure. Assume that the unit object 1 ∈ C belongs to C≥0, that the tensor
product ⊗ : C×C→ C preserves small colimit separately in each variable, and that
⊗ carries C≥0 × C≥0 into C≥0.
Notations 1.2. We use τ≤n to denote the standard t-structure truncation of C

and τ[a,b] to denote τ≤b ◦ τ≥a. Unless otherwise specified, we use πn(X) to denote
the n-th homotopy group with respect to the t-structure and X≤n to denote τ≤nX.
Notations 1.3. Let A be a connective algebra object in C. We denote by ModA
the category of bounded below left A-modules in C.

Throughout this paper,∞-categories should be regarded as quasi-categories and
all limits and colimits are taken as homotopy limits and colimits in the∞-category
sense.

1.3. Outline of the paper. Given a symmetric monoidal ∞-category C and a
connective algebra object A, one can always define a quasi-category as the ∞-
category of left modules over A. However, it is typically difficult to understand the
information encoded in higher simplexes, unless the algebra A is discrete. In [LH17],
Lurie and Hopkins introduced the functor Θ and a natural transformation π from
Θ to the identity functor. In [PV22], Pstrągowski and Vankoughnett applied these
functors to construct an equivalence of ∞-categories ([PV22, Theorem 3.8]):

ModA≤n
' Θ-SectA≤n−1

.

The right-hand side is a subcategory of Fun(∆2,ModA≤n−1
), which means that we

can use a diagram of A≤n−1-modules to represent a A≤n-module.
This motivated the author to repeat this construction to identify ModA≤n

as a
subcategory of Fun((∆2)n,ModA≤0

). In many favorable cases, the category ModA≤0

is purely algebraic and equivalent to some ∞-derived category, so that one can
understand each simplex explicitly. This idea is fully discussed and generalized to
a symmetric monoidal version in Section 2.

Concretely, for any m,n such that n ≤ 2m+ 1, we have a fiber-cofiber sequence
F → A≤n → A≤m

and a pullback square of associated algebras
A≤n A≤m

A≤m A≤m ⊕ ΣF,

(?)d

d0
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where d and d0 are all sections of the natural projection p : A≤m ⊕ ΣF → A≤m.
This induces a pullback square of categories of modules over the corresponding
rings:

ModA≤n
ModA≤m

ModA≤m
ModA≤m⊕ΣF .

d∗

d∗
0

Definition 1.4 (Definition 2.2). We define the functor Θn−m
m : ModA≤m

→ModA≤m

as Θn−m
m := d∗d

∗
0.

Definition 1.5 (Proposition 2.4). There is a natural transformation π : Θ → Id
induced by the natural map d∗d

∗
0M → d∗p∗p

∗d∗0M .

We then construct an ∞-operad as the homotopy pullback in the following
square:

Construction 1.6 (Construction 2.12).

Θn−m
m -Sect⊗ Fun(∆2,ModA≤m

)⊗

Mod⊗A≤m
Fun(Λ2

2,ModA≤m
)⊗.

Here the horizontal map sends M to the diagram

M ΘM

M .

id
π

We then have the following symmetric monoidal equivalence:

Theorem 1.7 (Theorem 2.16).
Θn−m

m -Sect⊗ 'Mod⊗A≤n
.

Hence, one can iterate this identification to obtain a simplicial set model of
ModA≤n

for each n.
With this construction, it is natural to ask what these higher simplexes represent.

For technical reasons, we restrict our attention to shift algebras and periodic objects.
With a grading on the entire category, we can define:

Definition 1.8 (Definition 3.2). A shift algebra is an associative algebra A ∈
Alg(C) equipped with a map τ : ΣA[−1]→ A of right A-modules which induces an
isomorphism π∗(A) ' π0(A)[τ ], where the latter is the graded algebra in C♡ given
by (π0(A)[τ ])k ' π0(A)[−k].

Definition 1.9 (Definition 3.3). For a fixed shift algebra A and 1 ≤ n ≤ ∞, we say
X is a periodic n-module if M ∈ ModA≤n

satisfies that π0(A) ⊗A≤n
X is discrete.

When n =∞, we also refer to it as a periodic module.

The main feature of periodic modules is that their t-structure truncation coin-
cides with their left tensoring with A≤n over A. This simplifies the computation of
A≤n ⊗A X.
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One finds that the essential homotopical information is always captured by the
sections:

s : X → ΘX.

The intuition is as follows. Given a t-structure and a periodic object X over a
periodic algebra 1, there are fiber-cofiber sequences:

Σπ1(X)→ τ[0,1]X → π0(X),

and we are always concerned with the connecting map:

π0(X)→ Σ2π1(X).

However, this map typically lives in Mod1≤1
and we cannot describe it algebraically.

The functor Θ can help. Indeed, Θπ0(X) is the fiber of a 1≤0-map π0(X) →
Σ3π1(X), so the connecting map can be factored as:

π0(X)→ Θπ0(X)→ Σ2π1(X),

where the first map can be described completely algebraically. Therefore, we should
think of Θ as a way to record the effect of π0(X) on π1(X) so that one can be specific
about the connecting map.

As an application, we work in the category of synthetic spectra ŜynFp
and develop

a method to record the information of the n-ary Steenrod algebra algebraically. For
any spectrum X, the section

s : Cτ ⊗ ν(X)→ Θ1
0(Cτ ⊗ ν(X))

can be regarded as a map between chain complexes of injective A∨
p -comodules:

X0 X0 ⊕X2[−1]

X1 X1 ⊕X3[−1]

X2 X2 ⊕X4[−1]

X3 X3 ⊕X5[−1].

(id,d
(2)
0 )

(id,d
(2)
1 )

(id,d
(2)
2 )

(id,d
(2)
3 )

Then the maps d(2) are exactly the duals of hτ introduced in Section 1.1. Moreover,
the map t is recorded by Θ1

0 and can be seen from the fiber-cofiber sequence:

Θ1
0(Cτ ⊗ ν(X))

π−→ Cτ ⊗ ν(X)
t−→ Σ2,−1Cτ ⊗ ν(X),
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where the second map expands into a map between chain complexes:

X0 X3[−1]

X1 X4[−1]

X2 X5[−1]

X3 X6[−1].

t
(2)
0

t
(2)
1

t
(2)
2

t
(2)
3

This gives the dual of t := ∂(n) ◦ h(n+2)
τ − h

(n+1)
τ ◦ ∂(n+1). We generalize the map

t for higher Steenrod algebras in Definition 3.5 and call it the twisting map. Hence
the formula designed by Baues is actually one choice of the twisting map for Θ1

0:

Theorem 1.10 (Theorem 6.11). Given a A∨
p -comodule M

∨ and its dual Ap-module
M , the free resolution of M is given by:

· · · M (2) M (1) M (0) M∂(2) ∂(1)

with its dual being an injective resolution in ComodA∨
p

:

0 M
∨

M (0)
∨

M (1)
∨

M (2)
∨

· · ·

Suppose that M
∨ can be lifted to a periodic Cτ2-module. Then the first twisting

map
t(2) : M (n)

∨
→M (n+3)

∨
[−1]

has a dual
(t(2))∨ : M (n+3) →M (n)[+1]

sending each generator g to∑
A(αi, ∂

(n+2)
0 ∂

(n+1)
0 (gi)),

where ∂(n+3)(g) =
∑

αigi if we write {gi} for the generators of M (n+2).

Example 1.11 (Example 6.14). We recover the differential d2(h4) = h0h
2
3 in the

F2-Adams spectral sequence of the sphere. By computing the twisting map
(t(2))∨(h0h

2
3) = Sq16 + Sq(6,1,1) + Sq(10,2),

the commutative square

〈1〉 〈1〉 ⊕ (〈h2
0〉 ⊕ 〈h2

1〉 ⊕ 〈h0h2〉 ⊕ · · · )[−1]

〈h0〉 ⊕ 〈h1〉 ⊕ 〈h2〉 ⊕ · · · (〈h0〉 ⊕ 〈h1〉 ⊕ · · · )⊕ (〈h3
0〉 ⊕ 〈h2

0h2〉 ⊕ · · · )[−1]

(id,0)

(id,d(2))

implies the first differential d2(h4) = h0h
2
3.

To discuss the explicit relationship between the sections and Adams differentials,
we define a variation of the Adams spectral sequence as follows:
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Construction 1.12 (Construction 5.5). For a spectrum X, we define
Es,t
k (X) := πt,t+s(Cτk−1 ⊗ νX)

and we focus on the (2k + 1)-th pages. By considering the connecting map in the
fiber-cofiber sequence:

Σ0,−2kCτ2
k

⊗ νX → Cτ2
k+1 ⊗ νX → Cτ2

k

⊗ νX → Σ1,−2kCτ2
k

⊗ νX,

we can define the differential dSyn
2k+1 as

dSyn
2k+1 : Es,t

2k+1
(X) = πt,t+s(Cτ2

k

⊗νX)→ πt−1,t+s+2k(Cτ2
k

⊗νX) = Es+2k+1,t−1
2k+1

(X).

In this case, the underlying object of Θ2k

2kCτ2
k⊗νX is Cτ2

k⊗νX⊕Σ1,−2kCτ2
k⊗

νX, so the connecting map is recorded as part of the data:

s : πt,t+s(Cτ2
k

⊗ νX)→ πt,t+s(Θ
2k

2k−1Cτ2
k

⊗ νX).

This allows us to work on the connecting map in the category Mod
Cτ2k rather than

Mod
Cτ2k+1 .

This also allows us to easily determine extension problems of the Adams spectral
sequence using the product structure. Suppose we choose h

(2k)
0 to be any lifting of

(h0)
2k along

E2k,0
2k+1

(S) = π0,2k(Cτ2
k

)→ π0,2k(Cτ) = E2k,0
2 (S).

Then we have:
Theorem 1.13 (Theorem 5.11). There is a long exact sequence:

πt,t+s+2k(X2k)→ πt,t+s(X2k+1)→ πt,t+s(X2k)
dSyn

2k+1−−−−→ πt−1,t+s+2k(X2k).

This reduces to a short exact sequence:
0→ coker(dSyn

2k+1)s+2k,t → Es,t
2k+1 → ker(dSyn

2k+1)s,t → 0.

The extension is detected by h
(2k)
0 · (−) : ker(dSyn

2k+1)s,t → coker(dSyn
2k+1)s+2k,t.

Example 1.14 (Example 5.13). By the hidden extension

h
(2)
0 h̃2

3 = τh0d0

and Theorem 5.11, we can deduce the first d3-differential:
d3(h0h4) = h0d0.

The relationship between this variation and the classical Adams spectral se-
quence is already known and discussed in [BHS19, Theorem 9.19], and we provide
a refinement in Theorem 5.9.
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∞-categories and helped me overcome many difficulties along the way. Finally, I
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2. A simplicial model for the category of modules over truncated
algebra

In this section, we will construct a quasi-category as a concrete model of ModA≤n

so that one can understand each simplex algebraically. We also discuss the symmet-
ric monoidal structure and t-structure of the∞-category so that we can completely
identify this model with ModA≤n

.
We follow Lurie’s treatment in [Lur17, 7.4.1] of square-zero extensions and treat

the Postnikov tower of an algebra as a sequence of square-zero extensions. We
list the basic definitions and properties of square-zero extensions in Appendix A.
Hereafter, we fix an Ek-algebra A ∈ Alg(k)(C≥0) such that π0(A) 6= 0 and denote
the category of bounded below left modules over A≤n by ModA≤n

.
As shown in [Lur17, Corollary 7.4.1.27], A≤n → A≤m is a square-zero extension

if n ≤ 2m+1. Suppose its fiber is F . Then there is a pullback square of Ek-algebras
as in [Lur17, Remark 7.4.1.7]:

A≤n A≤m

A≤m A≤m ⊕ ΣF.

(?)d

d0

Here A≤m ⊕ ΣF is the trivial square-zero extension of A≤m by ΣF , and d and d0
are both sections of the natural projection p : A≤m ⊕ ΣF → A≤m so d0 = (id, 0)
and d = (id, der). der is a derivation determined by the structure of A≤n.

This induces a commutative square of ∞-categories of left modules:

Proposition 2.1. The commutative square of ∞-categories of left modules induced
by the diagram (?) is a pullback square of ∞-categories.

ModA≤n
ModA≤m

ModA≤m
ModA≤m⊕ΣF

d∗

d∗
0

That is, there is a canonical equivalence between ModA≤n
and the ∞-category of

triples (M,N,α), where M,N ∈ ModA≤m
and α : d∗0M ' d∗N . Furthermore,

since d∗ and d∗0 are symmetric monoidal functors, this pullback can be viewed as a
pullback square of symmetric monoidal categories.

Proof. This first appeared in [LH17] and was restated in [PV22, Proposition 3.5].
Here we slightly generalize the statement to fit our needs and mimic the original
proof. There is an adjunction

F : ModA≤n
⇄ ModA≤m

×ModA≤m⊕ΣF
ModA≤m

: G,

where F is induced by base change along the diagram (?) and its right adjoint G
is given informally by the formula

(M,N,α) 7→M ×d∗
0M

N.

Here the right-hand side is taken as a limit of modules over A≤n. To show that F
and G are categorical equivalences, we first show the unit of the adjunction is an



TWISTING MAPS AND ADAMS SPECTRAL SEQUENCE 9

equivalence:
M A≤m ⊗A≤n

M

A≤m ⊗A≤n
M (A≤m ⊕ ΣF )⊗A≤n

M

is a pullback square for every M ∈ModA≤n
. In fact, (?) can be viewed as a pullback

square of A≤n-bimodules or a pushout square as bimodules since BModA≤n
is

stable. By tensoring with M on the right, we get a pushout-pullback square of left
A≤n-modules.

Then we show that G is conservative. Similar to the argument above, G preserves
cofibers, so it suffices to check that if (M,N,α) is a triple such that M ×d∗

0M
N

vanishes, then M = 0 and N = 0. Otherwise, we can assume M is nontrivial and
take its lowest nontrivial homotopy group. Notice that d0 and d induce identity
maps on π0, so M and d∗0M share the same lowest nontrivial homotopy group.
Since d∗N ' d∗0M , we have that d∗N and thus N also have the same lowest
nontrivial homotopy group. This implies that M ×d∗

0M
N is nontrivial, which is a

contradiction.
For the symmetric monoidal structure, we can view this diagram as a square

over N(Fin∗), which gives the equivalence as symmetric monoidal categories. □

Now we introduce the key functor of this paper, which was first introduced
in [LH17] and used to develop obstruction theory in [PV22].

Definition 2.2. We define the functor Θ : ModA≤m
→ModA≤m

as Θ := d∗d
∗
0.

Warning 2.3. Here we slightly abuse notation because Θ actually depends on n
and m. We shall use Θn−m

m to specify when needed.

Proposition 2.4. There is a natural transformation from Θ to Id, denoted by π.

Proof. Let p : A≤m ⊕ ΣF → A≤m be the projection map. Then d0 and d are
sections of p. There is a natural transformation given by:

ΘM = d∗d
∗
0M → d∗p∗p

∗d∗0M
≃−→M.

Here the first map is the unit of the adjunction and the second equivalence follows
from the fact that d0 and d are sections of p. □

Clearly, the underlying object of ΘM is ΘM = (A≤m ⊕ ΣF ) ⊗A≤m
M since d∗

does not change the underlying object.

Definition 2.5. We define the∞-category Θn−m
m -Sect as the∞-category of triples

(M, s, h), where M ∈ ModA≤m
, s : M → ΘM is a section, and h is a homotopy

from π ◦ s to IdM .

Construction 2.6. We regard all∞-categories mentioned below as quasi-categories.
Then the∞-category Θn−m

m -Sect is defined rigorously as the homotopy pullback of
the diagram:

Θn−m
m -Sect Fun(∆2,ModA≤m

)

ModA≤m
Fun(Λ2

2,ModA≤m
).
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Here the bottom horizontal map sends M to the diagram:

M ΘM

M .

id
π

Since Λ2
2 → ∆2 is a cofibration in the Joyal model of simplicial sets, Fun(∆2,ModA≤m

)→
Fun(Λ2

2,ModA≤m
) is an inner fibration. Then the pullback of this map, namely

Θn−m
m -Sect→ModA≤m

, is still an inner fibration, so Θn−m
m -Sect is a quasi-category.

Specifically, Θn−m
m -Sect is the strict pullback of this diagram.

Theorem 2.7. There is an equivalence of ∞-categories

ModA≤n
' Θn−m

m -Sect.

Proof. This is a formal variation of Proposition 2.1 and the proof is similar to [PV22,
Theorem 3.8]. As in Proposition 2.1, we can identify ModA≤n

as the category of
triples (M,N,α), where α : d∗N → d∗0M is an equivalence. By adjunction, this
corresponds to a map α′ : N → ΘM as A≤m-modules.

Actually, α is an equivalence if and only if the composite π ◦α′ : N → ΘM →M
is. Under the identification p∗d∗N ' N and p∗d∗0M ' M , the map π ◦ α′ can
be written as p∗α : p∗d∗N → p∗d∗0M . Since p : A≤m ⊕ ΣF → A≤m induces an
isomorphism on π0, p∗ is conservative. Therefore, p∗α is an equivalence if and only
if α is. It follows that ModA≤n

is equivalent to the ∞-category of triples

D ' {(M,N,α′)|M,N ∈ModA≤m
, α′ : N → ΘM such that π◦α′ is an equivalence}.

We can also define the ∞-category of quintuples E := {(M,N,α′, β, h)} as
in Construction 2.6, where M,N,α′ are as above, β is an A≤m-module morphism
from M to N , and h is a homotopy witnessing π ◦ α′ ◦ β ' idM . The functor from
E to D:

f : E→ D : (M,N,α′, β, h) 7→ (M,N,α′)

is a Cartesian fibration whose fibers are ∞-groupoids. We claim the fibers are all
contractible so that f is an equivalence of ∞-categories. Indeed, the fiber over
(M,N,α′) is the space of pairs

(β : M → N,h : π ◦ α′ ◦ β ' idM ),

which is the homotopy fiber of the composition map

(π ◦ α′)∗ : ModA≤m
(M,N)→ModA≤m

(M,M)

over the identity. Since π ◦ α′ is an equivalence, this fiber is contractible.
Similarly, the map

g : E→ Θn−m
m -Sect : (M,N,α′, β, h) 7→ (M,α′ ◦ β, h)

is also fibered in spaces. The fiber over (M, s, h) can be identified with the space
of objects N equipped with an equivalence β : M ' N , which is also contractible.
Therefore, g is an equivalence of ∞-categories, implying the theorem. □

Now we can inductively define the simplicial set model of ModA≤n
we want.
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Construction 2.8. Let A be the abelian category of π0(A)-modules in C♡. If A
admits enough projective objects and ModA≤0

' D−(A), then we can start from
a concrete quasi-category D−(A) := Ndg(Ch−(Aproj)). Here Ch−(Aproj) is the
category of bounded below chain complexes of projective π0(A)-modules in C♡.
The advantage of this description of∞-derived categories is that we can concretely
describe all simplices and maps between them.

Suppose the model of ModA≤m
is defined. Then for n ≤ 2m + 1, we can ap-

ply Theorem 2.7 and define ModA≤n
as a simplicial set whose k-simplexes are given

by:
Fun(∆2 ×∆k,ModA≤m

)×Fun(Λ2
2×∆k,ModA≤m

) Fun(∆k,ModA≤m
),

where the maps defining the pullback are the same as those in Construction 2.6 and
the face maps and degeneracy maps are induced by the face maps and degeneracy
maps of ∆k.

Therefore, we have ModA≤1
' Θ1

0-Sect and we treat Θ1
0-Sect as the model of

ModA≤1
. Then we apply:

Θ1
1-Sect 'ModA≤2

,

Θ2
1-Sect 'ModA≤3

,

Θ3
1-Sect 'ModA≤4

to obtain the models for ModA≤2
, ModA≤3

, and ModA≤4
. Inductively, we obtain

the model of ModA≤n
for all n ≥ 0.

Remark 2.9. In the construction above, we define several different models for
ModA≤n

. We shall use Θ
(b1,b2,...)
(a1,a2,...)

-Sect to denote the category we obtain after induc-
tively applying Θb1

a1
,Θb2

a2
, . . . to ModA≤a1

. Clearly, we should require ai+1 = ai + bi

and we have Θ
(b1,b2,...,bk)
(a1,a2,...,ak)

-Sect ' ModA≤ak+bk
. In applications, we will use the

models Θ
(1,1,1,...)
(0,1,2,...) associated with the tower:

· · · → A≤3 → A≤2 → A≤1 → A≤0

to get the full information and Θ
(1,2,4,8,...)
(0,1,3,7,...) associated with the tower:

· · · → A≤7 → A≤3 → A≤1 → A≤0

to simplify the computation.

To strengthen the above construction, we need to give the description of some
additional structures in view of what should be enjoyed by ModA≤n

. Now we
further assume A to be E∞ to ensure d∗ is lax symmetric monoidal and we will
define the symmetric monoidal structure of Θ-Sect and promote Theorem 2.7 to be
a symmetric monoidal equivalence.

Before giving the construction, we need to refine the properties of Θ.

Proposition 2.10. Θ⊗ := d∗d
∗
0 is a lax symmetric monoidal functor from Mod⊗A≤m

to Mod⊗A≤m
. There is a natural transformation π⊗ over N(Fin∗) from Θ⊗ to the

identity functor.

Proof. The first property is clear. For the second one, we observe that π is given
by composing with the unit of a pair of (lax) symmetric monoidal functors, so π
can be refined to be a natural transformation over N(Fin∗). □
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Lemma 2.11. Let O be a base ∞-category, and let F : C → E and G : D → E

be functors between coCartesian fibrations over O. Suppose G is an inner fibration
preserving coCartesian arrows.

For any object C ∈ C lying over X ∈ O, and any morphism u : X → X ′, let
C → u!(C) be a coCartesian arrow lifting u. The image of u! under F admits a
factorization F (C)→ u!F (C)→ F (u!(C)), where F (C)→ u!F (C) is a coCartesian
arrow in E lifting u. (The morphism u!F (C) → F (u!(C)) is well-defined up to
homotopy and is called the Beck-Chevalley morphism.)

(∗) Suppose that there are enough G-coCartesian arrows in D lifting u!F (C)→
F (u!(C)). Then the pullback P := C×E D is coCartesian over O.

Proof. For (C,E,D) ∈ C×ED lying over X ∈ O and any morphism u : X → X ′, we
define C ′ := u!(C), E′ := F (u!(C)), and D′ such that u!(D) → D′ is coCartesian
over the Beck-Chevalley morphism u!F (C) → F (u!(C)). This gives an element of
C ×E D lying over X ′ since u!F (C) → F (u!(C)) is exactly u!(E) → E′. Now we
obtain a morphism (C,E,D) → (C ′, E′, D′) lying over X → X ′. We check this
morphism is coCartesian over u: Notice that for any (U,W, V ) ∈ P lying over Y ,
we have pullback squares:

MapC(C
′, U) MapC(C,U)

MapO(X
′, Y ) MapO(X,Y ),

MapD(D′, V ) MapD(u!(D), V )

MapE(F (u!(C)),W ) MapE(u!F (C),W ),

and similarly

MapD(D,V ) ' MapD(u!(D), V )×MapO(X,Y ) MapO(X
′, Y ),

MapE(F (C),W ) ' MapE(u!(F (C)),W )×MapO(X,Y ) MapO(X
′, Y ).

Then we have

MapP((C
′, E′, D′), (U,W, V )) ' MapC(C

′, U)×MapE(E′,W ) MapD(D′, V )

' MapO(X
′, Y )×MapO(X,Y ) MapC(C,U)×MapE(u!(F (C)),W ) MapD(u!(D), V )

' MapO(X
′, Y )×MapO(X,Y ) MapP((C,E,D), (U,W, V )),

which completes the proof of the lemma. □

Construction 2.12. We promote Construction 2.6 to be diagrams of symmet-
ric monoidal ∞-categories. Suppose we have a coCartesian fibration Mod⊗A≤m

→
N(Fin∗). Then we define Θn−m

m -Sect⊗ to be the homotopy pullback of the diagram:

Θn−m
m -Sect⊗ Fun(∆2,ModA≤m

)⊗

Mod⊗A≤m
Fun(Λ2

2,ModA≤m
)⊗.
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Here the horizontal map sends M to
M ΘM

M .

id
π

As shown in Proposition 2.10, π : Θ→ Id is a natural transformation over N(Fin∗),
so the lower horizontal map is lax symmetric monoidal. The symmetric monoidal
structures of Fun(∆2,ModA≤m

)⊗ and Fun(Λ2
2,ModA≤m

)⊗ are the standard ones
by [Lur17, Remark 2.1.3.4], so the right vertical map is symmetric monoidal and is
still an inner fibration.
Lemma 2.13. The vertical functor

p : Fun(∆2,ModA≤m
)⊗ → Fun(Λ2

2,ModA≤m
)⊗

satisfies the condition (∗) in Lemma 2.11.
Proof. Given a morphism u : 〈n〉 → 〈m〉 in N(Fin∗), suppose that u′ : Mn →
u!(Mn) = Mm is the coCartesian map in ModA≤m

lifting u. Then the corresponding
Beck-Chevalley morphism is given as part of a tetrahedron:

f

u!π

id

π

s

f ◦ s

u!ΘMn

Θu!Mn

u!Mn

u!Mn

where f is the Beck-Chevalley morphism of functor Θ, since Θ is lax symmetric
monoidal and u!π = π ◦ f since π is a natural transformation over N(Fin∗). After
filling the front triangle with (u!Mn, s, h), where s : u!Mn → u!ΘMn, we define
the left triangle to be the composition of f and s. Now we can fill the whole
tetrahedron by using the lifting property of quasi-categories. This is exactly the
p-coCartesian lifting in Fun(∆2,ModA≤m

)⊗ of the Beck-Chevalley morphism in
Fun(Λ2

2,ModA≤m
)⊗. □

Proposition 2.14. Θn−m
m -Sect⊗ is coCartesian over N(Fin∗), making Θn−m

m -Sect⊗
a symmetric monoidal stable ∞-category. Furthermore,

F : Θn−m
m -Sect⊗ →Mod⊗A≤m

is symmetric monoidal.
Proof. This follows from combining Lemma 2.11 and Lemma 2.13. □
Remark 2.15. Informally speaking, the tensor product of

M ΘM N ΘN

M and N

s

id π

t

id π
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is
M ⊗A≤m

N ΘM ⊗A≤m
ΘN Θ(M ⊗A≤m

N)

M ⊗A≤m
N

s⊗t

id

BC-map

π

Now we can promote the equivalence in Theorem 2.7 to a symmetric monoidal
equivalence.

Theorem 2.16. There is a symmetric monoidal equivalence
Θn−m

m -Sect⊗ 'Mod⊗A≤n
.

Moreover, under this equivalence, the extension of scalars ModA≤n
→ ModA≤m

corresponds to the forgetful functor F : Θn−m
m -Sect⊗ →Mod⊗A≤m

sending (M, s, h)

to M .

Proof. We only need to promote the equivalence in Theorem 2.7 to be symmetric
monoidal. First, as in Proposition 2.1, we have a symmetric monoidal equivalence
Mod⊗A≤n

' Mod⊗A≤m
×Mod⊗

A≤m⊕ΣF
Mod⊗A≤m

, so we can still identify ModA≤n
with

the ∞-category of triples (M,N,α), where α : d∗N → d∗0M is an equivalence.
Similar to Construction 2.12 and following the notations in Theorem 2.7, we can

define D⊗ and E⊗ whose product structure can be informally given by
(M1, N1, α

′
1)⊗ (M2, N2, α

′
2) = (M1 ⊗A≤m

M2, N1 ⊗A≤m
N2, BCΘ ◦ α′

1 ⊗ α′
2),

(M1, N1, α
′
1, β1, h1)⊗ (M2, N2, α

′
2, β2, h2)

= (M1 ⊗A≤m
M2, N1 ⊗A≤m

N2, BCΘ ◦ α′
1 ⊗ α′

2, β1 ⊗ β2, BCΠ ◦ h1 ⊗ h2).

Here BCΘ is the Beck-Chevalley morphism of the lax symmetric monoidal func-
tor Θ and BCΠ is the Beck-Chevalley morphism of the functor Π : ModA≤m

→
Fun(∆1,ModA≤m

) sending M to πM : ΘM →M .
Now, the functors f : E → D and g : E → Θn−m

m -Sect can be modified to
f⊗ : E⊗ → D⊗ and g⊗ : E⊗ → Θn−m

m -Sect⊗. One can check that both of them
preserve the coCartesian morphisms, so the equivalence of ∞-categories is now an
equivalence of coCartesian fibrations over N(Fin∗). □

To complete the induction, the only remaining part is the symmetric monoidal
∞-category ModA≤0

. There is a condition to ensure that ModA≤0
is the derived

category:

Proposition 2.17. When ModA≤0
is generated by discrete objects, the left modules

over the zero-truncated ring A≤0 are given by the derived ∞-category over π0(A)
in the 1-category Modπ0(A)(C

♡), which is

ModA≤0
' D−(Modπ0(A)(C

♡)).

The underlying category of the following has a concrete model:
D−(Modπ0(A)(C

♡)) ' Ndg(Ch−(Modπ0(A)(C
♡)proj)).

Proof. This is a corollary of [Lur18, C5.4.11]. □

To compute the homotopy groups, we need to further define the t-structure of
Θ-Sect.
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Construction 2.18. We begin with the t-structure of D−(Modπ0(A)(C
♡)), which

is clearly given by the homology of chain complexes.
Suppose that the t-structure of ModA≤m

is given by
((ModA≤m

)≥0, (ModA≤m
)≤0).

Then we define
(Θn−m

m -Sect)≥0 := F−1((ModA≤m
)≥0),

where F : Θn−m
m -Sect→ModA≤m

is the functor defined in Proposition 2.14.

Proposition 2.19. When π0(A) 6= 0, under the equivalence ModA≤n
' Θ-SectA≤m

,
there is an equivalence of subcategories

(ModA≤n
)≥0 ' (Θn−m

m -Sect)≥0.

Proof. For simplicity of notation, we write Ind for the extension of scalars. It
suffices to show that Ind−1((ModA≤m

)≥0) = (ModA≤n
)≥0. Given M ∈ ModA≤n

,
we have a spectral sequence

Ep,q
2 = Torπ∗(A≤n)

p (π∗(A≤n−1), π∗(M))q =⇒ πp+q(Ind(M)).

Then clearly the connective modules are sent to connective modules. If the lowest
degree of the nontrivial homotopy groups of M is negative, denoted by k, then
E0,k

2 = (π∗(A≤m) ⊗π∗(A≤n) π∗(M))k is nontrivial since π0(A) is assumed to be
nontrivial. Therefore, Ind(M) is not connective and we complete the proof. □

Now we can identify the∞-category Θ
(b1,b2,...,bk)
(a1,a2,...,ak)

-Sect defined by induction with
the original ∞-category ModA≤n

. This gives us a concrete model to understand
each simplex in ModA≤n

discretely, allowing us to be precise about the elementwise
computation, which will be shown in the following sections.

3. Computational methods for peroidic objects

This section will be devoted to the explicit computational method. Though the
construction in Section 2 works for general stable ∞-categories, it is not often the
case that the t-structure truncation and the extension of scalars along the Postnikov
tower coincide, leading to computational difficulty. Therefore, we further restrict
A to be a shift algebra. We still take C as in Notations 1.1.

Definition 3.1. A grading on C is a choice of distinguished autoequivalence which
we denote by c→ c[1], together with a natural equivalence c[1]⊗ d ' (c⊗ d)[1].

Definition 3.2. A shift algebra is an associative algebra A ∈ Alg(C) equipped with
a map τ : ΣA[−1]→ A of right A-modules which induces an isomorphism π∗(A) '
π0(A)[τ ], where the latter is the graded algebra in C♡ given by (π0(A)[τ ])k '
π0(A)[−k].

Definition 3.3. For a fixed shift algebra A and 1 ≤ n ≤ ∞, we say M is a periodic
n-module if M ∈ ModA≤n

satisfies that π0(A) ⊗A≤n
M is discrete. When n = ∞,

we also refer to it as a periodic module.

Now we fix a shift algebra A and the modules mentioned below are all modules
over proper truncations of A. First we show a special property enjoyed by periodic
modules, which says the left tensoring with truncation of A is t-truncation itself,
making the computation easier.
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Proposition 3.4. Given a periodic n-module M , there is a map induced by exten-
sion of scalars:

M ' A≤n ⊗A≤n
M → A≤m ⊗A≤n

M ' τ≤mM.

Then this map coincides with the t-structure truncation of M itself.

Proof. The cofiber sequence
A≤n ⊗A≤n

M → A≤m ⊗A≤n
M → Στ[m+1,n]A⊗A≤n

M ' Στ[m+1,n]M

proves the claim, where the last equivalence uses the property of periodic n-modules.
□

Then we want to be more concrete about the functor Θ. Instead of computing
from the definition, we associate it with an intrinsic map of modules.

Definition 3.5. Given a periodic m-module M , we can compute the cofiber of π:

Θn−m
m M

π−→M
t−→ Σm+3τ[0,n−m−1]M [−(m+ 1)].

We will refer to the map t as the twisting map of M .

Remark 3.6. The twisting map is only defined up to an automorphism of M .
However, we do not need to worry about the choice since any choice works for the
computation of ΘM .

Remark 3.7. In [PV22], the authors showed the equivalence of Θn−m
m -Sect and

ModA≤n
to show that a periodic m-module M can be lifted to a periodic n-module

if and only if the twisting map of M is nullhomotopic, since the existence of the
lifting is equivalent to the existence of a section M → Θn−m

m M . Here we emphasize
the nullhomotopic map t since this enables us to compute the section M → Θn−m

m M
and this nullhomotopy prevents Θn−m

m M from being M ⊕ Στ[m+1,n]M .

Proposition 3.8. Given a periodic n-module M , put M ′ := A≤m ⊗A≤n
M . Then

there is an equivalence ΘM ′ 'M ′ ⊕Στ[m+1,n]M as left A≤n-modules. Suppose M
corresponds to the triangle

M ′ ΘM ′

M ′ .

id

s

π

Then the composition M ′ s−→ ΘM ′ → Στ[m+1,n]M coincides with the map in the
fiber-cofiber sequence

M →M ′ → Στ[m+1,n]M,

where the first map is t-structure truncation. The map from M ′ to τ[m+1,n]M will
be called the differential map.

Proof. Consider the square as in Proposition 2.1:

M A≤m ⊗A≤n
M

A≤m ⊗A≤n
M (A≤m ⊕ ΣF )⊗A≤n

M

which is a pushout-pullback square in ModA≤n
. Unwinding the definition, ΘM ′ is

exactly (A≤m⊕ΣF )⊗A≤n
M when treated as a left A≤n-module. Since A≤m⊕ΣF
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is the trivial square-zero extension, this is the equivalence we want. For the second
part, it suffices to pass to the underlying objects and notice that the lower horizontal
map M ′ →M ′ ⊕ Στ[m+1,n]M is (id, 0). □

Now we can do elementwise computation and try to write down the representa-
tion of M ∈ModA≤n

. Let us start with the simplest case when n = 1.

Example 3.9. Given an A≤0-module M , regarded as a chain complex of projective
objects

· · · M2 M1 M0 M−1 · · ·∂2 ∂1 ∂0

Then ΘM can be written as the fiber of M t(2)−−→ Σ3M [−1]:

· · · M4 M3 M2 M1 · · ·

· · · M2[−1] M1[−1] M0[−1] M−1[−1] · · ·

∂4

⊕
t
(2)
4

∂3

⊕
t
(2)
3

∂2

⊕
t
(2)
2

⊕
∂2[−1] ∂1[−1] ∂0[−1]

where t
(2)
n are the twisting maps.

Then any A≤1-module M̄ satisfying A≤0 ⊗A≤1
M̄ = M , regarded as an object

in Θ1
0-Sect, can be written as

Mk+2 Mk+2 ⊕Mk[−1]

Mk+1 Mk+1 ⊕Mk−1[−1]

Mk Mk+1 Mk ⊕Mk−2[−1]

Mk−1 Mk Mk−1 ⊕Mk−3[−1]

Mk−2 Mk−1 Mk−2 ⊕Mk−4[−1]

Mk−2

(id,d
(2)
k+1)

id (id,0)

id (id,0)

id (id,0)

where the map from Mk+2⊕Mk[−1] to Mk+1⊕Mk−1[−1] is exactly the one in the
illustration of ΘM . In particular, we have

d
(2)
k ◦ ∂k+1 = ∂k−1[−1] ◦ d(2)k+1 + t

(2)
k+1 ◦ id.

Remark 3.10. The section map is named d(2) because it is exactly the d2-differential
of the Adams spectral sequence if we take C to be the category of synthetic spectra,
which we will discuss in Section 5. In applications, we usually consider periodic
1-modules. Then M−k ' 0 for all k ≥ 1, so all twisting maps and the first nontrivial
d(2) from M2 to M0[−1] determine all the d(2) maps.

For larger n, we have similar results:

Theorem 3.11. Given a periodic n-module M , under the equivalence

ModA≤n
' Θ

(1,1,...,1)
(0,1,...,n−1)-Sect,
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we can inductively write down the representation of M . First we determine π0(M)
and compute its projective resolution as a π0(A)-module, then we determine the
first twisting map

t(2) : π0(M)→ Σ3π0(M)[−1]
and compute the section

s(2) : π0(M)→ Fib(t(2))

so that we have the description of A≤1 ⊗A≤n
M :

A≤0 ⊗A≤n
M Fib(t(2))

A≤0 ⊗A≤n
M .

id

s(2)

π

With this description, we can write down the second twisting map as
t(3) : A≤1 ⊗A≤n

M → Σ4π0(M)[−2],

regarded as a map in Θ1
0-Sect, and organize A≤2 ⊗A≤n

M as

A≤1 ⊗A≤n
M Fib(t(3))

A≤1 ⊗A≤n
M .

id

s(3)

π

Inductively, we can write down the representation of M as an object of

Θ
(1,1,...,1)
(0,1,...,n−1)-Sect ⊂ Fun((∆2)n,Ndg(Ch−(Modprojπ0(A)(C

♡)))).

To determine Fib(t(k)), we should first write down the representation of Σk+1π0[−(k−
1)] as an A≤k−2-module. This requires the computation of pullbacks along the Post-
nikov tower, namely the tower of Ek-algebras:

· · · → A≤3 → A≤2 → A≤1 → A≤0,

where each map is a square-zero extension. A slightly more general result is given
as follows:

Proposition 3.12. Given a periodic n-module M , then π0(M) ' A≤0 ⊗A≤n
M

can be computed as the colimit of the chain of modules

· · · Σn+2M [−(n+ 2)] Σn+1M [−(n+ 1)] ΣM [−1] M,τn τ τn τ

where the (2m+1)-th term X2m+1 is Σm(n+1)+1M [−m(n+1)−1] and the (2m)-th
term X2m is Σm(n+1)M [−m(n+ 1)].

Proof. First one notices that the truncation map τ≤0 : ModA≤n
→ ModA≤n

gives
the map from M to π0(M), inducing the map from the colimit of this chain to
π0(M). Since the t-structure is separated, we only need to check the homotopy
groups.

The chain is designed to satisfy that colimπk(Xm) ' 0 unless k = 0 and
colimπ0(Xm) ' π0(M). Since the t-structure is compatible with filtered colim-
its, the homotopy group of the colimit is the one we want. □
Remark 3.13. The representation of A≤m⊗A≤n

M can be computed similarly by
canceling the t-structure homotopy groups with τ .
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In algebraic topology, we are always concerned about the mapping space be-
tween two objects. We will illustrate how to understand the mapping space for two
periodic modules.

Proposition 3.14. For any two periodic modules M and N , there is a sequence
of mapping spaces

MapA≤0
(M≤0, N≤0)← MapA≤1

(M≤1, N≤1)← · · · ← MapA≤k
(M≤k, N≤k)← · · ·

such that MapA≤m
(M≤n−1, N≤n−1)← MapA≤n

(M≤n, N≤n) has fiber

MapA≤0
(π0(M),Σnπ0(N)[−n]).

Furthermore, if the t-structure is complete, the limit of this sequence is exactly
MapA(M,N).

Proof. Actually, there are equivalences

MapA(M,N≤n) ' MapA(M≤n, N≤n) ' MapA≤n
(A≤n ⊗A M≤n, N≤n).

Tensoring with M≤n as an A-A≤n-bimodule, the fiber-cofiber sequence A≥n+1 →
A→ A≤n induces a fiber-cofiber sequence

A≥n+1 ⊗A M≤n →M≤n → A≤n ⊗A M≤n.

Furthermore,

MapA≤n
(A≤n ⊗A M≤n, N≤n)→ MapA≤n

(M≤n, N≤n)

→MapA≤n
(A≥n+1 ⊗A M≤n, N≤n) ' 0

is a fiber-cofiber sequence. Hence, MapA≤n
(M≤n, N≤n) ' MapA(M,N≤n). Now

the sequence can be interpreted as

MapA(M,N≤0)← MapA(M,N≤1)← · · · ← MapA(M,N≤k)← · · ·

where the map MapA(M,N≤n−1)← MapA(M,N≤n) has fiber

MapA(M,Σnπn(N)) ' MapA≤0
(π0(M),Σnπ0(N)[−n]).

□

Remark 3.15. The above proposition can be promoted to a spectral sequence;
see [PV22, Corollary 4.13].

For shift algebras, we have a simpler way to determine the category over its
zero-truncation.

Proposition 3.16. [PV22, Theorem 3.11] Let A be a shift algebra. Suppose ModA
is generated under colimits by periodic modules. Then the left modules over the
zero-truncated ring A≤0 are given by the derived ∞-category over π0(A) in the
1-category Modπ0(A)(C

♡), which is

ModA≤0
' D−(Modπ0(A)(C

♡)).

Therefore, the mapping space MapA≤0
(π0(M),Σnπ0(N)[−n]) can be computed

as the derived mapping space in the derived category D−(Modπ0(A)(C
♡)).
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4. Application in the category of graded spectra

In this section, we try to use our framework to study spectra. As mentioned
before, we prefer to deal with a shift algebra, so we will not work in the category
Sp = ModS but work in the category of graded spectra Spgr. We will first embed
Sp into Spgr and identify them with their image as periodic modules over the image
of S. However, the embedding is merely an E1-monoidal functor, which prevents
us from comparing the symmetric monoidal structure.
Definition 4.1. We regard Z as a discrete symmetric monoidal category. Then
the category of graded spectra Spgr is defined to be Fun(Z, Sp).
Proposition 4.2. We can endow Fun(Z, Sp) with a symmetric monoidal structure
by Day convolution.
Proof. This is the combination of [Gla16, Definition 2.9] and [Gla16, Proposi-
tion 2.11]. Furthermore, as mentioned in [Gla16, Proposition 2.12], commutative
monoids in Fun(Z, Sp)⊗ can be identified with lax monoidal functors from Z⊗ to
Sp⊗. □
Definition 4.3. We define the t-structure of Spgr to be given by the homotopy
group in each degree. The grading [k] is given by S0,k ⊗ (−).

One can check that Spgr satisfies the conditions in Notations 1.1.
Notations 4.4. We will use {Xn}n to denote the graded spectrum whose n-th
degree is a spectrum Xn. We use Sa,b to denote the graded spectrum with Sa in
degree b and 0 in other degrees.
Lemma 4.5. [CPH22, Lemma 4.4] There is a cocontinuous E1-monoidal functor
Φ : Spgr → Spgr, sending {Xk}k to {Σ−kXk}k.
Definition 4.6. We define lax E1-monoidal functors Φ(n) : Sp → Spgr for all
0 ≤ n ≤ ∞, sending X to {τ[0,n−1]Σ

−kX}k.

Now we take A to be S(∞) := Φ(∞)(S), which is a shift algebra with τ given by
t-structure truncation in each degree:

τ : ΣS(∞)[−1] = {Σ−kτ≥k+1S}k → {Σ−kτ≥kS}k = S(∞).

Recall that a spectrum is uniquely determined by its homotopy groups and the
k-invariants between the homotopy groups. Classically, given a spectrum X, the
n-th k-invariant is defined as the connecting map in the fiber-cofiber sequence

Σn+1πn+1(X)→ τ[n,n+1]X → Σnπn(X)
k−→ Σn+2πn+1(X).

However, there is no way to be more specific about this map since this is not an
HZ-module map but a S≤1-module homomorphism. Working in the graded sense,
we define the graded k-invariant as follows:
Definition 4.7. Given a spectrum X, we define the graded k-invariant of X to be
the connecting map in the fiber-cofiber sequence

ΣΦ(0)(X)[−1]→ Φ(1)(X)→ Φ(0)(X)
k−→ Σ2Φ(0)(X)[−1].

Now the graded k-invariant is a S(1)-module homomorphism, so that we can
write it concretely in ModS(1) ' Θ1

0-Sect. However, as in Proposition 3.8, this map
should have been seen when we try to determine Φ(1) before writing down the map
Φ(0)(X)→ Σ2Φ(0)[−1]. First we identify the category ModS(0) .
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Lemma 4.8. There is an equivalence of ∞-categories:

ModS(0) ' D−(Modgrπ∗(S)).

Proof. This is a corollary of Proposition 3.16. □

Then we can invoke Example 3.9 to be specific about the graded k-invariant:

Theorem 4.9. Given a spectrum X, we can write the projective resolution of π∗(X)
as a graded π∗(S)-module as

· · · X2 X1 X0 0 · · ·∂2 ∂1

Then the graded k-invariant is exactly d(2) in the illustration:

Xk+2 Xk+2 ⊕Xk[−1]

Xk+1 Xk+1 ⊕Xk−1[−1]

Xk Xk ⊕Xk−2[−1]

Xk−1 Xk−1 ⊕Xk−3[−1].

(id,d
(2)
k+2)

(id,d
(2)
k+1)

(id,d
(2)
k )

(id,d
(2)
k−1)

Remark 4.10. The twisting maps t(2) prevent the maps d(2) from being a π∗(S)-
module homomorphism and almost determine d(2). However, little is known about
the twisting maps in the category of spectra, so we can only give a formal result
here and wait for further study.

Fortunately, we do have some known computations if we replace S by the E1-ring
End(Fp), and the result is known as the secondary Steenrod algebra. In [Bau06],
Baues introduced and computed the structure of the secondary Steenrod algebra.
We will not dive into the details of that book but only extract from [CPH22] the
way to compute the twisting map, which will be discussed in Section 6.

5. Application in the category of synthetic spectra

In this section, we take C = ŜynFp
and A = νS = S0,0, which is the synthetic

analogue of S in the category Syn. See [Pst18] for the definition and properties of
synthetic spectra. The main feature of the synthetic category we use here is that its
t-structure truncation gives the information of (co)homology and the organization
of the t-structure homotopy groups can be viewed as the organization of different
pages of the Adams spectral sequence. For the convenience of the reader, we list
the basic properties we use:

Proposition 5.1. (1) ŜynFp
admits a natural separated t-structure whose heart

is isomorphic to the abelian category ComodAp
.

(2) ŜynFp
is a presentable stable symmetric monoidal ∞-category with the unit

S0,0 ∈ (ŜynFp
)≥0.



22 JIKUN LI

(3) There is a canonical functor ν : Sp ↪→ ŜynFp
whose images are periodic

ν(S)-modules.
(4) ŜynFp

is generated under colimits by the periodic ν(S)-modules.
(5) There is a canonical map τ : S0,−1 → S1,1, which is the 1-connective

covering. We will denote the cofiber of this map by Cτ .

By [Lur17, Theorem 7.4.1.26], we have a tower of square-zero extensions of E∞-
algebras:

ν(S)→ · · · → Cτn → · · · → Cτ2 → Cτ,

inducing the symmetric monoidal equivalences

ModCτn ' Θ
(1,1,...,1)
(0,1,...,n−1)-Sect.

As a corollary of (1) and (3), we have the following identification:

Mod⊗Cτ ' D−(ComodAp
)⊗,

and we shall not distinguish these two categories in this chapter.

Corollary 5.2. Given any spectrum X, Xn := Cτn⊗ν(X) is a periodic n-module.

Warning 5.3. When we try to apply Construction 2.8 to the category of synthetic
spectra, there is a small subtlety. Since ComodAp

does not admit enough projective
objects, we do not have D−(ComodAp

) ' Ndg(Ch−(ComodprojAp
)) but the equivalence

D+(ComodAp
) ' Ndg(Ch+(ComodinjAp

)). However, what we will compute is mainly
restricted to the two-sided bounded case, so we can still use the injective resolutions
to represent the maps in D−(ComodAp).

Notations 5.4. Given a spectrum X, we can apply ν to get its synthetic analogue
νX, which is a periodic module over νS. Then we have Cτn ⊗ νX ' τ≤n−1(νX),
which we will simply denote by Xn.

In the following, there will be two different ways to denote the bigraded shifting.
One is given as Σs,t, indicating the tensor product with Ss,t; the other is given as
ΣuX[v], which we use to denote the categorical suspension and the grading. These
two notations can be converted to each other by the following formula: Σs,tX =
Σs−tX[t].

The main purpose of this section is to apply the framework we developed in
the previous chapter to the category of synthetic spectra and try to understand
how various classical homotopy phenomena combine and interplay with each other.
Then we shall realize why the explicit computation of Θ should lie at the center of
the study of the Adams spectral sequence. Before doing so, let us recall a variation
of the Adams spectral sequence, which is called the τ -Bockstein spectral sequence.

Construction 5.5. Given a spectrum X, we define the τ -Bockstein spectral se-
quence of X to be

Es,t
k (X) := πt,t+s(Xk−1) ' π0MapMod

Cτk−1
(Σt,t+sCτk−1, Xk−1).

In particular, Es,t
2 = πt,t+s(X1) = Exts,t+s

ComodAp
(Fp,H∗(X)) is the E2 page of the

classical Adams spectral sequence.
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As we have shown before, Xk can be written as a triple (Xk−1, s, h), where s is
a Cτk−1-module map Xk−1 → Θ1

k−2Xk−1. Taking the homotopy of this map, we
get a morphism

π∗,∗(Xk−1)→ π∗,∗(Θ
1
k−2Xk−1) = π∗,∗(Xk−1)n π∗−1,∗+k−1(X1),

which is the identity on π∗,∗(Xk−1) and induces differentials

dk : Es,t
k (X) = πt,t+s(Xk−1)→ πt−1,t+s+k−1(X1) = Es+k,t−1

2 (X).

Remark 5.6. This can be viewed as a variation of the Adams spectral sequence.
Informally, this spectral sequence has the following characters:

(1) The synthetic differentials are essential geometric information of the spec-
trum and can be recovered to give the differentials in the classical Adams
spectral sequence.

(2) The Ek page can be viewed as a bigraded ring over Z/pk−1, containing
the information of the extension problem in the classical Adams spectral
sequence.

(3) E∗,∗
k (X) can be viewed as a (left) module over E∗,∗

k (S).

Variation 5.7. To simplify the computation, we restrict our attention to the (2k+
1)-pages E2k+1. We have

Es,t
2k+1

(X) = πt,t+s(X2k).

Under the identification
Mod⊗

Cτ2(k+1) ' Θ1,2,4,...,2k

0,1,3,...,2k−1
-Sect⊗,

there is a section map of Cτ2
k -modules

X2k → Θ2k

2k−1X2k .

Similarly, passing to bigraded homotopy groups gives the differentials

dSyn
2k+1 : Es,t

2k+1
(X) = πt,t+s(X2k)→ πt−1,t+s+2k(X2k) = Es+2k+1,t−1

2k+1
(X).

Remark 5.8. This variation has three advantages:
(1) The source and target of the differential lie on the same page.
(2) The differential dSyn

2k+1 encodes the information of d2k+1, d2k+2, . . . , d2k+1 in
the classical Adams spectral sequence. As a result, this spectral sequence
converges much faster than the classical one.

(3) Θ2k

2k−1X2k is the fiber of t(2k) : X2k → Σ2k+2X2k [−2k], so we no longer need
to compute the pullback along the Postnikov tower as in Proposition 3.12.

The following theorem relates the synthetic spectral sequence to the classical
Adams spectral sequence.

Theorem 5.9. Given a spectrum X, let E∗,∗
k and E∗,∗

k denote the k-th pages of its
synthetic and classical Adams spectral sequences, respectively. Then:

(1) Es,t
2 = Exts,s+t

A∨
p

(Fp,H∗(X)) = πt,t+s(X1) = Es,t
2 , and −d2 = dSyn2 .

(2) There are Z-linear maps τ∗ : Es+1,t
∗ → Es,t

∗ induced by τ : Σ0,−1X → X.
Moreover, τk−1

∗ = 0 on the Ek-page.
(3)

Es,t
k = Es,t

k / ker(τk−2
k ).
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(4) If X is Fp-nilpotent complete, then lim←−Es,t
k ' πt(X)∧p for all s ≤ 0.

Proof. (1) The first statement is contained in [BHS19, Theorem 9.19].
(2) Concretely, the map on bigraded homotopy groups is

πt,t+s(Σ
0,−kXk)→ πt,t+s(Xk),

induced by τk : Σ0,−kCτk → Cτk. It suffices to show that π0,−k(Cτk) =

E−k,0
k+1 (S) = 0, which follows by induction.

(3) This follows from [BHS19, Theorem 9.19]. The vanishing of the differentials
d2, . . . , dk−1 on x ∈ Es,t

2 is equivalent to the existence of a lift of x to Es,t
k .

Thus Es,t
k can be described as the extension of such liftings by τ -multiples.

Since τk−1
k = 0 on the k-th page, all τ -multiples lie in ker(τk−2

k ). To identify
the elements hit by differentials, note from (3a) of [BHS19, Theorem 9.19]
that if x is hit by dr (1 ≤ r ≤ k− 1), then any lifting of x in Es,t

k is a τ r−1-
torsion element. By (2b), if x is not hit by any differential, then τk−2

k x 6= 0.
This proves the claim.

(4) By [BHS19, Proposition A.13], X is Fp-nilpotent complete if and only if
the canonical map

ν(X)→ lim←−Cτn ⊗ ν(X)

is an equivalence. Hence

πt(X)∧p ' πt,t+s(νX) ' lim←−πt,t+s(Cτn ⊗ ν(X)) ' lim←−Es,t
n+1(X)

for all s ≤ 0, where the first equivalence follows from [Pst18, Corollary
4.12].

□

For

X2k+1 =

X2k Θ2k

2k−1X2k

X2k

id

s(2
k)

π

we may understand the map s(2
k) as a variation of the classical Adams differ-

ential. However, the module structure provides more information, such as the
p-multiplication.

Lemma 5.10. In the category ModCτk , multiplication by p is induced by the p-fold
multiple of the identity map of Cτk. Concretely, for any map

f : M → N ∈ModCτk ,

the map p · f is given by

p · f : Cτk ⊗Cτk M
(p,f)−−−→ Cτk ⊗Cτk N.

Proof. This follows directly from the linearity of the tensor product. □
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Suppose the map p2
k

: Cτ2
k+1 → Cτ2

k+1 is expressed as

Cτ2
k

ΘCτ2
k

Cτ2
k

ΘCτ2
k

s(2
k)

0 h
(2k)
0

0

s(2
k)

This corresponds to an element h
(2k)
0 ∈ π0,2k(Cτ2

k

) = E2k,0
2k+1

(S).
Now, for any Cτ2

k+1 -module homomorphism f : M → N lifting f , the essential
information of f can be represented by

M ΘM

N ΘN

s
(2k)

M

f h Θf

s
(2k)

N

Then p2
k · f : M → N is determined by the square

M ΘM

ΘCτ2
k ⊗

Cτ2k ΘN

N ΘN

s
(2k)

M

h′

0 0

s
(2k)

N

where
h′ := h

(2k)
0 ⊗

Cτ2k

(
s
(2k)

N
◦ f

)
.

This calculation provides a way to solve the extension problem in the τ -Bockstein
spectral sequence.

Theorem 5.11. There is a long exact sequence

πt,t+s+2k(X2k)→ πt,t+s(X2k+1)→ πt,t+s(X2k)
dSyn

2k+1−−−−→ πt−1,t+s+2k(X2k),

which reduces to a short exact sequence

0→ coker(dSyn
2k+1)s+2k,t → Es,t

2k+1 → ker(dSyn
2k+1)s,t → 0.

The extension is detected by h
(2k)
0 .

Proof. All abelian groups under consideration are p-groups, and both ker(dSyn
2k+1) and

coker(dSyn
2k+1) are naturally Z/(p2k)-modules. To determine the extension of these

two modules, it suffices to compute the p2
k -multiple of a lifting f ∈ πt,t+s(X2k+1)

of an element f ∈ ker(dSyn
2k+1).



26 JIKUN LI

Taking M = Σt,t+sCτ2
k+1 and N = X2k+1 , we view any diagram

Σt,t+sCτ2
k

Σt,t+sΘCτ2
k

X2k ΘX2k

s(2
k)

f h Θf

s2
k

X

as representing an element f ∈ πt,t+s(X2k+1) lifting f ∈ ker(dSyn
2k+1

). Then the
p2

k -multiple of f is given by

Σt,t+sCτ2
k

Σt,t+sΘCτ2
k

X2k ΘX2k

0 h
(2k)
0 ·(s(2

k)
X ◦f) 0

Since the p2
k -multiple of f is independent of the homotopy h, we obtain a well-

defined map

h
(2k)
0 · (−) : ker(dSyn

2k+1)s,t → πt,t+s+2k(ΘX2k).

This map is a restriction of the natural action

π∗,∗(ΘCτ2
k

)× π∗,∗(ΘX2k)→ π∗,∗(ΘX2k).

Forgetting the module structure and passing to the underlying object, the product
h
(2k)
0 · (s(2

k)
X ◦ f) yields an element

h
(2k)
0 · f ∈ πt,t+s+2k(X2k).

□

Remark 5.12. For k = 0, this recovers the classical Adams case, showing that
h0 = h

(1)
0 detects Z/p-extensions.

Example 5.13. Now we show the 14-th and 15-th columns of the E3-page of the
sphere as an example to show how the product structure in the E3-page helps us to
determine higher differentials. The product structure can still be computed by the
secondary Steenrod algebra as shown in [CPH22]. Here we directly use the result
in [BHS19, Proposition A.20]. We will use x̃ to denote any chosen lifting of x ∈
E∗,∗
2 (S) in E∗,∗

3 (S), and the elements listed are the generators of the corresponding
abelian groups. Under such notation, we have h

(2)
0 = h̃0

2
and a hidden extension

h̃0

2
h̃2
3 = 2d̃0 = τh0d0.
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The full diagram is given as:

Z/2

Z/4

h̃0

2
d̃0 Z/2 Z/4 h̃0

4
h̃0h4

h̃0d̃0 Z/4 Z/4 h̃0

3
h̃0h4

d̃0 Z/4 Z/4 h̃0

2
h̃0h4

h̃0h̃2
3, τd0 Z/2⊕ Z/2 Z/4 h̃0h̃0h4

h̃2
3 Z/2 Z/4 h̃0h4

Z/2 τh0h4

Invoking Theorem 5.11, h̃0

2
h̃2
3 is either the generator or zero in coker(dSyn3 ),

so there must be a differential hitting 2d̃0 = τh0d0. By degree reasons, the only
possibility is dSyn3 (τh0h4) = τh0d0. This differential is completely hidden but can
be easily recovered to give the classical Adams differential d3(h0h4) = h0d0 by the
Leibniz rule.

So far, we have seen how the twisting maps nearly determine the differentials.
This highlights the importance of explicit computations for the Θ-functor. More
concretely, let us unpack the essential data needed.

Given a spectrum X, to emphasize the homological feature of X1, write

H∗(X) := H∗(X1;Fp) ∈ D(ComodA∨
p
)

for Cτ⊗X. Since we must keep track of actual maps rather than homotopy classes,
we regard H∗(X) as the injective resolution of H∗(X) as a comodule. Then the
Θ-functor is determined by:

(1) A map H∗(X)→ Σ3H∗(X)[−1], corresponding to Θ1
0H∗(X).

(2) Maps H∗(X) → Σ4H∗(X)[−2] and H∗(X) → Σ3Θ1
0H∗(X)[−2] witnessing

the homotopy

H∗(X) Θ1
0(H∗(X))

Σ4H∗(X)[−2] Σ4Θ1
0H∗(X)[−2]

f Θ1
0f

for Θ
(1,2)
(0,1)H∗(X).
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(3) A map H∗(X) → Σ6H∗(X)[−4], together with all homotopies fitting into
the diagram

H∗(X) Θ1
0(H∗(X))

Fib(f) Fib(Θ1
0f)

Σ6H∗(X)[−4] Σ6Θ1
0(H∗(X))[−4]

Σ6 Fib(f)[−4] Σ6 Fib(Θ1
0(f))[−4]

(4) In general, maps H∗(X) → Σ2k+2H∗(X)[−2k] for all k ≥ 0, together with
the higher cells witnessing the corresponding homotopies.

6. Relationship between Theta-functor and n-ary Steenrod algebra

In this section, we first recall the definitions and basic properties of the n-ary
Steenrod algebra (see [CPH22, Section 4] for details). We then derive a formula for
the first twisting map from the computation of the secondary Steenrod algebra.

Definition 6.1. For all 1 ≤ n ≤ ∞, the n-ary Steenrod algebra A(n) is defined as
Φ(n)End(Fp), which is an E1-algebra in Spgr. The n-ary cohomology functor

H(n) : Sp −→ModA(n)

sends a spectrum X to Φ(n)MapSp(X,Fp).

Notations 6.2. We use MapSp to denote the mapping spectrum, and End(Fp) for
the E1-ring of endomorphisms of Fp.

As computed by [Bau06], the secondary Steenrod algebra is an algebra over
SFp

≤1 ' Z/p2. Consequently, it can be expressed as a differential graded Z/p2-
algebra

B1

B0
dB

together with a short exact sequence

0 −→ Ap[+1] −→ B1
dB

−−→ B0
πB−−→ Ap −→ 0.

For B• to be a differential graded algebra, B0 must be a Z/p2-algebra and B1 a
B0-bimodule. As a right B0-module, B1 decomposes as

B1 ∼= ker(πB) ⊕ Ap[+1].

The left action is given by
a · (r, p) =

(
ar, A(πB(a), r) + πB(a)p

)
,

where
A : Ap ⊗Z kerπB −→ Ap[+1]

is a nontrivial bilinear map.
In [CPH22], Chua provides explicit generators and relations for this differential

graded algebra in the case p = 2. These presentations are sufficient to compute all
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d2-differentials. Here we recall only the material relevant for computing twisting
maps.

The dual of B0 can be identified with

(B0)∗ = Z/4[ξk, 2ξk,l | 0 ≤ k < l, ξ0 = 1],

whose coproduct is encoded by the power series

f(x) =
∑
k≥0

ξkx
2k +

∑
2ξk,lx

2k+2l .

Accordingly, B0 itself is described as follows:

Definition 6.3 ([CPH22], Definition 8.6). Define Sq(R) and Yk,l to be the dual
elements of ξR and 2ξk,l, respectively, where R denotes a multi-index in Milnor’s
basis.

Remark 6.4. Chua uses the notation Sq(R) both for elements of B0 and for those
of Ap. We follow this convention, but note that the products differ: in general, the
multiplication of Sq(R)Sq(S) depends on whether it is taken in B0 or in Ap.

Lemma 6.5 ([CPH22], Lemma 8.7, 8.8, 8.10). The generators satisfy the following
relations:

(1) πB(Yk,l) = 0 and πB(Sq(R)) = Sq(R).
(2) Ya,bYc,d = 0 for all a, b, c, d, and 2Y∗,∗ = 0.

Definition 6.6. [CPH22, Definition 8.11] Let X = (xij) be a matrix indexed on
the non-negative integers. Define

ri(X) =
∑
j

2jxij , sj(X) =
∑
i

xij , tn(X) =
∑

i+j=n

xij ,

R(X) = (r1(X), r2(X), ...), S(X) = (s1(X), s2(X), ...), T (X) = (t1(X), ...),

b(X) =

∏
tn!∏
xij !
∈ Z

We put T : A∨
p ⊗Ap → Ap to be the contraction operator, then in Milnor basis,

we have
T (ξR, Sq(S)) = Sq(S −R),

where Sq(S −R) is zero if any entry is negative.

Theorem 6.7. [CPH22, Theorem 8.13]

Sq(R)Sq(S) =
∑
k≥0

∑
0≤m<n

Ym+k,n+kT (ξ2
k

m ξ2
k

n , Sq(R))T (ξk+1, Sq(S))

+
∑

R(X)=R,S(X)=S

b(X)Sq(T (X)).

Remark 6.8. As B0 → Ap is a map of algebras, we have

πB(Sq(R)Sq(S)) = πB(Sq(R))πB(Sq(S)),

which recovers Milnor’s result in [Mil58, Theorem 4b].

Finally, we describe the function A:
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Lemma 6.9. [CPH22, Lemma 8.14] We have
A(a, 2) = T (ξ1, a),

A(a, Yk,l) =
∑
i,j≥0

Zk+i,l+jT (ξ2
k

i ξ2
l

j , a)

A(a, rSq(R)) = A(a, r)Sq(R),

where Zk,l = Sq(∆k +∆l) if k ≥ l and Zk,l = 0 otherwise.

When n = 2, we have described A(2)
p as a differential graded algebra, so the

category ModA(2)
p

is purely algebraic. This allows us to reinterpret computations
in ModCτ2 , which is a topological category, as computations in ModA(2)

p
, which is

algebraic.
To carry this out, one must construct a cofibrant replacement of H(2)(X) in

ModA(2)
p

. This can be achieved by lifting a free resolution of H∗(X) as an Ap-
module.

More generally, suppose we are given an Ap-module M . We aim to find a cofi-
brant A(2)

p -module M such that
Ap ⊗A(2)

p
M ∼= M.

Let
· · · M (2) M (1) M (0) M∂(2) ∂(1)

be a free resolution of M . As mentioned in Section 1, to make this lift homotopically
meaningful, we must also specify the homotopies, i.e. a diagram

· · · M
(3)
1 M

(2)
1 M

(1)
1 M

(0)
1

· · · M
(3)
0 M

(2)
0 M

(1)
0 M

(0)
0

∂
(3)
1

d(3)

∂
(2)
1

d(2)

∂
(1)
1

d(1) d(0)

h(4) h(3)

∂
(3)
0

h(2)

∂
(2)
0 ∂

(1)
0

satisfying the relations

d(s−1)∂
(s)
1 = ∂

(s)
0 d(s),

∂
(s−1)
0 ∂

(s)
0 = d(s−2)h(s),

∂
(s−1)
1 ∂

(s)
1 = h(s)d(s),

h(s−1)∂
(s)
0 = ∂

(s−2)
1 h(s).

Given such homotopies h, we obtain a cofibrant replacement of M in the form

M
(3)
0 ⊕M

(2)
1 M

(2)
0 ⊕M

(1)
1 M

(1)
0 ⊕M

(0)
1 M

(0)
0 .

 ∂
(3)
0 d(2)

−h(3) −∂
(2)
1

  ∂
(2)
0 d(1)

−h(2) −∂
(1)
1

 (
∂
(1)
0 d(0)

)

One verifies directly that this is a cofibrant object with the correct homotopy type.
For our purposes, however, it suffices to analyze the diagram to understand the
meaning of the homotopies h.

By decomposing M
(n)
1 as

M
(n)
1
∼= ker(π(0)) ⊕ M (n)[+1],
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the map h(n+2) separates into two components. The commutativity of the diagram
forces the ker-part to be determined by ∂

(n+2)
1 ∂

(n+1)
1 , so the essential contribution

is the map
hτ : M

(n+1)
0 −→M (n)[+1].

In fact, since ∂
(n+2)
1 ∂

(n+1)
1 (ker d(n+2)) = 0, the map hτ factors through

hτ : M (n+2) −→M (n)[+1].

The degree of hτ coincides precisely with the degree of the d2-differential and
the connecting map X → Σ2X[−1]. This is no accident: in [CPH22, Section 5],
Dexter Chua constructs a comparison functor

H(n)
Syn : ModCτn −→ModopA(n)

extending the n-ary cohomology functor on Sp, fitting into the commutative dia-
gram

Sp

ModCτn ModopA(n)

Cτn⊗ν(−) H(n)

H(n)
Syn

with H(n) almost fully faithful.

Theorem 6.10 ([CPH22], Theorem 5.6). For any X ∈ModCτn and Y ∈ModftCτn ,
the map

H(n)
Syn : MapModCτn (X,Y ) −→ MapModop

A(n)
(H(n)

Syn(Y ),H(n)
Syn(X))

is an equivalence. Here ModftCτn is the full stable subcategory generated by {Cτn ⊗
νP} for finite type spectra P .

Applying this when n = 2, one sees that hτ detects the d2-differential as in [CPH22,
Lemma 9.1]. Indeed, if the resolution of H∗(X) is chosen to be minimal, then each
E2-class is represented by a generator of Ap, and a nontrivial d2 occurs precisely
when hτ maps one generator to another, up to nullhomotopies.

Finally, this leads to the formula for the first twisting map:

Theorem 6.11. Let M∨ be a A∨
p -comodule, with dual Ap-module M . Suppose the

free resolution

· · · M (2) M (1) M (0) M∂(2) ∂(1)

is dual to an injective resolution in ComodA∨
p

, and that M
∨ lifts to a periodic

Cτ2-module. Then the first twisting map

t(2) : M (n)
∨
−→M (n+3)

∨
[−1]

has dual
(t(2))∨ : M (n+3) −→M (n)[+1],

sending each generator g to∑
A
(
αi, ∂

(n+2)
0 ∂

(n+1)
0 (gi)

)
,

where ∂(n+3)(g) =
∑

αigi with {gi} generators of M (n+2).
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Proof. From the discussion above, the dual of

d(2)n : M (n)
∨
→M (n+2)

∨
[−1]

is identified with
h(n+2)
τ : M (n+2) →M (n)[+1].

Commutativity of the chain map M
∨ → Θ1

0M
∨ then implies

∂(n+1)h(n+3)
τ (g) = h(n+2)

τ

(
∂(n+2)(g)

)
+ (t(2))∨(g).

By [CPH22, Corollary 8.29], the left-hand side expands as∑
αih(n+2)

τ (gi) +
∑

A
(
αi, ∂

(n+2)
0 ∂

(n+1)
0 (gi)

)
,

hence we identify

(t(2))∨(g) =
∑

A
(
αi, ∂

(n+2)
0 ∂

(n+1)
0 (gi)

)
.

□

Remark 6.12. We expect that the above result should remain valid without assum-
ing that M

∨ can be lifted to a periodic Cτ2-module. However, since the function

g 7→
∑

A(αi, ∂
(n+2)
0 ∂

(n+1)
0 (gi))

lacks a functorial definition, at present it can only be compared in an ad hoc manner.

Remark 6.13. This result clarifies what the secondary Steenrod algebra is actually
computing. As pointed out by Chua, B0 is not canonical; it is chosen large enough
to support a nontrivial function A. Our result explains how this enlargement in-
teracts with the function A to recover the canonical functor Θ. Consequently, our
construction provides a practical method for performing elementwise computations
in higher Steenrod algebras.

We conclude with an example that illustrates how to compute the first d2-
differential on the sphere by hand. (Further computations can be found in [Chu22].)

Example 6.14. We recover the differential d2(h4) = h0h
2
3 in the F2-Adams spectral

sequence. To this end, we consider the diagram of A∨
2 -comodules. Here we use 〈a〉

to denote one copy of A∨
2 , with Steenrod algebra elements written in the Milnor

basis:

〈1〉 〈1〉 ⊕ (〈h2
0〉 ⊕ 〈h2

1〉 ⊕ 〈h0h2〉 ⊕ · · · )[−1]

〈h0〉 ⊕ 〈h1〉 ⊕ 〈h2〉 ⊕ · · · (〈h0〉 ⊕ 〈h1〉 ⊕ · · · )⊕ (〈h3
0〉 ⊕ 〈h2

0h2〉 ⊕ · · · )[−1]

(id,0)

(id,d(2))

To detect d(2)(〈h4〉) via 〈h0h
2
3〉, we compute the image of 〈h4〉 under t(2). Since

direct comodule calculations are cumbersome, we instead dualize to A2-modules



TWISTING MAPS AND ADAMS SPECTRAL SEQUENCE 33

and apply the formula in Theorem 6.11. This yields
(t(2))∨(〈h0h

2
3〉) =A(Sq(9,2) + Sq(6,3), Y0,1 + 2Sq2)+

A(Sq(7,2), Y0,1Sq
2 + 2Sq4 + 2Sq(1,1))+

A(Sq(0,4), Y0,2Sq
1 + 2Sq5 + 2Sq(2,1))+

A(Sq9 + Sq(0,3), Y0,1Sq
6 + 2Sq8 + 2Sq(2,2))+

A(Sq8 + Sq(2,2), Y0,1(Sq
7 + Sq(4,1) + Sq(1,2)) + Y0,2Sq

5+

Y0,3Sq
1 + 2(Sq9 + Sq(6,1) + Sq(0,3) + Sq(2,0,1) + Sq(3,2)))+

A(Sq7 + Sq(4,1) + Sq(0,0,1), Y0,1(Sq8 + Sq(2,2)) + Y0,2Sq
(3,1)+

Y1,2Sq
5 + 2(Sq10 + Sq(7,1) + Sq(1,3) + Sq(3,0,1) + Sq(4,2)))+

A(Sq1, Y0,1Sq
14 + 2(Sq16 + Sq(7,3) + Sq(4,4)))

Although this expansion already contains many terms, further application of the
defining formula for A produces nearly 60 terms. A direct calculation shows that
the result simplifies to

Sq16 + Sq(6,1,1) + Sq(10,2) ∈ 〈1〉.
Since the following square commutes:

〈1〉 〈1〉 ⊕ (〈h2
0〉 ⊕ 〈h2

1〉 ⊕ 〈h0h2〉 ⊕ · · · )[−1]

〈h0〉 ⊕ 〈h1〉 ⊕ 〈h2〉 ⊕ · · · (〈h0〉 ⊕ 〈h1〉 ⊕ · · · )⊕ (〈h3
0〉 ⊕ 〈h2

0h2〉 ⊕ · · · )[−1]

(id,0)

(id,d(2))

we conclude that
d2 : E1,15

2 (S)→ E3,14
2 (S)

sends h4 to h0h
2
3, recovering the first d2-differential on the sphere.

Remark 6.15. Although the explicit computation is lengthy, one can quickly verify
that the formula for (t(2))∨(h0h

2
3) contains only a single term, Sq16, since no other

products contribute in this degree. As Sq16 is the unique generator in degree 16,
this suffices to detect the first differential.

Appendix A. Square-zero extension

In this Appendix, we introduce the basic definitions and properties of the square-
zero extension we use in Section 2

Definition A.1 (Stable envelope). Let C be a presentable ∞-category . A stable
envelope of C is a categorical fibration u : C′ → C with the following properties:

• The category C′ is stable and presentable.
• The functor u admits a left adjoint.
• For every presentable stable (pointed) ∞-category E, composition with u

induces an equivalence of ∞-categories RFun(E,C′) → RFun(E,C). Here
RFun(E,C′) denotes the full subcategory of Fun(E,C′) spanned by those
functors which admit left adjoints. and RFun(E,C) is defined similarly.

More generally, suppose that p : C → D is a presentable fibration. A stable
envelope of p is a categorical fibration u : C′ → C with the following properties:
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• The composition p ◦ u is a presentable fibration.
• The functor u carries p ◦ u-Cartesian morphisms of C′ to p-Cartesian mor-

phisms of C.
• For every object D ∈ D, the induced map C′

D → CD is a stable envelope of
CD.

Definition A.2 (Tangent bundle). Let C be a presentable ∞-category. A tangent
bundle to C is a functor TC → Fun(∆1,C) which exhibits TC as the stable envelope
of the presentable fibration Fun(∆1,C)→ Fun({1},C) ' C.

Definition A.3 (relative version of adjoint functors). Suppose we are given a
commutative diagram

C D

E

q

G

p

of ∞-categories, where the maps p and q are categorical fibrations. The following
conditions are equivalent:

• The functor G admits a left adjoint F . Moreover, for every object X ∈ C,
the functor q carries the unit map uX : X → GFX to an equivalence in E.

• There exists a functor F : C → D and a natural transformation u : idC →
G ◦ F which exhibits F as a left adjoint to G, and has the property that
q(u) is the identity transformation from q to itself.

We will say that G admits a left adjoint relative to E if the equivalent conditions
above are satisfied.

Proof. This is [Lur17, Proposition 7.3.2.1] □
Proposition A.4. Let C be a presentable ∞-category, and consider the associated
diagram

Fun(∆1,C) TC

E
q

G

p

where q is given by evaluation at {1} ⊂ ∆1. Then G admits a left adjoint F relative
to E.

Proof. By the definition of the tangent bundle TC, the functor G carries p-Cartesian
morphisms to q-Cartesian morphisms. Since for each object A ∈ C, the fibers
Sp(C/A) and C/A admit final object, so p and q are locally Cartesian categorical
fibrations. The induced functor GA : Sp(C/A)→ C/A admits a left adjoint Σ∞, so
we can apply [Lur17, Proposition 7.3.2.6] to get a left adjoint of G relative to E,
which we will denote by F . □
Definition A.5 (Absolute cotangent complex functor). Let C be a presentable
∞-category, the absolute cotangent complex functor L : C→ TC is defined to be the
composition

C→ Fun(∆1,C)
F−→ TC,

where the first map is given by the diagonal embedding. We will denote the value
of L on an object A ∈ C by LA ∈ Sp(C/A), and will refer to LA as the cotangent
complex of A.
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Definition A.6 (trivial square-zero extension). Let C⊗ be a stable symmetric
monoidal ∞-category (such that the tensor product on C is exact in each variable)
and let A be an O-algebra object of C, then the trivial square-zero extension of an
A-module is defined to be the composition

FunO(O,ModOA) ' Sp(AlgO(C)/A)
Ω∞

−−→ AlgO(C)/A.

This functor associates to each M ∈ FunO(O,ModOA) a algebra which we will denote
by A⊕M .

Remark A.7. Since the diagonal embedding admits a right adjoint Fun(∆1,C)→
Fun({0},C) ' C, we have a right adjoint of L

C
ev0←−− Fun(∆1,C)

G←− TC.

When C is the full subcategory spanned by all O-monoidal algebra object in a
symmetric ∞-category E and let A ∈ C with M in its fiber Sp(E/A) ' ModOA(E).
Then this right adjoint sends M to its trivial square-zero extension A⊕M .

Definition A.8 (Tangent correspondence). Let C be a presentable ∞-category
and let G : TC → Fun(∆1,C) be a tangent bundle to C. We define the tangent
correspondence s : MT (C) → ∆1 to be the Cartesian fibration associated to the
functor

TC
G−→ Fun(∆1,C)→ Fun({0},C) ' C.

Proposition A.9. Let C be a presentable ∞-category. Then:
(1) MT (C) equips with a functor q : MT (C) → C, restricting to (MT (C))0 '

C
idC−−→ C and (MT (C))1 ' TC → Fun(∆1,C)→ Fun({1},C) ' C.

(2) The projection MT (C)
(s,q)−−−→ ∆1 × C is a categorical fibration.

(3) The map p is also a coCartesian fibration, accociated to the cotangent
complex functor L : C→ TC.

Definition A.10. Let C be a presentable∞-category, and let p : MT (C)→ ∆1×C

denote a tangent correspondence to C. A derivation in C is a map f : ∆1 →MT (C)
such that p ◦ f coincides with the inclusion ∆1 × {A} ⊂ ∆1 × C, for some A ∈ C.
In this case, we will identify f with a morphism η : A → M in MT (C), where
M ∈ TC ×C {A} ' Sp(C/A). We will say that η : A→M is a derivation of A into
M .

We let Der(C) denote the fiber product Fun(∆1,MT (C)) ×Fun(∆1,∆1×C) C. We
will refer to Der(C) as the ∞-category of derivations in C.

Remark A.11. A derivation η : A→M can be identified with a map d : LA →M
in the fiber TC ×C {A} ' Sp(C/A) since A→ LA is a coCartesian map in MT (C).

Definition A.12. Let C be a presentable∞-category, and let p : MT (C)→ ∆1×C

be a tangent correspondence for C. An extended derivation is a diagram σ

Ã A

0 M

f

η

in MT (C) with the following properties:
(1) The diagram is a pullback square.
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(2) The objects Ã and A belongs to C ⊂ MT (C), while 0 and M belong to
TC ⊂MT (C).

(3) Let f̄ : ∆1 → C be the map which classifies the morphism f appearing in
the diagram above, and let e : ∆1×∆1 → ∆1 be the unique map such that
e−1{0} = {0} × {0}. Then the diagram

∆1 ×∆1 MT (C) ∆1 × C

∆1 C

σ

e

p

f̄

is commutative.
(4) The object 0 ∈ TC is a zero object of Sp(C/A).

We let D̃er denote the full subcategory of
Fun(∆1 ×∆1,MT (C))×Fun(∆1×∆1,∆1×C) Fun(∆1,C)

spanned by the extended derivations.

Proposition A.13. Let C be a presentable ∞-category. Then the forgetful φ :

D̃er(C)→ Der(C) is a trivial Kan fibration.

Definition A.14. Let C be a presentable ∞-category, and let Φ : Der(C) →
D̃er(C) → Fun(∆1,C), where the first map is any section of the trivial fibration
and the second map is induced by the inclusion ∆1 × {0} ⊂ ∆1 × ∆1. We will
denote the image of a derivation (η : A→M) ∈ Der(C) under Φ by (Aη → A).

Let f : Ã → A be a morphism in C. We will say f is a square-zero extension
if there exists a derivation η : A → M in C, and an equivalence Ã ' Aη in the
∞-category C/A. In this case, we will also say that Ã is a square-zero extension of
A by M [−1].
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