AN INTRODUCTION TO THE STEINBERG VARIETY

RUIZE LAI

ABSTRACT. The purpose of this paper is to provide an introduction to the
Steinberg variety, which is an important notion in geometric representation
theory. It is used to study the representations of Weyl groups. Throughout
the paper, various geometric objects associated to a complex semisimple alge-
braic group G, including the flag variety B and the Springer resolution of the
nilpotent cone variety N, are studied. In particular, the fundamental example
of SL2(C) will be developed, in the hope of providing a concrete idea behind
the geometric notions.

CONTENTS
1. Introduction
2. Flag Varieties
2.1. Semisimple Lie Algebras and Semisimple Groups
3. Bruhat Decomposition
3.1.  Abstract Weyl Group
3.2.  Chevelley Restriction Theorem
3.3.  Grothendieck’s Simultaneous Resolution
3.4. Example: The SL,(C) Case
4. Symplectic Geometry
4.1. Examples of Symplectic Structures
4.2.  Poisson Structures on O(M)
4.3. TIsotropic, Coisotropic and Lagrangian subvarieties
4.4. Moment Maps
5. Nilpotent Cones
6. The Steinberg Variety
7. Appendix
7.1. C*-actions on a Projective Variety
7.2. Bialynicki-Birula Decomposition
7.3.  Vector Bundles and Principal G-Bundles
7.4. Miscellaneous Results
Acknowledgments
References

1. INTRODUCTION

The irreducible representations of the Weyl group can be studied via the Stein-
berg variety. More precisely, the group algebra of the Weyl group can be constructed
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(via the so-called “Lagrangian construction”) as a convolution algebra of the top
Borel-Moore homology of the Steinberg variety (see [2]). The Steinberg variety is
a geometric object associated to a semisimple algebraic group G, in the sense that
it is the disjoint union of conormal bundles to all G-diagonal orbits in B x B, the
product of flag varieties B of G (see Corollary 6.5). Our goal is to give a brief
introduction of this variety and use it to study the Springer fibers B, and nilpotent
orbits O c NV.

This paper closely follows the exposition of [2]. We first introduce the geometric
flag variety B and use it to give a geometric interpretation of the Bruhat decompo-
sition, which can be viewed as a pure algebraic statement about double-cosets in G.
The course of the proof is based on the Bialynicki-Birula decomposition (Theorem
7.5), which we briefly explain in the appendix. After that, we associate the double-
coset decomposition of G with the abstract Weyl group W of G and elaborate on
Springer’s diagram (3.30). We make a digression towards symplectic geometry, with
the aim of introducing the notion of Lagrangian subvarieties and moment maps.
Then we turn to the nilpotent cone variety N, which is another geometric object
associated to G. The Springer resolution y: N — N turns out to be a moment
map with respect to the Hamiltonian G-action on the cotangent bundle T B of the
flag variety. It is, moreover, a resolution of singularities. Finally, we introduce the
Steinberg variety Z = N x N as a triple variety, and study its geometric properties.
The appendix attempts to make the exposition a self-contained one. It is devoted
to reviewing some geometric notions, e.g., the formulation of vector bundles in al-
gebraic varieties and the statement of the Bialynicki-Birula decomposition. Some
useful lemmas in algebraic varieties are also discussed at the end of the appendix.

Convention 1.1. We will be working on algebraic varieties over the complex num-
ber field C. Some statements, in particular in the section on symplectic geometry,
are formulated in the smooth category. But we expect similar statements to hold
in the setting of algebraic geometry. If not stated explicitly, we assume G to be a
connected semisimple algebraic group over C and g be its (semisimple) Lie algebra.
We denote B\G (resp. G/B) the left (resp. right) orbit space of the subgroup
B c G. The right orbit of g € G is denoted by gB. All vector spaces in this paper
are assumed to be finite-dimensional over C. The dualization of the vector space V'
is denoted by V*. We denote P(V) to be the projectivization of the vector space
V. Given a finitely generated C-algebra A, we let Specm(A) denote the set of all
maximal ideals in A. The permutation group of n elements is denoted by S,,.

2. FLAG VARIETIES

Definition 2.1. Let V' be a complex vector space of dimension n. A flag in V is
achain 0¢ V3 ¢ Vo ¢ - ¢ Vi, =V of subspaces of V, each properly included in the
next. A full flag is one for which k = n, i.e., dimV;,1/V; = 1. Let F(V') denote the
collection of all full flags in V.

We will give it the structure of a projective variety, to be called the flag vari-
ety. To this end, we will use the notion of Grassmannians (c.f., [5], [3]), whose
construction will be briefly recalled in the following.

Construction 2.2 (Grassmannians). Let V' be an n-dimensional C-vector space.
The Grassmannian variety, denoted as Grg(V'), is the collection of all d-dimensional
vector subspaces in V. Let U be a linear subspace of V' of codimension d, and let
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Grq(V)y be the collection of d-dimensional linear subspaces of V' contained in
P(V)NP(U), i.e., the direct sum complemenet of U in V. Observe that Grq(V )y
has a natural structure of an affine space of dimension (n - d)d. Indeed, we note
that every element in Gry(V)y can be identified with the image of a section to the
natural projection m: V — V/U. The set of sections of 7 is naturally a principal
homogeneous space over Home(V /U, U) via addition. Upon fixing a base point in
Grq(V)y, we have the following identification Gry(V)y = Home(V /U, U) = C4Hn=d),
It can be shown that Grg(V') admits a unique structure of variety for which every
Gryq(V)y is affine open and its identification with C*™~% is an isomorphism.

We illustrate an alternative construction of the Grassmannian, using the so-called
Pliicker embeddings. It is a fact (c.f. [8]) that the two constructions coincide.

Construction 2.3. The injective map & : Gry(V) = P(A% V), called the Pliicker
embedding, is given by W [wy A+ Awgq], where {w;}% | is a basis of W e Grgq(V).
It sends the Grassmannian Grg(V) bijectively onto a closed subset of P(A?V).
Choose a basis (v1,...,v,) of V, and choose U to the span of (vg41,...,v,). Denote
P(AYV)y to be a standard affine open chart of P(A% V') consisting of points whose
homogeneous coordinate relative to vy A -+ A vy is nonzero. Then § : Cn-d)xd
Grq(V)y = P(A?V)y is an isomorphism onto its image. We now give an explicit
expression of § over this affine chart. Fix W := spanc{vi,...,v4} € Grg(V)y and
the base point Idlw € Grg(V) (viewed as a section of w: V - W = V/U), the
identification C(*~®*? = Home (W, U) = Grg(V )y is given by

(2.4) (aji)1<izd<jzn € M(n-gyxa(C) —> spanc{v; + > ajiv;}i;.
J=d+1

So that § is given by

(2~5) (aji)lgisd,<j5n g [(Ul + i ajwj) ARA (Ud + i ajdvj)] .

J=d+1 J=d+1

It follows that ¢ defines a closed immersion of Gry(V)y onto its image. As a conse-
quence, the Grassmannian Grgq(V') is an irreducible closed subvariety of P(A V).

We return to the discussion on flag varieties.

Proposition 2.6 (Flag varieties). Let V be an n-dimensional complex vector space
and F (V) the collection of all full flags in V. Identify F (V') with a subset of the
Cartesian product G = Gr1 (V) x Gra(V) x -+ x Gry, (V). Then F(V') is closed G. In
particular, F(V') is a projective variety.

Proof. When n =1, there is nothing to prove. So we assume n > 2. Let 1 <d<n-1,
we claim that the set Fy of pairs (W71, Ws) € Grg(V') x Grgy1 (V) for which W ¢ Wa
is closed. The statement follows from the claim via taking a finite intersection of
F,; (identified as a subset of G) for 1 < d <n—1. We proceed to prove the claim. Fix
a basis (v1,...,v,) of V and consider various affine open subsets of P(A? V) (resp.
P(ATV)). Without loss of generality, we restrict ourselves to the open chart
Grqa(V)y (resp. Grgs1(V)y) (c.f. construction 2.3), which corresponds to (via the
Pliicker embedding) the restriction of an affine chart of P AL V) consisting of points
whose homogeneous coordinate relative to v1 A-+-Avg (resp. v1A--Avg41) I8 nonzero.
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Indeed, F, is already covered by products of the form Grg(V)y x Grgw1(V)yr.
Therefore, the embedding

i:Fy = Grg(V) x Grg:1 (V) = ]P’(/d\ V) x JP’(d/Jr\1 V)

restricted to such an affine open chart is given explicitly by

d d+1
=D COmd-DX(@D) — pAV)y x P(A V)

d n d+1 n
((aji)1<icd<jens (bji)1<icdr1<jen) — (/\ (Uz‘ + ) ajivj)p A (Ui + Y bjivj))~
i=1 j=d+1 1=1 j=d+2
The condition that W; c W5 is precisely when the matrix formed by UﬁZ?:d +1 @5i0;
(1 <i<d<j<n) together with v; + X7 100505 (1 <i<d+1<j<n) has rank
d + 1, which is precisely cut out by all (d + 2)-minors. Therefore Fj intersects
Grg(V)y x Grgs1(V)y: in a closed set. ]

Proposition 2.7. The flag variety F(C"), upon fixing a coordinate flag: F =
(0c CcC?c-cC"),is acted naturally by GL,(C). In particular, F(C") is
irreducible and smooth.

Proof. Define the GL, (C)-action on the projective space P(AN C™) (for some fixed
N €Zs1) by

N N N
GLn(C) x P(AC") — P(AC"), (g,[v]) —[Ag-v].

This is an algebraic action by construction. The action map restricts to an GL,, (C)-
action on the Grassmannian Gry(C"). It follows that the natural GL, (C)-action
on the flag variety F(V) is a transitive algebraic action. By Proposition 7.23 in
the appendix, F (V') is smooth and irreducible, as GL, (C) is irreducible. O

We give an identification of the flag variety with the collection B of Borel sub-
algebras of sl,(C) = Lie(SL,(C)) = {z : C" - C" ¢ M,(C) : tr(z) = 0}. Note that
B is an algebraic variety. Indeed, by the conjugation theorem (c.f. [1]), B consists
of maximal solvable subalgebras of sl,,(C) whose dimensions are the same. The
solvability condition is an algebraic condition. We will see in the next subsection
that B is a closed smooth subvariety of a Grassmannian variety.

Proposition 2.8. Using the notations above, we have B = F(C") as projective
varieties.

Proof. This is Lemma 3.1.15 of [2]. |

Example 2.9. (1) When n =2, F(C?) ={(0c V4 c Vo =C?):dimV; =1} =
P
(2) When n =3, F(C*) ={(0c Vi c Vo c Va3 =C3) :dimV; = 1,dimV; = 2}.
There is a map F(C?) » P! sending a flag (0 c V; c Vo c V3 = C3) to
V1 c C3, i.e., to a point in P2. This is a P'-fibration.

In fact, flag varieties can be defined generally as a quotient of algebraic groups.
This will be made precise in the next subsection.
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2.1. Semisimple Lie Algebras and Semisimple Groups. We will briefly re-
view some facts about semisimple Lie algebras and semisimple algebraic groups.
For proofs and further information, the reader is referred to [4], [5], and [12].

Fix G as a complex semisimple connected Lie group with Lie algebra g, often
viewed as a G-module by means of the adjoint action. Let B be a Borel subgroup - a
maximal solvable (connected) subgroup of G. There is a one-to-one correspondence
between Borel subgroups of G and Borel subalgebras of b which sends a Borel
subgroup B to its Lie algebra. A unipotent radical is the largest connected normal
unipotent subgroup of G. If U is the unipotent radical U = [B, B] of B, and T is a
maximal torus, then the Levi decomposition gives B=T-U.

Example 2.10. Let G = SL,(C),
(1) B = {upper triangular matrices in SL,,(C)};
(2) U = {upper triangular matrices in SL,(C) with diagonal elements are 1};
(3) T = {diagonal matrices in SL, (C)}.

Fact 2.1. (1) Any two Borel subgroups are conjugate, and each Borel sub-
group is its own normalizer, i.e., B = Ng(B).

(2) Each maximal torus is its own centralizer, and its normalizer gives a finite
group Ng(T)/T, called the Weyl group of the pair (G,T). The number of
Borel subgroups B containing a maximal torus 7T is finite, and the Weyl
group permutes them principally (i.e., simply transitively).

(3) Any orbit of a unipotent group action on an affine algebraic variety is closed
in Zariski topology.

(4) For any element x € g, we write Zg () and Zg(x) for the centralizer of  in
G and g respectively. The Lie algebra of the stabilizer subgroup Zg(z) ¢ G
is precisely Zg(x) = kerad .

(5) Cartan subalgebras in g are conjugate to each other. Its dimension is de-
fined to be the rank rkg of g. Furthermore, for any « € g, dim Zy(x) > rkg.
In particular, a semisimple element x € g is called regular if the equality
holds. More generally, an element x € g is called reqular precisely when the
dimension of the generalized eigenspace go , of adx for eigenvalue zero is
equal to rkg.

We will use the following properties of semisimple elements without proof in this
paper.
Lemma 2.11. For h c g, Cartan and Borel subalgebras of g.

(1) Any element of h is semisimple and any semisimple element of g is G-
conjugate to an element of b.

(2) The centralizer of a semisimple regular element is a Cartan subalgebra.

(3) If = € b is a semisimple regular element then Z,(x) c b.

(4) The set of regular semisimple elements of g, denoted by g*”, is a G-stable
subset of g. Furthermore, g°" is a Zariski-open affine subset of g (c.f.
Proposition 7.22).

Construction 2.12 (Flag varieties). Let B be the set of all Borel subalgebras in
g. By definition, B is the closed subvariety of the Grassmannian of b-dimensional
subspaces in g formed by all solvable Lie subalgebras. Hence B is a projective
variety. Recall that all Borel subalgebras are conjugate under the adjoint action
of G, and that Gy is the isotropy subgroup of Lie(B) =: b in G, which is equal to
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B as Ng(B) = B. Thus, the assignment [¢g] — Ad(g)b gives a bijective morphism
(which can also be viewed as the orbit map of the algebraic G-action on B with
base point b):

(2.13) G/B > B,

where G/B is a projective variety (c.f. [5]). Furthermore, since G/B is irreducible
as G is a connected algebraic group, B is irreducible. As the G-action on B is
transitive, B is smooth (c.f. Proposition 7.23). It follows from Proposition 7.20
that this bijection is a G-equivariant isomorphism of algebraic varieties.

3. BRUHAT DECOMPOSITION

In linear algebra, we know that there is a generalization of LU-decomposition,
i.e., the LPU-decomposition.

Theorem 3.1. For any g € GL,,(C), there exists L € B_, U € B, and a permuta-
tion matrix w € S, = GL,(C) such that g = LwU, where B_ (resp. B) denotes
the subgroup of upper (resp. lower) triangular matrices in GL, (C). There is a
stratification

(3.2) GL,(C)= | | B-wB.
weS,
1
Observe that B_ = wgBwg, wy = : is the permutation matrix with skew-
1
diagonal entries that are one. The above decomposition can be rewritten as
(3.3) GL,(C)= | | BwB.
weS,

The Bruhat decomposition generalizes the theorem above for connected semisim-
ple algebraic groups, despite the fact that GL, (C) is not semisimple.

Let G be a connected semisimple Lie group with Lie algebra g. Fix a Borel
subgroup B c GG with Lie algebra b,. Recall that we might identify B, the collection
of Borel subalgebras in g, with the flag variety G/B as in (2.13). In the rest of the
exposition, we do not distinguish the two.

Theorem 3.4. Choose a maximal torus T' ¢ B, write Wy := Ng(T)/T for the Weyl
group of G respect to T. We have the following maps
(3.5)
(1) (2) . (3) . .
Wr — B\G/B — {B-orbits on B = G/B} — {G-diagonal orbits on B x B},

given explicitly by

1) wr 2 B\@/B, [w] — BwB;

2) B\G/B Z% {B-orbits on B= G/BY}, BgB —> B(¢B) = B-Ad(g)by;

(3) {B-orbits on B ~» G/B} O, {G-diagonal orbits on B x B}, B-b — G-

(b,,b).

Furthermore, all the above maps are bijections.

Remark 3.6. Observe that the rightmost set in (3.5) depends neither on the choice
of T nor on the choice of B, while the leftmost set obviously does. We will see later
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in section 3.1 that the set of G-orbits in B x B is in fact in canonical bijection with
an abstract Weyl group W.

Proof of theorem 3.4. We begin by observing that the bijection B\G/B ©), {B-orbits on B =

G/B} is immediate from the definition. The last arrow in (3.5) follows from a gen-

eral fact in group theory: for any group G and its subgroup H, one has a canonical

bijection

H\G/H = {H-orbits on G/H} > {G-diagonal orbits on G/H x G/H} = G\(G/H x G/H)
HgH — G- (eH,gH), eec(G is the identity element.

It remains to prove that the leftmost arrow in (3.5) is a bijection. To that end, we
will use the Bialynicki-Birula theorem 7.5.

Lemma 3.7. Let t be a Cartan subalgebra of g, and b > t a Borel subalgebra. Any
Borel subalgebra containing t has the form Ad(w)b, [w] € Wy := Ng(T)/T, for a
unique [w] € Wr. Furthermore, the T-fixed points in B are in natural bijection
with Wy, which is given explicitly by sending [w] € Wr to Ad(w)b.

Proof. This is Lemma 3.1.10 of [2] or Lemma 3.9 of [7]. O
Proposition 3.8. Every B-orbit on B contains a unique fixed point T-fixed point.

Proof. We first claim that the set of C*-fixed points in B is precisely the T-fixed
points. We know that in general, one can decompose g into
(3.9) g=hbe P ga, where g, ={xeg:adh(z)=a(h)z for all heh}.

aeh*
For a regular semisimple element h € h = Lie(T) that spans the Lie algebra of a
one-parameter subgroup C* < T, we deduce from the decomposition (7.3) that
g = D,z 9n Where g, is the eigenspace of n with respect to ad h. Note further that
we have go = keradh = Zg(h) = b as h is semisimple regular. Recall dimg, =1 if
a€g* is aroot and dimg, =1, we have

(3.10) g=hen"en,

where n* (resp. n”) denotes the positive (resp. negative) eigenspaces. Our choice of
h and C* - T can be made so that the eigenvalues of ad h on Lie(B) are nonnegative
(by choosing an appropriate Weyl chamber). Therefore we have Lie(B) =h @ n*.

We observe that the collection of C*-fixed points in B is precisely the set of
T-fixed points in B, and hence corresponds to the Weyl group Wr by the previous
lemma. Indeed, b € B is fixed by the C*-action if and only if h € b by fact 2.1. The
latter condition is precisely that h = Zg(h) c b by Lemma 2.11. Hence, the set of
C*-fixed points in B is precisely the T-fixed points by the lemma above. The claim
is proved.

We now apply the Bialynicki-Birula decomposition to the above C*-action on B
with the finite fixed point set @ Wp. We obtain a decomposition

Bz || By, whereB,={z€e¢B:limz z=uw},
weWr z=0

and that B, = T\, (By) = T:'UB for all w e Wg. Now fix w € Wr and view it as a
fixed point of the C*-action on B. The orbit map G - G/B = B sending g to g- w
gives rise to a surjective linear map ¢ : g - T, B with kernel being the Lie algebra
of the isotropy group of w € B. As b = Lie(T') is contained in the isotropy group,
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we know T, B=T; B® T, B is a quotient of g/h =n* @n~ under ¢, respecting the
direct sum. Therefore, p(n*) =T B =T (By).

We claim that U - w c B,,, where U is the unipotent group corresponding to the
Lie algebra n*. Indeed, for any u € U, and ¢t € C* ¢ T, we have tut™! — 1 when
t — 0 using the exponential map over unipotent groups and that ¢ is in the general
position. Therefore tu - (w) = tut™! - t(w) = tut™ - w =% w. The differential of the
action map U — By, 2 T\, (B,,) sending u to u-w is precisely the restriction of ¢ to
n*, which is surjective. It follows from the “implicit function theorem” (Proposition
7.28) that U - w is open dense in B,,. We deduce from (3) of fact 2.1 that U-orbit
on the affine variety By, 2 Ty (Byw) is closed. Hence By, = U - w. Since w is fixed
by T, U-w=U-Tw = B-w, where the last equality is the Levi decomposition of
B. Thus, we have proved that B-orbits in B are precisely the Bruhat cells B,,. It
follows that each B-orbit contains a unique point of the form wB e G/BzB. O

Proof of theorem 3.4 (cont’d). As a consequence of Proposition 3.8 above, we know
that we can identify B\B = B\G/B with the T-fixed points in B, which corresponds
precisely to the Weyl group Wr. So (1) in (3.5) is a bijection, as desired. O

Example 3.11. Let G = SLy(C) = {M € GL2(C) : det(M) = 1},

B= {(g aljl) taeC* Be c} c SLy(C)

be the subgroup of upper triangular matrices. Let

T {(g x(_)l) e (C*} c SL(C).

The normalizer Ng(T') consists of elements of the following form
0 "
NG(T):T‘—'{(_y—l g):ye(c }

It follows that the Weyl group Wr = {eT,sT} is a group of order two, where ¢ is

the identity matrix and s = (1) _01 € SLy(C). Note that sT is a generator of
Wr 2 S5. We observe that by the Bruhat decomposition
(3.12) SLs(C) = BuBsB,

where in fact BsB is an open dense Bruhat cell in SLy(C) (c.f. Corollary 7.17).
Observe that the natural SLy(C) action on the flag variety F(C?) induces an
isomorphism of projective varieties (c.f. Proposition 2.8):

SLy(C)/B = F(C?) =P
In particular the Bruhat decomposition (3.12) of SLy(C) gives
(3.13) P'~ B/BuBsB/B = {+}u BsB/B,

where BsB/B is an open affine subset of P! isomorphic to A'. More precisely, we
observe that every element M € BsB/B can be represented by

1 =z
M—(O 1)~SB
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for a unique x € C. Indeed, since s € Ng(T) and T c B, a direct computation yields
a b 1 aby _41fa O
(0 a—l)SB:(o 1)55 1(0 a—l)SB
1 =z
- (0 1) sB,

for any a € C*, b € C and x := ab. In fact, (3.13) is a special case of the Schubert
decomposition.

3.1. Abstract Weyl Group. Recall that a finite reduced root system R in a
complex vector space H (c.f. [2],[4],[5]) can be decomposed into a disjoint union
R = R"u R, where R* is the set of positive roots and R~ = —R" is the set of
negative roots. Further, there is a uniquely determined subset S ¢ R*, called the
set of simple roots, such that any positive root is a sum of a certain number of
simple roots. Write W for the group generated by the reflection map s, : H - H,
a € R, called the Weyl group of the root system R. In fact, W is generated by the
set {sq : v € S} of simple reflections subject to the braid relation (c.f. [2]), and it
is isomorphic to the abstract Coxeter group (W, S).

Let G be a semisimple group and 7' be a maximal torus in G. We would like
to relate the abstract Weyl group W associated to a root system of G to Wp =
Ne(T)/T, the Weyl group of the pair (G,T). To that end, we will need to define
an abstract Cartan subalgebra ) and relate it with a Cartan subalgebra in g. This
follows from the lemma below.

Lemma 3.14. For any Borel subalgebras b, b’ € B, there is a canonical isomorphism
b/[b,b] = b"/[b',b'].

Proof. We know that all Borel subalgebras are conjugate and self-normalizing.
Therefore b’ = Ad(g)b for some g € G. The isomorphism can be given by Ad(g),
as Ad(g)[b,b] = [Ad(g)b,Ad(g)b] = [b',b']. If we let ¢' = gb for some b € B,
we get a new map Ad(g’) : b - b’. This new map is the same on the quotients
b/[b,b] = b'/[b',b'] as one induced by g since the adjoint action of B on b/[b,b] is
trivial. Therefore, all quotients b/[b,b] are canonically isomorphic. O

Definition 3.15 (Abstract Cartan subalgebras). We identify all quotient spaces
b/[b,b], for all Borel subalgebras b by means of the canonical isomorphism of
Lemma 3.14, and call the resulting vector space §) the abstract Cartan subalge-
bra.

We would like to give a root system to the abstract Cartan subalgebra §3.

Construction 3.16 (Root system on §)). Choose a Cartan subalgebra h c g. The
weights of the adjoint h-action on g form a set R of roots in h* (c.f. 3.9). Using
the Killing form x (c.f. Proposition 7.18) as the inner product, we define the set
of coroots RY c . Thus, we obtain a root system, Ry y in h. However, this root
system does not have a preferred set of simple roots. To get the latter, we choose
a Borel subalgebra b o b, and take the weights of the adjoint h-action on b to be
positive roots. This specifies the set S = Sy ¢ Ry of simple roots. Consider the
composition of natural maps

(3.17) h—b—>b/[b,b] =29,
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which gives an isomorphism of the Cartan subalgebra h with the abstract Cartan
subalgebra $). Transferring the root system (Rgy,Sp) to (R,S) in $ via the iso-
morphism in (3.17). As a consequence, (3.17) (which depends on the choice of b)
gives an isomorphism of root systems

(318) (h?Rgvh7SQ) (Sj?RvS)
Observe that we have the following diagram for any w € Wy, Lie(T') = b:

(3.17),2

Ad(w)
h ——b

b/[6,6] 22 v /167, 07],

where the vertical arrows are the isomorphisms in (3.17). By identifying b’/[6,6']
with $ via the bottom arrow, we have a natural action of Wz on $). It follows
that Wpr @ W as groups, where W is the abstract Weyl group associated to the
root system ($, R,S). So far, the construction depends on the choice of a Borel
subalgebra b o h as well as the Cartan subalgebra b.

We now introduce the notion of the relative position of two Borel subalgebras of
g. We need a lemma.

Lemma 3.19. Given two Borel subalgebras b, b’ c g. There exists a Cartan subal-
gebra hcbnb'

Proof. This is Lemma 3.20. of [7]. O

Let W be the Weyl group of (g,h). Let b and b’ be two Borel subalgebras,
and pick a Cartan subalgebra h contained in their intersection. There is a unique
element w € W such that b’ = Ad(w)b (c.f. Lemma 3.7). Let w(b,b") ¢ W be
the element of the abstract Weyl group corresponding to w under the isomorphism
W =W induced by (3.17).

Lemma 3.20 (See [2]). The element w(b,b") € W is independent of the choice of
the Cartan subalgebra h.

Definition 3.21. Two Borel subalgebras b, b’ are said to be in relative position
weW if w(b,b") = w.

We are now ready to state the main theorem of this subsection.

Theorem 3.22. Two pairs of Borel subalgebras (by,b]) and (bs, b)) are in the
same relative position w € W if and only if the points (by,b]) € Bx B and (b, b5) €
B x B belong to the same G-orbit under the G-action on B x B. In other words, the
assignment (b, b") —» w(b,b") give a canonical bijection

{G-diagonal orbits on B x B} = W

Proof. We only show the “only if” direction. Choose a Borel subalgebra b and let
T be the maximal torus corresponding to a Cartan subalgebra h c b. Let w e Wrp.
Identify w € Wr with an element of W given by b. Then b and Ad(w)b are in
relative position w € W. It suffices to show that each G-orbit on B x B contains a
single point of the form (b, Ad(w)b), w € Wp. We observe that this follows directly
from the Bruhat decomposition. More precisely, the last bijection of (3.5) provides
what we want. (]
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3.2. Chevelley Restriction Theorem.

Definition 3.23. Let g:={(x,b) egxB:xeb},let p:g—>gand 7:§— B be the
first and the second projection, respectively.

Recall the definition of vector bundles and associated bundles (see Appendix),
we have the following.

Proposition 3.24. The projection 7 : g — B makes g a G-equivariant vector
bundle over B = G/B with fiber b. Here G-action on g is give explicitly by sending
g-(x,b) to (gzg™, Ad(g)b) for any g € G and (x,b) € g. The assignment (g,z) -
(Ad(g)z, Ad(g)b) = (Ad(g)z, g-eB) gives a G-equivariant isomorphism Gxp5b = §.
Here G xp b — B is a G-equivariant vector bundle by Corollary 7.17

Proposition 3.25. The morphism p: g — g is proper with respect to the Zariski
topology.

Proof. The morphism p is the restriction of the first projection g x B — g, which is
proper as B is a projective variety (and hence quasi-compact). O

Definition 3.26. For a general semisimple Lie algebra g, we defineamap v:g -
as the projection

(z,6) » 2 mod [b,b] €b/[b,b] = $.

Set g°" := u(g°"), the preimage of regular semisimple elements. We have the
following.

Proposition 3.27. For any x € g°", there is a canonical free W-action on p~!(x)
making the projection g°" — g°” a principal W-bundle.

Proof. This is Proposition 3.1.36 of [2]. O

Let C[g] be the polynomial functions on g, and let C[g]® be the subalgebra
of G-invariant polynomials with respect to the adjoint action. Given a Cartan
subalgebra h c g, we have the restriction map C[g] — C[h]. Let W be the Weyl
group for the pair (g,b), we have C[g]® - C[h]". We are now ready to state and
prove the Chevalley restriction theorem, which asserts that the above map is an
isomorphism of algebras.

Theorem 3.28. For any Cartan subalgebra h c g, the restriction map gives a
canonical graded algebra isomorphism

(3.29) Cla]¢ 5 C[p]".

Proof. We first prove the easy part: the restriction map is injective. Let P € C[g]%
be such that P|y = 0. Then P|gsr = 0 because of (1) in Lemma 2.11. But this implies
P =0 as g° is dense in g.

We now prove surjectivity. Fix a W-invariant polynomial P on h, our goal is
to construct a G-invariant polynomial R on g which restricts to P. To that end,
we choose a Borel subalgebra b containing the fixed Cartan subalgebra h. Via the
isomorphism in (3.17), we identify b with $ and C[H]" with C[$]". Therefore we
may canonically identify P with Py € C[$H]%.
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Recall the maps defined at the beginning of this subsection:

9/ \‘55-

Let P :=v* Py € O(g) be the pullback of Py along v:§ — $, i.e., P(z) = Py (v(z))
for all 2 € §. We claim that P is G-invariant regular function. Indeed, we had a G-
equivariant isomorphism g 2 G xp b and thus v can be identified as Gxgb — b/[b, b]
sending (g,z) to x mod [b, b]. In particular, we observe that all points in a G-orbit
in the associated bundle G x5 b are sent to the same point in $ = b/[b, b]. It follows
that P is G-invariant.

We next claim that the restriction of P to the Zariski open subset §° := = (g°")
is a W-invariant rational function, i.e., P gor € (C(@S’")W. Indeed, there is a canonical
W-action on g°" by the previous proposition. Furthermore, the map v commutes
with W-action and Py is invariant under W action. The claim follows.

Recall that a morphism X - X of normal algebraic varieties is said to be a
Galois covering if it is a quotient map by the free action of a finite group W.
There is a general fact that C(X)/C(X) is a Galois extension of fields of rational
functions with Galois group W. In particular, we see that p: g°" — g°" is a Galois
covering with Galois group the abstract Weyl group W. It follows that the induced

inclusion p* : C(g®") - C(§°") gives rise to an isomorphism C(g*") = C(g*" )W, for
which we also call p*. Therefore we find a rational function R € C(g*") such that
p*(R) = Plger.

We claim that the rational function R is a polynomial on g which is G-invariant.
To see this, we observe that p is G-equivariant and P is G-invariant. For any
relatively compact set D c g (in the sense of Zariski topology), D ng®" is relatively
compact since p is proper. The function R|pngs = 15|#_1(Dngsr) = Py o V|,-1(pnger)
is bounded as v(u~'(Dng®")) is contained in a compact set and Py, is a polynomial.
Therefore, R has no pole away from a hypersurface g \ g°" (c.f. Proposition 7.22)
and is locally bounded on relatively compact subsets of g*". It cannot have a pole
on the hypersurface, because if otherwise, one can find a convergent sequence in
g°" to the pole on which R admits bounded values, a contradiction! Thus R is a
polynomial on g which is G-invariant. It remains to check that R is as desired,
which is a routine verification. (]

3.3. Grothendieck’s Simultaneous Resolution. The W-vector space ) induces
the topological orbit space $/W under the quotient topology. We have by Propo-
sition 7.26 in the Appendix an isomorphism of algebraic varieties:

Specm(C[H]V) = H/W.

By a general fact, called the Chevalley-Shephard-Todd theorem, C[$]" is a free
polynomial algebra. It follows that £/W is isomorphic to some affine space.

Now given a pair (h,b) of a Cartan and a Borel subalgebra such that h c b,

we have a diagram of map g < b G0, b/[b,b] = $, which induces a diagram of

isomorphisms by Chevalley restriction theorem 3.28:

Clg]? - C[h]" <« C[H]".
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Observe that the map C[$]" = C[g]¢ — C[g] is given precisely by a morphism of
affine varieties p: g — $H/W.

Proposition 3.30. The following diagram
g

g / \ 5
N A

called Grothendieck’s simultaneous resolution (or the Springer diagram), is com-
mutative.

Proof. By Proposition 7.26 in the Appendix, we know that W-invariant poloyno-
mials on ) separate points of $/W. It suffices to show the following diagram of

algebras commutes:
O(g)
/ \
p*

O(g) = C[G]\ /O(b) = C[b]
O(H/W) =C[H]™. ’

Let P e O(H/W)=C[H]V. Then v* o 7*(P) = u*(R) for a polynomial C[g]“ by
the course of proof of Theorem 3.28. Furthermore, by the definition of p*, we have
p*(P) = R, so the diagram above commutes. O

3.4. Example: The SL,(C) Case. We will give an explicit construction for the
Springer diagram in Proposition 3.30 in the case of G = SL,(C).

Consider the variety C"/S,,, the orbit space of the symmetric group S, acting
on the vector space C" by permutation of coordinates. We have the following
identification.

Lemma 3.31. The orbit space C"/S,, is isomorphic to C[A],,—1, the n-dimensional
vector space of polynomials over C in A with degree less than or equal to n — 1.

Proof. Consider the map
(3.32) Y:C" > C[A]no1 2C", (21,..5@p) > = A"+ [ [N - 2).
i=1
The map descends to a bijection C"/S,, 2 C[A],-1 2 C™. ]

Consider the (n - 1)-dimensional hyperplane of C™:
H:={(z1,...,2,) €C": Y x; =0} c C",
which is clearly stable under the action of S,,. We may view H as the diago-
nal matrices in sl,(C), which is a Cartan subalgebra. And S,, is the Weyl group
of SL,(C). Notice that C[H]" = C[H]®" is generated by elementary symmet-
ric polynomials. Under the isomorphism C[H]" = C[sl,(C)]¥*»(©) in Chevalley
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restriction theorem 3.28, the elementary symmetric polynomials pull back to the
coefficients of the characteristic polynomial. Concretely, for any = € sl,(C), its
characteristic polynomial x,(t) is given by

Xe(A) = A" +0- A1 +pi(z)- A2 4 +pn-1(x), pi(z) e (C[E[n((C)]SL"(C),

where p;| are precisely the elementary symmetric polynomial in C[H]%*. In par-
ticular we have C[sl,(C)]%*(©) = C[py,...,pn_1]. Therefore, we have a map
p sl (C) - C* ! given by x = (pi(2),...,pn_1(x)). Under the identification
in (3.32) upon fixing a basis (\"™!,...,\,1) in C[A],-1 and viewing C""! as a hy-
perplane in C[\],-1 by ignoring the first coordiante, we have a map sending each
element of s, (C) to its eigenvalues, counted with multiplicities:

p:sl,(C) > H/S, cC"
xw{x1,...,2,}, x; are eigenvalues of z.

Recall that in Proposition 2.8, we have shown a natural identification of B in the
case of G = SL,(C) with the flag variety F(C™). Therefore, the incidence variety
is given by

§:= {(2, F) esly x F(C") : o Fy) < F, Vi),

where F' = (0 = Fy c Fy c ---F,, = C™) stands for a complete flag in C™. We construct
a map v : g - H which would be thought of as assigning (z, F') € g to an ordered
tuple of eigenvalues (counted with multiplicities) of x € sl,,(C). More precisely,
assigning to any (z, F') € sl,(C) the ordered tuple (x1,...,2,) € C*, where z; is
the scalar associated to the linear operator x : F;/F;_; — F;/F;_; of a 1-dimensional
vector space. Observe that v(g) c H.

Finally, define p: g — sl,(C) to be the first projection (z,F) — z and 7 : H —
H/S,, the natural projection. We have the following

Corollary 3.33. The following diagram commutes:
H

S

>,

sl (C)

4. SYMPLECTIC GEOMETRY

Let X be a C*°-manifold over R (resp. smooth holomorphic, or algebraic variety
over C). Let O(X) denote the algebra of C*° (holomorphic, algebraic regular)
functions on X, and call it the algebra of regular functions on X. Although we will
be mainly working on differential manifolds in this section, most of the results also
hold in the category of algebraic varieties.

4.1. Examples of Symplectic Structures.

Definition 4.1. A symplectic structure on X is a non-degenerate regular 2-form
w such that dw = 0.
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Example 4.2. Let X = C?" with coordinates qi,...,¢n,P1,---,Pn. Then the 2-
form w = ¥ dp; A dg; gives X an symplectic structure. Indeed, dw = ¥; ddp; A
dqi - dpi A ddql =0.

We shall explain two fundamental examples of symplectic structures in the fol-
lowing propositions.

Proposition 4.3. Let M be any manifold. Then the cotangent bundle T* M = X
has a canonical symplectic structure.

Proof. Our goal is to construct a 1-form A on T* M and define the symplectic
structure to be w = d\, which is automatically a closed form. For any fixed x € M
and o € T; M, we have a surjective linear map () @ T(g,a) (T" M) — T, M
induced from the standard projection m: T* M — M. Let £ € T(, o) (T M) be a
tangent vector to the cotangent bundle at (z,«). Then we define the 1-form A on
T M by stipulating its evaluation of £ at (z,a) to be g (7(4,0)€)-

To see that w is non-degenerate, we examine its local expression explicitly. Let
(q1,--.,qn) be local coordinates on M around z, and (pi,...,p,) the additional
dual coordinates in T* M around « € T, M. The tangent vector £ € T, o) (T* M)

has the form £ = Y7, bia%- +Y0 Cia%- for some b;, c; € C. The tangent map of the

standard projection 7 sends & to ¥i-, bia%, in T, M. It follows that

)‘(m,a)(g) = Oéw(ﬂ'(z’a)é) -G (Z Cia i ) ) (Zpl(a)dqlv Z Cia— = sz(a)c'u
i=1 q; i=1 i=1 iz1

i
where (—,-) is the natural evaluation pairing T, M x T, M — C. Therefore, we

conclude that in this local coordinate, A = ¥, p; dg; and thus by constructiion
w:=d\ = Y. dp; Adg; is non-degenerate. ]

Definition 4.4. Let G be a Lie group with Lie algebra g and g* := Homg¢ (g, C),
the dual of g. The adjoint G-action on g gives rise to the coadjoint G-action on
g*, to be denoted by Ad*. Explicitly, for any f € g*, z € g and g € G, one has
(Ad*(9)(f), ) = (f,Ad(g7')x), where (—,-) : g* x g — C is the evaluation pairing.
Moreover, differentiating the coadjoint action map Ad* : G — GL(g*) at g = e, we
obtain a g-action, ad® : g — gl(g*), on g*.

We first recall the following standard fact from Lie theory (c.f. Section 20 of [0]):

Fact 4.1. Let ¢ : G - Diff(M) be a smooth action, m € M, then
(1) The orbit G-m is an immersed submanifold of M, and its tangent space at
m is
T (G-m) ={&x(m): X eg}.
(2) The stabilizer subgroup (isotropy group) G,, of m is a closed Lie subgroup
of G, with Lie algebra
gm ={X €eg:&{x(m) =0},
Here £x : M — T M is the vector field generated by X € g. Explicitly, {x(m) =

%hzo exp(-tX)-m e T,, M. Note that the minus sign here makes sure the infini-
tesimal G-action

g — Vect(M) := {Vector fields on M}, X~ &x

is a Lie algebra homomorphism.
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Proposition 4.5. Any coadjoint orbit @ c g* has a natural symplectic structure.

Proof. Fix an arbitrary o € @ c g*, we have an injective immersion G/G* < g*
with image @, where G* is the isotropy group of «. Stipulating G/G* = O gives
O a manifold structure. Therefore T, O = T, (G/G®) = g/g", where Lie(G*) = g*.
We define a skew symmetric 2-form on T, O = g/g® by first defining such a form
on g:

wa:gxg—>C, (z,9)+ a([z,y]).

One observes that wq(z,y) =0 for any y € g and x € g*. Indeed, by fact 4.1, one
has

0= (Sheoexp(-t2) ) () = @ o Adexp(~t2) ™ +y) = @ (ad(2)y) = wal 1),

Then w, descends to a non-degenerate form on g/g®. Whence the assignment
a > w, gives a regular 2-form w on Q. It remains to show that w is closed. We
direct the reader to the calculation in the proof of Proposition 1.1.5 of [2], which
utilizes Cartan’s formula for exterior differentials. That finishes the proof. O

4.2. Poisson Structures on O(M). Let A be a commutative, associative unital
C-algebra with multiplication -: A x A - A.

Definition 4.6. A commutative algebra (A,-) endowed with an additional C-
bilinear anti-symmetric bracket {-,-} : A x A - A is called a Poisson algebra
if the following conditions hold:

(1) A is a Lie algebra with respect to {-,-};

(2) Leibniz rule: {a,b-c}={a,b}-c+b-{a,c} for any a,b,ce A.
The Lie bracket {—, -} will be called a Poisson bracket on A. The bracket gives a
Poisson structure on the commutative algebra (A,-).

Construction 4.7. Let (M,w) be a symplectic manifold. The non-degenerate 2-
form w gives a canonical identification T M = T* M. Define a unique C-linear map
O(M) - Vect(M) := {Vector fields on M}, f = ¢, by requiring w(—,&s) = df, i.e.,
—df = i¢,w, where i: Q°(M) - Q*"'(M) is the internel contraction. In particular,
for any vector field n, w(n,&¢) = df(n) = n(f). We define a bracket on O(M) by
the following equivalent expressions

(4.8) {19} =w(&r,89) = €5(9) = =&4(f), for any f,g € O(M).

Definition 4.9. A vector field £ on a symplectic manifold (M,w) is called symplec-
tic if it preserves the symplectic form, i.e., L¢(w) = 0, where L is the Lie derivative
with respect to €. The collection of symplectic vector fields on (M,w) is denoted
by Vect®?(M).

We will show that the C-algebra of regular functions (O(M),-) together with
the bracket {—, -} defined in (4.8) is a Poisson structure. To that end, we will first
prove the following proposition.

Proposition 4.10. For any f € O(M), {; is a symplectic vector field, i.e., L¢, (w) =
0. Furthermore, we have a Lie bracket preserving map

(O(M),{-,-}) — (Vect™(M),[-,=]), [r¢&
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Proof. We notice that symplectic vector fields are closed under brackets: L[x yjw =
LxLyw-LyLxw =0, where X,Y € Vect®’(M). The first assertion follows from
Cartan’s magic formula and that w is a closed form. To verify the second assertion,
we need to show for any f,g € O(M), [£,&y] = &(7,43- Recall that in general, for

X € Vect(M) and a € Q¥(M), one has
k
(ﬁxa)(Xl,...,Xk):X(Oé(X]_,...,Xk))—za(Xl,...7Xi_1,[X,XZ'],XZ'_,_:[,...,X/C),
i=1

7

where X; € Vect(M). In particular, we have for any 7 € Vect(M),
§r (w(€g,m) = (Le;w) (&g m)+w (5,80, m+w (&, [€7,1]) = w([E5, 60 m)+w (&g, [€75 1),

where the second equality follows from the first assertion. Rephrasing the above
equation using the definition of £; (resp. &;), we obtain

=6n(g) = &5 (W(&g:m)) = w([&5,€g1sm) - [€5,1](9)
=w([&r:&0]:m) —&mlg) +n8s(9)
=w([&r.891sm) —&pn(g) +n({f.9})
=w([&r,&g1m) = &pn(g) +w (. §ir.g1)-
The latter equality holds for all 7, we conclude that s gy = [§7,&]- O

We are now ready to prove the main theorem of this subsection.

Theorem 4.11. The algebra O(M) of regular functions (with pointwise multipli-
cation) on a symplectic manifold (M,w) together with {, } is a Poisson algebra.

Proof. The Jacobi identity holds for {, } because for any f,g,h e O(M)

Prop.4.10

{{fag}vh}zf{f,g}h === [§f,§g]h={f,{g,h}}—{g,{f,h}}-

The Leibniz rule follows immediately from the Leibniz rule for vector fields:

(]

4.3. Isotropic, Coisotropic and Lagrangian subvarieties. We need more def-
initions.
Notation 4.12. Let (V,w) be a symplectic vector space. Given a vector subspace

W, we let Wt :={veV :w(v,u) =0 for all u e W}, to be distinguished from W+,
the annihilator of W in V'*.

Definition 4.13. Given (V,w) a symplectic vector space. A linear subspace W c V
is called

(1) Isotropic if w|w =0, equivalently W c Wt

(2) Coisotropic if W« is isotropic, equivalently, W+~ c W;

(3) Lagrangian if W is both isotropic and coisotropic, i.e., W = W,

Definition 4.14. A (possibly singular) subvariety Z of a symplectic manifold M
is called an isotropic (resp. coisotropic, lagrangian) subvariety of M, if for any
smooth point z € Z, T, Z is an isotropic (resp. coisotropic, lagrangian) subspace of
T, M.
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Definition 4.15 (Conormal bundles). Let X be a manifold. Given a submanifold
Y c X, define T X, the conormal bundle of Y, to be the set of all covectors over
Y which annihilate the subbundle TY c T X. Explicitly,

Ty X = {(y,oy) € (T" X)ly :  (T,)Y) = 0}
In particular, we have a natural diagram
(T* X)|y o Ty X » Y.

Proposition 4.16. The total space of the conormal bundle T3 X is a Lagrangian
submanifold of T* X stable under dilations along the fibers of T* X.

Proof. This is Proposition 1.3.26 of [2]. O

4.4. Moment Maps. Let (M,w) be a symplectic manifold. Suppose that a Lie
group G acts smoothly on M, preserving the symplectic form, that is wy,(z,y) =
w(g-z,g-y) for all z,y e T, M, pe M and g € G. In other words, for any g € G, the
diffeomorphism g : M — M is a symplectomorphism (such a notion is an analogue
of isometry in the setting of Riemannian manifolds), i.e., g*w = w. The infinitesimal
G-action on M gives a Lie algebra homomorphism (c.f. Fact 4.1)

g:= Lie(G) — Vect*?(M), X~ <Ex.

Indeed, this map make sense because L, (w)|, = %h:oﬁw, where ¢¢(m) = exp(-tX)-
m, and ¢;w = w.

Theorem 4.10 gives us a Lie algebra homomorphism O(M) — Vect®?(M). We
now state a key definition.

Definition 4.17. A symplectic G-action on (M,w) is said to be Hamiltonian if
a Lie algebra homomorphism H : g - O(M), x — H, is given so that we have a
lifting of Lie algebra homomorphisms:

Vect®? (M)

PN

. > O(M).

In the case of a Hamiltonian G-action, we fix the map H : g - O(M) once and for
all and refer to it as the Hamiltonian. The moment map pu: M — g* is defined by
u(m)(x) := Hy(m) for any x € g and m € M.

Given a diffeomorphism f: X — X, we have a pullback lift

.f* (TP X - T7 Xa (I',Ch) = (f(‘r)a (fil)*odf(a:)) = (f(fE),Oéz © df(a:)fil)'

It is a routine to verify that f*\ = X for the canonical one-form A on T* X, and hence
f*w =w. Therefore, given a G-action on X, one obtains a G-action on T* X which
is symplectic. We will show in Proposition 4.20 that any manifold with a smooth
Lie group G-action gives its cotangent bundle a natural Hamiltonian G-action.

We start by discussing a few lemmas related to the canonical symplectic structure
on the cotangent bundle of an arbitrary smooth manifold. With the canonical
symplectic structure on T* X, one can associate h € O(T* X) with a vector field
&n € Vect(T* X). In particular, let u be a vector field on X, we can associate it
with a regular function h, € O(T* X) on the cotangent bundle, which assigns every

(z,az) € Ti X to a,(ug). Therefore, we have in particular a vector field &, on the
cotangent bundle.
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Let m be the standard projection 7 : T* X — X. Denote @ to be the induced
vector field on the cotangent bundle of X along 7, whose construction can be made
explicitly as follows. Let H : 2 - X be a local flow whose infinitesimal generator
is u. Here Q is a neighborhood of {0} x X ¢ R x X with the property that
meets every line R x {p} in an interval Q, x {p}. We define H : Q@ - T* X to be
H(t, (p,a)) := (Hy(p), ao(dp,(pH;t)), where Q meets every line Rx{(p, o € T, X)}
in Q, x {(p,a)}. Tt is routine to check that H defines a local flow on the cotangent
bundle over X, whence its infinitesimal generator is the vector field 4. In particular,
for any (z,a) € T* M, we have d(; o) (li(z,0)) = Ua-

Our goal is to clarify the relationship between objects u, @ and h,, defined above.
To that end, we need a lemma.

Lemma 4.18. For any vector field v on X, the induced vector field @ is a symplectic
vector field on T* X.

Proof. Recall that the symplectic structure w on T* X is given by a canonical 1-
form A (c.f. Proposition 4.3). Observe that Lz\|(z,q) = %h:oHt*M(z,a) = %|t:0)\ =0
by a routine calculation. It follows that Lzw = LzdA = dLz )\ =0 as desired. [l

Proposition 4.19. With the notation introduced in the previous paragraphs, we
have @ = &, € Vect(T* X), and hy, = A(@).

Proof. By Cartan’s magic formula and the lemma above, 0 = L3\ = igw +digA. Let
h=1ig\ € O(T* X), the preceeding statement implies w(—, %) = dh. Then &, = u. It
is enough to show h, =h = A(@). To this end, we observe that

h(z,a) = M@) (7, ) = T (2,0)U(z,0)) = @(tz) = hy(z, ).
The proposition follows. O

Proposition 4.20. For any G-manifold X, the G-action on T* X is always Hamil-
tonian with Hamiltonian

@ Hy = Miy) € O(T* X),

where A is the canonical 1-form on T* X, u, is the vector field on X given by
infinitesimal g-action of = € g and 4, is the induced vector field on the cotangent
bundle. Such a Hamiltonian gives rise to a moment map.

Corollary 4.21. Let G be a Lie group and P c¢ G a closed Lie subgroup. Let
p := Lie(P) and write p* for the annihilator of p in g*. By Proposition 4.20, the left
G-action on G/P induces a Hamiltonian G-action on T*(G/P). The latter gives
rise to the moment map

p:T*(G/P) — g".

We now proceed to give an explicit description of this moment map. To this
end, we first describe the cotangent bundle T*(G/P), which will be very useful in
the future.

Lemma 4.22. There is a natural G-equivariant isomorphism
(4.23) T*(G/P) =2 G xpp*,

where P acts on p* by the coadjoint action.
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Proof. We recall that G xp p* is the associated vector bundle to the principal P-
bundle G - G/P (see Definition 7.10 in the Appendix, despite that we are in
the smooth category). Now consider G-action on the homogeneous space G/P.
The stabilizer of the point gP € G/P is the subgroup gPg~!, whose Lie algebra is
precisely Ad(g)p. The bundle map G — G/P decomposes into the following;:

(4.24) G- GJgPg™' 5 G/P,

where the second map is given by the Orbit-stabilizer theorem (and the quotient
manifold theorem). Taking differentials at e € G yields a chain of linear maps
between tangent spaces:

(4.25) g — o/ Ad(g)p > T,p(G/P).
We define a bundle morphism
¢:Gxpg/p— T(G/P), [g,v]— (9P, Ad(g)v).

This is independent of the choice of v € g by the identification in (4.25). Note that

(gpP, Ad(gp) Ad(p~t)v) = (gP,Ad(g)v), the map is well-defined. It is an isomor-

Ad(g),= 25,2
phism because on each fiber over gP, ¢ coincides with g/p Adl9)2 g/ Ad(g)p L2

T,p(G/P), an isomorphism of vector spaces. Since (g/p)* =p* c g*, we obtain an
isomorphism of vector bundles G xp p* — T*(G/P). O

Proposition 4.26. Under the isomorphism
Gxpp* =T (G/P),

the moment map p: T*(G/P) — g* is given explicitly by [g,a] — Ad*(g)« for any
geG, aept.
Proof. Recall that the moment map sends [g,a] to the linear functional pu(g,a) :
g - C given by z » H,(g,a), = € g, where H, is the Hamiltonian for x. Write u,
and 1, the induced vector fields on G/P and T*(G/P) as before. We have

,u(g,a)(x) = A[g,a] ('&m) = )‘(gP,Ad*(g)a)(ﬂz) = (Ad*(g)a) (x)v

as we want. O

In particular, in the algebraic group setting, we have the following (c.f. Example
7.17)

Corollary 4.27. Let G be a connected semisimple algebraic group and B c G a
Borel subgroup with Lie algebra b. Then there is a G-equivariant isomorphism

(4.28) T*(G/B)2Gxgn, n=][b,b],
where we identify bt with n via g = g* (c.f. Proposition 7.18), the isomorphism

induced from the Killing form x : g x g - C, x(z,y) := tr(adz o ady), which is
nondegenerate when g is semisimple.

Finally, we state a theorem which will play an important role in the discussion
of the Steinberg variety.

Theorem 4.29 (c.f. Theorem 1.5.7 of [2]). Let A be a solvable algebraic group
with a Hamiltonian action on a symplectic algebraic variety M. Let a := Lie(A)
and let p be the moment map

w:M —a*.
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Then for any coadjoint orbit @ c a*, the set ;=1 (Q) is either empty or is a coisotropy
subvariety of M.
5. NILPOTENT CONES
Definition 5.1. The set of nilpotent elements, denoted by
N :={z € g:x is nilpotent }
is a closed, G-stable cone subvariety (i.e., invariant under C*-dilations) of g.
The projection u : g — g give rise to a subvariety of the source:
N=p ' (W) = {(z,b) e N xB:zeb}.

Observe that the fiber over b of the second projection  : N'— B is the nilradical
n := [b,b] of b, by the Jordan decomposition. This projection makes N into a
vector bundle over B with fiber n. Furthermore, since any nilpotent element of g is
G-conjugate into n, we get a G-equivariant vector bundle isomorphism:

N=p ' (N)2Gxpn,

where B is such that Lie(B) = b. In particular, N is a smooth variety as a vector
bundle of a smooth variety B, while A itself is singular at the origin as it is a cone
variety (but not a vector space).

Lemma 5.2. There is a natural G-equivariant vector bundle isomorphism
N=T*B.
Proof. By Corollary 4.27, we have an identification
T*B=T*(G/B)2Gxpb*2Gxpnz N,

from which the Lemma follows. O

Corollary 5.3. The projection p: T* B = N = N is the moment map with respect
to the Hamiltonian G-action on T* B arising form the G-action on B. Furthermore,
this moment map is surjective.

Proof. The first assertion follows from Proposition 4.26. The second assertion is
true because any nilpotent element is contained in a Borel subalgebra. (]

Example 5.4. Let g = sl5(C), the nilpotent cone A is isomorphic to a quadratic
cone in C3,

(5.5) N = {m = (CCL _ba) € 5l5(C) : det(x) = —a® - bc = O},

and N is a line bundle over P! = BB, given explicitly by (c.f. Example 3.11)
7:N - B=SLy(C)/B=B/BuBsB/B=P' = F(C?)
(n,b) — b.

Indeed, consider the following diagram:

N%N\#JB.
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Every point b € B = P! corresponds to a line £ € C2, which is preserved by b-action
(c.f. Proposition 2.8). The fiber of b along 7w can be identified naturally as the
collection of nilpotent matrices in slo(C), which preserve £, or equivalently, the
collection of nilpotent operators with image contained in ¢. Such operators form a
line in /. Thus, points in B correspond to lines in N. These lines are depicted in
the picture.

7
~

FIGURE 1. The nilpotent cone of sly(C).

A point of NV is represented by a pair (n,b) where b corresponds to a line on the
picture and n is a point on the line.

We would like to give an intrinsic characterization of nilpotent elements in g*,
even though one can require that elements in g* are nilpotent if and only if it is so
in g under the G-equivariant identification g* = g given by the Killing form. The
idea generalizes the classical result saying that an n xn-matrix A is nilpotent if and
only if det(A - A) = \™.

Proposition 5.6. Let C[g]$ denote the set of G-invariant polynomials on g with-
out constant term. An element z € g is nilpotent if and only if for every P € C[g]¥,
we have P(z) =0.

Remark 5.7. This proposition shows that nilpotent elements in g* defined using
the Killing form are the same as the following intrinsic definition: An element \ € g*
is nilpotent if and only if any G-invariant polynomial on g* without constant term
vanishes at .

Proof of Proposition 5.6. We adopt the notations in the Springer diagram (3.30).
Let p:g - H/W and 7 : $ > H/W as in the Springer diagram. Since we have
p* : C[H]W 5 C[g]¢ = Clg] by construction, proving the statement amounts to
show that

(5.8) p1(0) = N.

Indeed, {0} c $/W corresponds to the ideal C[g]¢ = C[$]Y. The fiber of {0} in g
corresponds to the vanishing locus of the ideal generated by C[g]¢ in C[g]. The
verification of (5.8) is (3.2.7) of [2]

]



AN INTRODUCTION TO THE STEINBERG VARIETY 23

Corollary 5.9. We have an extension of the Springer diagram in Proposition 3.30,
i.e., the diagram

LTI,
N A

N

{0} ————— H/W
is commutative.

Corollary 5.10. The nilpotent cone N is an irreducible variety of dimension
2dimn.

Proof. Since the cotangent bundle T* B is smooth and connected because the base
space is so, it is irreducible. Surjectivity of the moment map p: T* B - N implies
that A is irreducible and dim N < dim T B = 2dim B = 2dimn. On the other hand,
the extended Springer diagram (5.9) illustrates that the nilpotent cone N is the
zero fiber of the algebraic morphism p: g — $/W. By the fiber dimension theorem
in algebraic varieties, we have

dim(fiber) > dim g - dim($)/W = dim g — rkg = 2dimn.
Therefore, the statement follows. ([

Proposition 5.11. The number of nilpotent conjugacy classes (G-orbits) of g is
finite.

Proof. We postpone the argument to Corollary 6.16. O

Proposition 5.12. The regular nilpotent elements form a single Zariski-open,
dense conjugacy class in N.

Proof. Since N is irreducible and is the union of finitely many G-orbits, it contains
a unique open dense conjugacy class O by Corollary 7.24. Then dimN = dimQ =
dim G-dim Zg(z) for any z € Q. Hence dim Z(x) = dim G-dim N = dim g-2dimn =
rkg, which implies x is regular. For other orbits, which are contained in O\ @ have
dimension strictly less than dimQ = dimA. A similar argument shows that = ¢ O
cannot be regular. ([

Example 5.13. In sl,(C), there is only one regular nilpotent element, and it has
the form

01 0 0
N 0
- . 1 9
0
and its centralizer is the linear span of the matrices (z,22,...,2" ') which has

dimension n — 1 = rk s[,,(C).

One can show that the Springer resolution  : N = N is indeed a resolution of
singularities. More precisely, p is an isomorphism over the open dense subset O
consisting of regular nilpotent elements. We refer readers to Proposition 3.2.14 of

[2]-
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6. THE STEINBERG VARIETY

We are now ready to introduce an important notion in geometric representation
theory, which is closely related to the representation of Weyl groups (c.f. [2]).

Definition 6.1. Let i : J\:/ — N be the Springer resolution. The following subva-
riety in the product N x N is called the Steinberg variety:
Z =N xy N :={(z,b),(z',6") e N x N :x=z'}.
Observe that Z is isomorphic to the variety of triples:
Z2{(z,0,6")e NxBxB:zebnb'}.
Restricting the Springer diagram to the Steinberg variety, we obtain two maps:
piZ=NxyN->N, (x,0,b)z
72:Z > NxNZ5 BxB.
We will study the interplay of these two maps. Recall that in Lemma 5.2, we have

shown there is a G-equivariant bundle isomorphism T* B 2 /. Combining this with
the isomorphism
T*BxT*B = T*(BxB)
((z,6), (2",6")) = ((z,-2"), (b, ")),
we have a chain of isomorphisms
(6.2) N xy N 2T BxT*B> T (BxB).

This sign convention induces an isomorphism NN 2N xN given by the formula
involving a minus sign

(6.3) ((z,6),(a",0")) = ((2,b), (-2",b)).

The following result provides a geometric interpretation for the Steinberg variety.

Proposition 6.4. The Steinberg variety Z is the union of the conormal bundles
to all G-orbits in B x B, which are parameterized by the Weyl group (c.f. Theorem
3.4).
Proof. For (b1,bs) € Bx B, let a € T(y, ,y(Bx B) be such that a annihilates the
tangent space of the G-orbit in B x B through (by,by). Recall that in the proof of
T"B2GxpnzGxpbtin Lemma 4.22, where n = [b, b] is the nilradical of b, we
have shown an identification

Ty, B=Typ(G/B) = (g/ Ad(g)b,)" = (g/b1)" = by c g,
where b; correspondes to gB and b, = Lie(B). Then

o= (bl,b27$17$2) e BxBx g* Xg*,

where x; € by, and x5 € bs. Note that the tangent space at (bg, bs2) to the G-orbit
through this point consists of points (u,u) € g/b; x g/bs. Let (-, —) denote the
nondegenerate pairing g* x g > C. Then « being annihilated by the tangent space
of the G-orbit is precisely saying

(z1,u) + (x2,u) =0 forallueg.

Equivalently, 1 = —x5 so that « = ((x1,-21), (b1,b2)). This is precisely the Stein-
berg variety under the identification (6.3). O
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Corollary 6.5. Write Y,, for the orbit corresponding to an element w € W in
the abstract Weyl group W. The Bruhat decomposition asserts that G\(B x B) =
Uwew Y- Then
(1) Z =uyew Ty, (B x B).
(2) Trreducible components of Z are parameterized by elements of W. Every
irreducible component is the closure of Ty, (BxB) for a uniquely determined
weW.

Proof. Notice that (1) is just a restatement of the above proposition. To see (2),
we observe that for any w ¢ W, Y, is irreducible and smooth as an orbit (c.f.
Proposition 7.23), so the conormal bundle (in particular a vector bundle) Ty, (BxB)
over it is smooth and irreducible. By Proposition 4.16, each Ty. (B x B) is a
Lagrangian subvariety of T*(B x B), it has the same dimension as B x B. Thus
the closure of Ty, (B x B) are irreducible and have the same dimension. It follows
from Proposition 7.4 in the Appendix that the closure of Ty, (BxB) is precisely an
irreducible component of Z. To see that each irreducible component corresponds
to a unique w € W, we assume for contradiction that w; # ws € W are such that
T;wl (BxB) = T;,W (B x B) =:C. Since each conormal bundle T;wi (B x B) is open
in the irreducible subvariety C, they must have a nonempty intersection, which is
a contradiction. O

Fix a Borel subalgebra b c g with nilradical n = [b,b]. The following theorem is
one of the key results of this section.

Theorem 6.6. Let O be a coadjoint orbit in g*. Let x € @ be such that z|, = 0.
Then O n (x +b') is a (possibly singular) Lagrangian subvariety in O with respect
to the natural symplectic structure on coadjoint orbits.

By the identification g* = g using the Killing form, we have the following restate-
ment of the above theorem (c.f. Proposition 7.18).

Theorem 6.7. For any G-adjoint orbit O c g and any x € Onb, the set On (z+n)
is a Lagrangian subvariety in Q.

Proof. Recall that we have defined i : Z — A at the beginning of this section. Given
a nilpotent G-orbit O c N, put Z, = u~*(0) c Z. Let B be a Borel subgroup of G
so that Lie(B) = b. We will only prove the case where x € n is nilpotent.
First, we claim that
dim(Onn) <1/2-dimQ.

Let n = dimn = dimB. Then dimT*B = 2n = dim Z by the Proposition 7.4.
Note that we have a fiber bundle Z, - O with the fiber over z € O equal to
B, x By, where B, is the fiber of the Springer resolution p : N — N, ie., the
collection of b € B containing . We can find a local trivialization on U c O so that
pH(U) 2 U x (B, x B,). Therefore, we have

(6.8) dimQ+2-dimB, = dimU +2-dim B, = dim(x*(U)) < dim Z, < dim Z = 2n.
It follows that
(6.9) dim B, +1/2dim O < n.

Let S={geG:Ad(g)zeb}={geG:xeAd(g7})b}, where z e n c b. Observe that
the left action of B on S induces an isomorphism B\S % B, given by Bg — Ad(g)b
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as B normalizes b. Hence
(6.10) dim S -dim B +1/2-dim O < n.

Note that Onn={Ad(g)z:ge S}. It follows that S/Zg(x) 5 Onn via 9Zc(x) —
Ad(g)z. Thus

(6.11) dim S +dim O - dim G = dim S — dim Zg(z) = dim(OQ nn).
Combining with (6.10), and recall that dim G — dim B = dim B = n, we have
(6.12) dim(0 nn) <1/2-dimO.

The claim follows.

Due to the dimension estimate of the claim, proving the theorem amounts to
showing @ nn is a coisotropic subvariety. Now view O as a symplectic manifold.
More precisely, it is considered as a coadjoint orbit in g* with a Hamiltonian B-
action. The moment map p: O — b* has a factorization

(OX=S g* LA b*7
where the second map is the dualization of the inclusion b c g. Notice that p~(0) =

b =n and x1(0) = O nn. Since {0} is a B-orbit in b* and B is a solvable group.
It follows form Theorem 4.29 that O nn is coisotropic, as desired. O

We now give some corollaries of the theorem above.

Corollary 6.13. For any nilpotent G-orbit O c A/, each irreducible component of
Z, = u~1(Q) c Z has the same dimension dim Z,,, and dim Z, = dim Z = m := 2dimn.

Proof. Denote O := u~*(Q) ¢ N, where here p is the Springer resolution (by an
abuse of notation). Then we obtain Z, = O xg O. We have the following commuta-
tive diagram:

N2T'B+— O
B=G|B N +—— 0.
Observe that 7 restricted to O = G x5 (Onn) is a fiber bundle with fiber @ nn over
G/B. By Theorem 6.7, O nn is Lagrangian. Hence, every irreducible component
contains an open dense subset of smooth points with dimension 1/2-dim@. Then
by Proposition 7.4, we know it is a pure variety with dimension 1/2-dim O and thus

each irreducible component of O has dimension equal to dim(G/B) +1/2 - dim O.
It follows that each irreducible component of Z, has dimension

(6.14) 2dim(0) - dim O = 2dim(G/B) = m.
The corollary follows. O

Remark 6.15. The above corollary implies that the decomposition of the Steinberg
variety
Z=|lZo=|] 1 (0)
OcN OcN
gives a partition of Z into equidimensional locally closed subvarieties of the top
dimension. Hence, the closure of each irreducible component of ~1(Q) is an irre-
ducible component of Z, which is precisely the closure of the total space T;,w (BxB)
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of a conormal bundle for a unique w € W (c.f. Corollary 6.5). By the same argu-
ment in Corollary 6.5, we note that each irreducible component of Z corresponds
to the closure of an irreducible component of a unique nilpotent orbit @ c N.

Corollary 6.16. In particular, the number of nilpotent orbits in g is finite.
Corollary 6.17. All irreducible components of the Springer fiber B, have the same
dimension dim B,, and
(6.18) 1/2-dim O + dim B, = dim B.
Proof. Given z € O, we identify the adjoint orbit Q@ with the quotient G/Zq(x)
where Zg(x) is the centralizer of z in G. Note that Zg(x) acts on the Borel
subalgebras B, containing x, we have an G-equivariant isomorphism
G > z4(x) B = O =7 (0),  (g,b) = (Ad(g)x, Ad(g)b).
From this, we deduce that
Zo = O X@O = GXZ(;(J) (Br X Bw) .

Hence irreducible component of Z, is of the form G xz, () (B1 x B2), where By, By
are irreducible component of B,. It follows that
(6.19) dim O + dim By + dim By = dim Z, = 2dim B.
In particular, taking By = Bs yields the desired statement. O

We conclude this section by giving a concrete example.

Example 6.20. Let G = SL,(C) and O c sl,,(C) the variety of rank 1 nilpotent
matrices. It is a standard fact in linear algebra that every rank 1 matrix A can be
written in the form

(a;j)=A= a-fB, where a=(ay,...,an),8=B1,...,0n)"
In particular, a;; = a;3;. It follows that
(6.21) 0= {(az‘j) €sl,(C): aij = a;fj, Zaiﬁi =0}.

Let n c s1,,(C) be the Lie subalgebra of upper triangular matrices. We consider the
variety @ nn. Observe that for A = - 8% € @ nn, one must have

Oz:(Oél,...,O{k,O,...,O),
B:(O7"'a07ﬂk+l7'~-aﬁn)7 1<k<n-1.

Irreducible components of the variety are parameterized by k above. Notice that
each of these components has dimension n — 1, which is half of dim O = 2n - 2.

7. APPENDIX

7.1. C*-actions on a Projective Variety. Let X be a smooth projective variety
with an algebraic C*-action C*x X — X. We embed the torus C* into the Riemann
sphere CP' so that CP* \ C* = {0} U {oo}. The following lemma is a special case of
the Borel fixed point theorem for solvable Lie group actions (see []).

Lemma 7.1. Let X be a projective variety with an algebraic C*-action C*xX — X.
For any point z € X, the map z — z-z has a limit point as z € C* approaches 0 ¢ CP*
(resp. o0). Furthermore, the limit points lim,_ z -z (resp. lim, . 2 - z) are fixed
points of the C*-action. In particular, the fixed point set of an algebraic C*-action
on a projective variety is always non-empty.
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Proof. Fix x € X. Denote G = {(z,z-2) €e C* x X : z € C*} to be the graph of the
morphism ¢ : C* - X sending z to z-z-x. It is a closed subvariety of C* x X and is
isomorphic to C*. Therefore, it is a 1-dimensional irreducible closed subvariety of
C*xX. Now, denote Y = G ¢ CP* x X to be the closure of the graph in the product.
We observe that Y is again a 1-dimensional irreducible variety. Furthermore, one
observes that the restriction p of the first projection p; : CP' x X - CP* to Y is
an isomorphism over C* = CP' « {0,00}. Indeed, we know from point-set topology
that Gn (C* x X) =Y n(C* x X) is precisely the closure of G in C* x X, which is
just G itself as a closed subvariety. It follows that p|g is an isomorphism onto the
image. We claim that p:Y — CP" is an isomorphism. Assuming this, the existence
of the limit points will follow from explicit formulae lim,_ z -2 = ps o p~1(0) (resp.
lim, oo 2 -2 = po 0 p 1 (00)), where ps is the projection onto the second component
of CP' x X.

We proceed to prove the claim. Consider the normalization (c.f. section 1.10 of
[8]) 7 : Y - Y of the irreducible projective curve Y. Here Y is projective because
it is an irreducible closed subvariety of CP' x X, which is projective as a product of
projective spaces. The normalization of an irreducible projective curve is projective,
irreducible, and smooth (c.f. Lemma 4.1.3 of [3]). We notice that po7:Y — CP'
is a birational equivalence. As birational isomorphisms preserve genus, Y = CP',
and any birational automorphism of CP* is an isomorphism, we deduce that por is
an isomorphism. Hence 7 becomes a bijective finite (and hence closed) morphism
between two irreducible smooth varieties, which is an isomorphism. It follows that
p is an isomorphism, as desired.

Now that we have p: Y = CP', the restriction of py : CP' x X - X to Y is a
closed map. In particular, po(Y) ¢ X is closed. Observe that the orbit C* -z =
p2(G) c p2(Y), we have C* -z c po(Y). The reverse inclusion also holds. Indeed,
p2(Y) = p2(G) c po(G) = C*-z. Whence py(Y) = C*-2. As a consequence, the
closure of the orbit C* -z in X is obtained by adding to the orbit at most two
points, the images of 0 and oo. These points form a C*-stable subset. Finally, any
C*-orbit is connected, so that each of the points must be a fixed point. O

7.2. Bialynicki-Birula Decomposition. Assume we are in the setting of subsec-
tion 7.1. Let W denote the fixed point set of the C*-action on X, which we will
assume to be finite. For each w € W, we define the attracting set

szz{a:eX:Iir%z-x=w}.

Since C* fixes w, there is a natural C*-action on T,, X, the tangent space of X
at w. We first recall the classification of representations of C* = GL{(C) in the
following proposition.

Lemma 7.2. Every algebraic group homomorphism C* — C* is given by z ~ 2" for
some integer n € Z. In other words, we have an identification Z = Hom,,,(C*,C*)
vian— (z+—2").

Proof. Given an algebraic group morphism x : C* — C*, we consider the corre-
sponding homomorphism of algebra of regular functions: x* : O(C*) = C[w,w™] —
O(C*) = C[z,27'], which is determined by x*(w) = p(2) for a Laurant polynomial
p(z) € C[z,2z7']. Observe that x(z) = p(z). The condition that x is a group
homomorphism forces that x(z) = 2™ for some n € Z, as desired. O
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Proposition 7.3. Let (V, p) be a finite-dimensional rational representation of C*.
We have a direct sum decomposition V = &,,c7V,,, where

Vi={veV:p(z)v=2"vforall zeC"}.
This is also called a weight space decomposition of V.

Proof. We will use the following assertion without proof (c.f. Theorem 8.3.5 of [3]):
any rational representation of a connected complex reductive group G ¢ GL,(C)
is completely reducible. In particular, we know C* satisfies the condition of the
assertion. By the previous lemma, it suffices to show that any irreducible represen-
tation of C* is 1-dimensional. Let (y,W) be an irreducible representation of C*.
For any a € W, x(a) is a scalar operator by Schur’s lemma. Since C* is abelian,
{x(a)}aec+ forms a collection of commuting diagonalizable operators. Whence they
are simultaneously diagonalizable. In particular, they share an eigenvector, whose
C-span forms an invariant subspace of W. Irreducibility of W forces W to be
1-dimensional. (]

Corollary 7.4. The natural C*-action on T,, X gives the weight space decompo-
sition
Ty X =@ Ty X(n), where T,y X(n):={veT,X:z-v=2z"vforall zeC"}.
nez

Since w is an isolated fixed point of the C*-action, n =0 is not an eigenvalue. The
above decomposition can be rewritten as

TwX:( a5 TwX(n))ea( D TwX(n)):T;XeT;X.

n>0,neZ n<0,neZ

We are now ready to state the main theorem without proof.

Theorem 7.5 (Bialynicki-Birula Decomposition). (1) The attracting sets form
a decompoisition X = | J,ew X4 into smooth locally closed algebraic subva-
rieties;

(2) There are natural C*-equivariant isomorphisms of algebraic varieties
X 2Ty(Xy) =T, X.

7.3. Vector Bundles and Principal G-Bundles. The notion of a vector bundle
in differential topology carries over to the setting of algebraic varieties in a rather
straightforward manner.

Definition 7.6. A rank r vector bundle over a variety X is given by a morphism
of varieties ¢ : E — X such that each fiber E, := ¢ }(z) has the structure of a
C-vector space of dimension r in the following sense: we can cover X by open
subsets U for which there exists a morphisms ¢y : Ey = € 1(U) - A” = C" which
is an isomorphism of vector spaces when restricted to every fiber E,, x € U, and

together with the projection &y : Ey 5 U which yields an isomorphism (called a
local trivialization over U) Ey 2 U x A" sending e — (£(e), pu(e)).

Recall that for a fixed ringed space (X,0) (e.g., a variety X with the sheaf of
C-valued regular functions), an O-module F on X is said to be free of rank n if

F = O%®" and is said to be locally free of rank n if we can cover X by open subsets
U such that F|y 2 O®"|y. Now let F be a locally free sheaf on (X,Ox). We may
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think of F as a sheaf of sections of an object that may be thought of as a vector
bundle. This will be made precise in the following proposition.

Proposition 7.7. Let (X,Ox) be a variety with a sheaf of regular functions. Let
¢ : FE - X be a rank r vector bundle over X. For every open U c X, denote
by Ox (&)(U) the set of morphisms s: U — Ey = ¢71(U) that are sections of &:
&uos =idy. Pointwise addition and multiplication with an element of Ox (U) turns
Ox(&)(U) into an O(U)-module. Then

(1) Ox(&) is a coherent O x-module that is locally free of rank r;

(2) Conversely, for any coherent Ox-module F that is locally free of rank r,
there exists a rank r vector bundle ¢ : E — X such that F is isomorphic to
Ox (&) and that £ is unique up to isomorphism.

Example 7.8 (Tautological line bundle over P™). The tautological line bundle
Opn (-1) over P™ is defined as £ : E — P", where

E:={(,v) eP"xC"*"' :v e},

where /£ is a 1-dimensional linear subspace (a line) in C"*!. Its local trivialization

over a standard affine chart C" 2 U; := {[xg:...: 2] € P" : z; # 0} is given by

(7.9)

¢i : Ey, :{(K: [1:0:...:xn],)v(x—o,...,l,...,x—" ):mii(),/\e(C}—>U¢><(C, (U, zg) = (L, N),
Z; ZT;

where x, e C"*! is the dehomogenization of £ in U;. In particular, the line bundle

over CP! is nothing but the Mobius strip (without boundary). From a straightfor-

ward calculation, one observes that the transition function g;; := ¢;0¢;* € Opn (-1)*

sends (£ =[zg:...:2,],A€C) to (£, ZLN).

zi
We now return to the category of topological spaces.

Definition 7.10 (Principal G-bundle). Let 7 : E - B be a fiber bundle with
fiber X, and let there be a continuous right topological group action £ x G - E
that preserves the fibers of m and acts principally (i.e., transitively and freely) on
fibers. For each fiber 771(b) over b € B, the restriction of the action gives a map
771(b) x G —» 771(b). For a fixed z € 71(b), the bijective continuous orbit map
¢z : G - 7 (b) is a homeomorphism. In particular, each fiber (called a G-torsor)
of the bundle is homeomorphic to the group G itself, but without a group structure,
as there is no preferred choice of an identity element.

In fact, we have a more general construction.

Definition 7.11. Let G be a topological group. Suppose G is acting faithfully on
a space F' on the left. A (G, F)-fiber bundle is a fiber bundle 7 : E — B such that
there exists an open cover {U, } of B and local trivializations ¢, : 7 1(Uy) = Ug x F
such that the corresponding transition functions g : Uy N Ug - Homeo(F") factor
(as a set map) through G ¢ Homeo(F).

Remark 7.12. Principal G bundles can be shown to be a (G, G)-bundle with G
acts on itself by left multiplication. One can modify the definition of principal
G-bundle to the setting of smooth manifolds with a smooth Lie group action, or in
the setting of an algebraic fiber bundle with an algebraic group action. If F is a

module and G-action preserves this structure, this (G, F')-bundle becomes a vector
bundle.



AN INTRODUCTION TO THE STEINBERG VARIETY 31

Definition 7.13 (Associated bundles). If 7: E' - X is a principal G-bundle, and
G acts on F, a topological space, on the left, then the associated bundle, denoted
by E x¢ F, is given by the quotient space E x F'/ ~ with the equivalence relation
(eg, ) ~(e,gf) forany ee E, ge G and f € F.

Remark 7.14. Again, one has similar constructions in the category of smooth
manifolds (as we have the quotient manifold theorem, c.f. [(]) and algebraic vari-
eties. However, one needs to be careful when dealing with algebraic varieties, as
the orbit space of an algebraic action is in general not an algebraic variety (and
that is why we have the notion of a categorical quotient). In some particular cases,
as in the proposition below, such a construction makes sense.

Lemma 7.15. Let G be a linear algebraic group and H a closed subgroup, and
let # : G — G/H be a canonical morphism such that it is locally trivial in the
following sense: G/H is covered by open subsets on each of which m admits a
section s : U — 7 'U. In this case, (x,h) = o(x)h defines an isomorphism of
varieties U x H = 77U for every such open U c G/H. Assume that V is a variety
with a left algebraic H-action. Then the quotient G xy V exists.

Proof. This is Lemma 5.5.8 of [11]. O

Corollary 7.16. Let G be a linear algebraic group and H a closed subgroup, and
let 7 : G > G/H be a canonical morphism such that it is locally trivial. Let V'
be a finite-dimensional H-module. Then the associated bundle G xg V is a vector
bundle over G/H of rank dimc¢ (V).

Corollary 7.17. If G is a connected semisimple algebraic group, and B is a Borel
subgroup, then G - G/B is locally trivial. Identifying G/B = B (2.13), we observe
that G xp b - B is a vector bundle of rank dim b, where B acts on its Lie algebra
b by adjoint action.

Proof. We show that the G-equivariant morphism 7 : G - G/B is locally trivial. It
suffices to show there is an open subset U of G/B on which 7 admits a section, as
G acts transitively on G/B = B. By the Bruhat decomposition in Theorem 3.4,

B~ G|B = Uyew, Buw,

where for any w € W, B, is a smooth locally closed subvariety which is precisely a
B-orbit of B. Since B is irreducible, and the Weyl group Wr is finite, there exists
wp € Wr such that By, is dense (otherwise B will be a finite union of proper closed
subsets and contradict the irreducibility). Since By, = U n C for an open subset U
and closed subset C' in B, B = B_wo cC,soC =B8,ie., By, is open. Consider the
morphism o : By, ¥ B(woB) - G defined by b(woB) ~ bwg € G. It is a routine to
verify that o is a well-defined section. O

7.4. Miscellaneous Results.

Proposition 7.18. Let g be a semisimple Lie algebra. The nondegerate Killing
form x : gx g > C defined by k(z,y) = tr(adz o ady) induces an identification
¢:g =g If gis the Lie algebra of a connected semisimple Lie group G, then
the isomorphism is G-equivariant, where g (resp. g*) is viewed as a G-module
via adjoint (resp. coadjoint) action. Moreover, let b =h @ n be a Borel subalgebra,
where b is a Cartan subalgebra and n := [b, b] is the nilradical of b. Then ¢ restricts
to an isomorphism between n and b* c g*. Here b* := {f e g*: f|], =0}.
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Proof. We only prove the last assertion. By the root space decomposition, we know
1 = @ped+ §a, Where ®F denotes the set of positive roots. We claim that ¢(n) c b*.
Indeed, for o, B € h* and a+ 3 # 0, g, and hg are orthogonal relative to the Killing
form (c.f. Proposition 8.1 of [1]). In particular,

“(mb):”(@ ga,h @ @ ga):O.

aeh* aeh*
The claim follows. Since & is a nondegenerate symmetric bilinear form,
dim(b*) = dim g — dim b = dimn.
It follows that @|, : n — b*. 0

Theorem 7.19 (Zariski’s main theorem). (c.f. [10]) Let f : X’ - X be a morphism
of varieties over an algebraically closed field k with finite fibers. Then f factors

{ g . . .. . . . .
as X' - Y 5 X, where Y is a variety, i is an open immersion, and g is a finite
morphism.

Corollary 7.20. Let f: X' - X be a morphism of irreducible varieties over C. If f
is bijective and X is normal, then the morphism f is an isomorphism. In particular,
every bijective morphism between smooth complex varieties is an isomorphism.

Proof. By Zariski’s main theorem, f factors as X’ Sy 3 X, where i is an open
immersion and g is finite. The statement follows immediately if we can show g is
an isomorphism. Identify X’ with its image under i. We observe that Y ~ X’ is a
proper closed subset of Y. Since g is finite, it is closed. It follows that g(Y ~ X') is
a proper closed subset as dimg(Y ~ X') <dimY \ X' <dimY =dim X. So over the
complement of this proper closed subset, which is an open dense irreducible subset,
g is one-to-one. Observe that g* : C(X) - C(Y) is a finite algebraic extension of
fields with extension degree d, which is the number of elements in a generic fiber
(this is where we use that the ground field is C!). Therefore, d = 1, i.e., g is a
birational map with finite fibers. By an alternative form of Zariski’s main theorem
(c.f. [10]), we conclude that g is an isomorphism. O

Proposition 7.21. Let X be a constructible algebraic variety, i.e., it can be written
as a finite union of finitely many locally closed subvarieties V; of X. If all of V; are
irreducible and have the same dimension, then their closure will be top-dimensional
irreducible closed subvarieties of X. In particular, Z; := V; are irreducible compo-
nents of X.

Proof. Assume to the contrary, there exists an irreducible closed subvariety Y of
X with dimY >dim Z; + 1. Consider Y = u;(Y nV;), we observe that there exists i
so that Y nV; =Y because Y is irreducible and cannot be written as a finite union
of proper closed subsets. It follows that

dimY =dim(Y nV;) <dimV; =dim Z; < dimY -1,

which is absurd. So Z; are of top dimension. In other words, X is a pure variety
with pure dimension dim Z;. O

The following proposition will be useful in the proof of Chevalley’s restriction
theorem.
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Proposition 7.22. Let G be a connected semisimple Lie group, g its (semisimple)
Lie algebra. Let g°" be the set of semisimple regular elements in g. Then there exists
a G-invariant polynomial P(z) € C[g] such that x € g*" if and only if P(z) # 0. In
particular, g\ g°" is a hypersurface and g°” is a Zariski open affine subset of g, with
ring of regular function C[g*"] = C[g][1/P].

Proof. This is Lemma 3.1.5 of [2]. O

Proposition 7.23 (c.f. [5]). Let an algebraic group G act algebraically on the
nonempty variety X. Then each orbit is a smooth, locally closed subset of X,
whose boundary is a union of orbits of strictly lower dimension. In particular, each
orbit is open in its closure, and orbits of minimal dimension are closed (so closed
orbits exist).

Corollary 7.24. Let G be a connected algebraic group acting on an algebraic vari-
ety X with finite orbits. Then any irreducible closed G-stable algebraic subvariety
of X is the closure of a G-orbit.

Proof. Let Y be this irreducible G-stable subvariety, let O be an orbit of maximal
dimension contained in Y. Since O cannot be contained in the closure of any other
orbit @ ¢ Y (c.f. Proposition 7.23), and there are only finitely many orbits in
Y, O is open in the irreducible closed subvariety Y. Its closure is irreducible and
contained in Y, so @ =Y as desired. (I

Proposition 7.25. Let W be a finite group and V a finite-dimensional vector
space with an algebraic W-action. Given two distinct W-orbits, one can find a W-
invariant polynomial f in V (i.e., f(x) = f(w™!-z) for all x € V) which is identically
one on one orbit and identically zero on the other.

Corollary 7.26. The quotient space V /W has a natural identification as a topo-
logical space:

(7.27) Specm(C[V V) = V/W.

This isomorphism gives the quotient space the structure of a variety. In fact, this
is the so-called categorical quotient.

Proposition 7.28. Let G be an algebraic group with Lie algebra g. Let V be a
finite-dimensional representation of G and E c V be a G-stable linear subspace.
Then
(1) If G is connected, then for all v € V', the following conditions are equivalent:
(a) the affine linear subspace v + E c V is G-stable;
(b) We have g-v c E, that is the image of g under the induced infinitesimal
Lie algebra action map g -V, x =» z - v is contained in F.
(2) Moreover, if the linear map g - E, x — z - v is surjective, then G - v, the
G-orbit of v is a Zariski open dense subset of v + E.

Proof. This is Lemma 1.4.12 of [2]. O
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