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ABSTRACT. Gauge theories can be described in two complementary languages:
the physicist’s formulation in terms of gauge potentials, field strengths, and
local symmetries, and the geometer’s formulation using principal bundles, con-
nections, and curvature. In this paper we develop the basic structures on both
sides and makes the correspondence between them explicit. We begin with a
concise review of field theory and gauge symmetry, then introduce the minimal
geometric machinery of Lie groups, fiber bundles, and characteristic classes.
The central outcome is a dictionary identifying standard objects of gauge the-
ory with their geometric counterparts, illustrating how even elementary bundle
theory has great physical impact. The presentation is aimed at mathematically
inclined physicists and physically inclined mathematicians, with emphasis on
clarity and geometric intuition rather than full formal rigor.
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1. INTRODUCTION

Quantum Field Theory (QFT) is our most powerful framework for describing
fundamental interactions. Gauge theories, a class of QFT's, sit at the intersection of
physics and geometry. Physicists describe them in terms of fields A4, field strengths
F),,, and local gauge transformations. Mathematicians describe essentially the same
structure using principal bundles, connections, and curvature. The central purpose
of this paper is to make this correspondence explicit.

At a local level, the electromagnetic potential A, is a connection one-form; the
Yang-Mills field strength F),, is the curvature of that connection; a change of
gauge is a change of local trivialization; and global topological charges arise from
characteristic classes of the underlying principal bundle. Section 5 collects these
relationships into a “dictionary” translating between physical and geometric lan-
guage. One of our main goals is to prepare the reader for that dictionary and
to show how it emerges naturally from the structures developed in the preceding
sections.

Because different communities approach gauge theory from different directions,
the exposition is intentionally two-track: we first review the physics of gauge sym-
metry, then develop the necessary machinery of Lie groups, fiber bundles, con-
nections, curvature, and characteristic classes. The interaction between these two
viewpoints culminates in the geometric formulation of gauge field theory.

We assume the reader is familiar with classical and quantum mechanics, special
relativity, and the basics of field theory. Nonetheless, Section 2 offers a compact
review of essentials such as Noether’s theorem and gauge invariance.

While the mathematical concepts discussed are rather classical and approached
in a less rigorous way, they are becoming increasingly relevant in modern QFT re-
search. Recent developments in generalized global symmetries, higher-form gauge
fields, and topological quantum field theories often depend on structures we study
here. In many settings, the distinction between physically inequivalent configura-
tions is not the local dynamics, but the topology of the underlying bundle or the
characteristic class it carries.

The structure of the paper is:

e Section 2: A review of field theory essentials, including Noether’s theorem
and the gauge principle, followed by an introduction to abelian and non-
abelian gauge theories.

e Section : A review of Lie groups, Lie algebras, representations, and actions
on manifolds.

e Section 4: An introduction to the geometry and topology of bundles,
differential forms, connections, curvature, and characteristic classes.

e Section 5: A geometric reformulation of gauge field theory including elec-
tromagnetism, Yang—Mills theory, monopoles, and instantons.

2. FIELD THEORY ESSENTIALS

It is impossible to do justice to the full scope of QFT in a few pages. Nonetheless,
our aim in this section is not to provide a complete or rigorous treatment, but rather
to outline a few essential structures and principles that will serve as a foundation
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for the geometric reformulation developed in later sections. A thorough treatment
of field theory is given in [1, 5, 6]

2.1. Classical Field Theory.

Definition 2.1. The Action S is the time integral of the Lagrangian L which itself
is the spatial integral of the Lagrangian Density £

(2.2) S = / Ldt = / L(¢,0,0)d*x

Note that since our main interest is field theoretic we will only use £ and refer to
it as the Lagrangian from now on.

Theorem 2.3. The Principle of least action §S = 0 yields the Euler-Lagrange
equations for the motion of a field.

oL oL
24 Opm=r——=-=0
24 "50,6) ~ 96
Of course if our Lagrangian is a function of multiple fields ¢; for i =1,...,n then
we have n E-L equations, one for the motion of each field.

Lagrangian field theory is perfectly suited for the study of relativistic fields since
we have explicit Lorentz invariance of the expressions. We can also introduce a
Hamiltonian formulation of field theory as it is closest to our formulation of Quan-
tum Mechanics.

In Classical Mechanics of discrete degrees of freedom g;, for each variable ¢ we de-
fine the conjugate momentum as p = OL/J¢. The Hamiltonian is H = Y pg — L.

Definition 2.5. The momentum density conjugate to ¢(x) is

0

and the Hamiltonian is
(2.6) H= /dgx |:7T(X)¢(X) E] = /d?’x’H

2.1.1. Noether’s Theorem & Symmetries. Noether’s theorem is one of the most
important in mathematical physics. It concerns the symmetries and conservation
laws both in field theory and systems with finite degrees of freedom.

We begin with a definition of symmetry then state the theorem without a proof as
it can be found in various QFT literature.

Definition 2.7. A symmetry is an infinitesimal continuous transformation of the
field ¢

¢(x) = ¢' = p(x) + alg(z)

that leaves the equations of motion invariant i.e. S is invariant under ¢ — ¢'.

However, we can allow S to change by a surface term since that would not affect
our derivation of the e.o.m.
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Theorem 2.8 (Noether). if under ¢ — @' the Lagrangian is invariant up to a
divergence term

(2.9) L(z) = L(z) + 0d, T"(x)

for some J" then for
oL
9(0,9)

j*(x) = Agp—T"

0uj" = 0 and the charge

Q= j0d3x
]RB

is constant in time.

We can also apply Noether’s theorem to infinitesimal spacetime transformations,
which we can describe as transformations in the field

o(z) = d(z +¢) = ¢(z) +"0,0(x)
The Lagrangian then transforms as
L—=L+eH0,L=L+¢e"0,(85L)

By identification with (2.9), we have a non-zero J*. Now one can apply Noether’s
theorem to obtain the the stress-energy tensor.

Definition 2.10. The stress-energy tensor of the field ¢ is four separately conserved
currents.

. 0L
(2.11) T = 50,9

Notice that the conserved charge associated with the time translations i.e. u =
v =0 is the Hamiltonian H = [T%d%z = [ Hd3x.

au¢ - ‘C(Sg

2.2. Free Field Theories: Scalar, Vector, Spinor. Before introducing gauge
symmetry, we, more briefly than we should, review the free field theories for matter
and gauge fields. These fall into three classes depending on how the fields trans-
form under spacetime symmetries: scalar, vector, and spinor fields. Understanding
their free dynamics lays the groundwork for incorporating interactions via covariant
derivatives and connections.

2.2.1. Scalar Fields. A scalar field ¢ : R13 — R (or C) transforms trivially under
Lorentz transformations. Its dynamics are governed by the Klein—Gordon equation:

(O+m?)¢ =0, O := 0"9,,,

derived from the Lagrangian

Lxg = %3"@5 O — %m2¢2 (real), Lxg = 8“(;_53/45 —m2p¢p (complex).
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2.2.2. Vector Fields. A vector field A* : RM3 — R* transforms in the vector repre-
sentation of the Lorentz group. The most important example is the electromagnetic
potential. Its dynamics are governed by the Maxwell Lagrangian:

1
Lpm = _ZFMVFW7 with  Fl, = 0, A, — 0, A,

The field strength F),, is a rank-2 antisymmetric tensor (a differential 2-form), and
the equations of motion are the source-free Maxwell equations:

0"Fy =0, Oy =0.

2.2.3. Spinor Fields. Spinor fields transform under the spinor (double cover) rep-
resentation of the Lorentz group, not as vectors. A Dirac spinor 9 : R — C*
satisfies the Dirac equation:

(i —m)p =0,  §:=7"0,,
with Lagrangian
Lpirac = Y(id — m), =iy
Here, the gamma matrices v* satisfy the Clifford algebra:

{7} =20,

Remark 2.12. These three free field theories correspond to matter and gauge fields
in modern quantum field theory. Scalars and spinors are used to model physical
particles such as pions or electrons, while vector fields like A,, serve as mediators
of interactions. In the presence of gauge symmetry, partial derivatives are replaced
by covariant derivatives involving a connection—this geometric mechanism will be
developed in later sections.

2.3. Abelian & Non-Abelian Gauge Theories. The gauge principle is one of
the most important in our formulation of physical theories. Its essence is that
physics should be independent of the way we elect to describe it. As motivation,
and since the following two sections are a deep dive into the mathematics needed
to understand gauge theories rather than physics, we elect to start with a peek at
classical aspects of gauge theories to give sense to the idea of gauge invariance.

2.3.1. Abelian Gauge Theory. A gauge theory is abelian if its symmetry is governed
by an abelian group: both Dirac theory describing charged fermions and Maxwell
theory of electromagnetism are abelian given that their symmetry structure is cov-
ered by the U(1) abelian group. We’ll see more about the group structure later but
for now we can get a physical understanding of this symmetry structure.
Maxwell’s equations for electromagnetism are, in terms of the magnetic and electric
fields E, B, expressed as:

(2.13) V-B=0
0B
(2.15) V-E=p
(2.16) vxB-Z_;

ot
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The electric and magnetic fields are expressed in terms of a vector (four) potential
A, = (¢, A) where

A
(2.17) B=VxA E:%—thqS

One can easily verify that these Maxwell’s equations are invariant under the gauge
transformation

(2.18) Ay = Ay + O

for a scalar .

This invariance is more manifest in the EM field tensor formulation of electromag-
netism where

0 —-E, —-E, —-LE.

E, 0 B, -B,

E, -B, 0 B,

E. B, -B, 0

is invariant under the gauge transformation (2.18). Through this formulation, the
Lagrangian for electromagnetic theory is

(2.19) F,, = 0,A, —0,A, =

1 .
(2.20) Ley = _ZFMVFNV + AMJM
for j* = (p,j) The equations of motion, (2.12-2.15) are expressed in this language
by
(221) aaFluy + 8/LFV(1 + aVFC!/L = 0
(2.22) O FH = g

We move now to the Dirac theory describing charged fermionic particles. The free
Dirac Lagrangian for a field i) with electric charge e is

(2.23) Lo = P(iv"8, +m)p
It is invariant under the gauge transformation:
(2.24) Y e h s ape’

for constant o € R. We can elevate this symmetry to invariance under local gauge
transformation for a non-constant «

(2.25) =) = e @)y B — P = eical®
In this case, the Dirac Lagrangian varies as
(2.26) V(i 0, + m)p — P(iy 0, + ey O + m)y

Note that the extra term ed,a looks like the gauge transformation of the four
potential discussed in Maxwell theory. Hence, we can couple the gauge field A, to
1) to obtain a Lagrangian that has a local gauge symmetry.

(2.27) Lo = P(iv" (0, +ieA,) +m)p

which is invariant under the combined gauge transformation (2.18 and 2.24) for
X = a.

This ed, o term in the Lagrangian is the covariant derivative defined as

(2.28) V=0, +ieA, V=0, +icA,
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such that V)¢ = e "*(®)V 4.
Given all the above, we obtain a total Quantum Electrodynamics (QED) La-
grangian that gathers Maxwell and Dirac theory as

1 -
(2.29) Lopp = 7" Flu + (0" YV, +m)y

which is invariant under:

(1) Global U(1) transformations: described by (2.24)
(2) Local U(1) transformations: described by (2.25) and (2.18)

And given that U(1) is an abelian group, then Quantum Electrodynamics is an
Abelian Gauge theory.

2.3.2. Non-Abelian Gauge Theory. In the fifties of the 20th century, C.N. Yang and
Robert Mills introduced a new class of gauge transformations: non-Abelian ones.
While we have not yet discussed Lie groups in detail, we require some suspended
belief for now, though the reader is encouraged to look at relevant information in
Section 3 then coming back here.

Let G be a compact semi-simple Lie group such as SO(n) or SU(n). It has
anti-hermitian generators that satisfy the commutation relation [T,, T3] = f;/ﬁTw
where f;ﬁ are called structure constants of G. As we will discuss in 3.1, an element
U in G that is near the unit element can be expressed as U = exp(—6+T},).
Suppose a Dirac field ¥ transforms under U € G as:

(2.30) YUy Y= QU
and consider the following Lagrangians a function of the Yang-Mills gauge field A,,:
(2.31) L= [iv" (0 + gA,) +m] ¢

Since the Yang-Mills gauge field takes its values in the Lie algebra of G, it can be
expanded in terms of T}, as A, = A}T,.

The essential difference from the abelian case lies in the non-commutativity of the
Lie algebra generators. This introduces new terms in the field strength tensor,
leading to interactions among the gauge bosons themselves. Such self-coupling is
absent in QED and marks the core novelty of non-Abelian gauge theories. These
interactions give rise to the rich dynamics of Yang—Mills theory.

3. LiE GROUPS AND LIE ALGEBRAS

Lie groups encode continuous symmetries; their infinitesimal data form Lie al-
gebras, which organize gauge fields and matter. Here we keep only the essentials.
For fuller treatments, see [1, 4, 7, 8].

3.1. Lie Groups.
Definition 3.1. A Lie group G is a differentiable manifold which is equipped with
a group structure such that the maps

(1) GxG—G, (91,92) = 9192
(2) G—=G, grgt



8 BADIS LABBEDI

are smooth. For a physicist, a Lie group is defined as a continuous group with N € N
real parameters @ = (g, ...,an)? € R, whose elements (in the representation as
linear operators) can be written as

St

. N
(3.2) U(a) =exp | — : Zanj
j=1

where the origin in parameter space is mapped onto the identity element: U (6) =1L

In physics, the Lie groups of main interest are matrix groups which are subgroups
of general linear groups GL(n,R) or GL(n,C), where the product and inverse op-
erations are just the matrix product and matrix inverse respectively. Typical real
and complex subgroups are:

1) the orthogonal group O(n) = {M € GL(n,R)|MM*" = M'M = 1,}
2) the special linear group SL(n,R) = {M € GL(n,R)|det M =1}

) the special orthogonal group SO(n) = O(n) N SL(n,R)

) the orthogonal group U(n) = {M € GL(n,C)|MM' = MTM = 1}
) the special linear group SL(n,C) = {M € GL(n,C)|det M =1}

) the special orthogonal group SU(n) = U(n) N SL(n,C)

Example 3.3. The Lie group U(1) consists of complex numbers of unit modulus:
(3.4) U(1) = {0 € R}

with group operation given by complex multiplication. It’s a one dimensional com-
pact Lie group diffeomorphic to S'. U(1) symmetry underlies electromagnetism
and Quantum Electrodynamics (QED): local U(1) gauge invariance leads to con-
servation of electric charge.

The matrix subgroups we mentioned are all subgroups of a bigger GL Lie group.
We use the following theorem to guarantee that each one of them is a Lie group by
itself.

Theorem 3.5. FEvery closed subgroup G’ of a Lie group G is a Lie subgroup.

3.2. Lie Algebras.

Definition 3.6. The left-translation L, : G — G of g € G by a € G is defined by
(3.7) L.g = ag.

The right-translation is defined analogously.

By definition, L, is a diffeomorphism G — G, hence it induces a pushforward
map Lgs : TyG — T44G, and similarly for right-translation.
We now define a special class of vector fields invariant under the group action.

Definition 3.8. X is a left-invariant vector field if L+ X |y = X|q4-

Proposition 3.9. A vector V € T.G defines a unique left-invariant vector field
Xy on G. Conversely, a left-invariant vector field X defines a unique vector V =
X|e € T.G. We denote the set of left-invariant vector fields on G by g.

We recall the Lie bracket of vector fields. For f € C°°(M) and vector fields X,Y
on M,
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Definition 3.10. The Lie bracket [X, Y] is

(3.11) (X, Y]f = X[Y[f]] - Y[X[f]].
In local coordinates z*, if X = X#0, and Y = Y*9,,, then
(3.12) [X,Y] = (X“auY” — Y“@HX”) 0y .

The Lie bracket is bilinear, skew-symmetric, and satisfies the Jacobi identity
[X,Y],Z]+ [[Y. Z],X] + [[Z, X],Y] = 0. For geometric intuition, it measures the
non-commutativity of flows.

We return to our main object.

Definition 3.13. The set of left-invariant vector fields g with the Lie bracket
[-,-]:9xg— gis called the Lie algebra of the Lie group G. We simply denote it
by g.

We look at a couple of examples before moving to representations and actions.
Example 3.14. Any vector space V is a Lie algebra with the trivial Lie bracket
(3.15) [v,w] =0 (v,we V).

Example 3.16. su(2) is a Lie algebra deeply rooted in quantum mechanics (QM).
It describes the algebra of (spin and orbital) angular momentum operators. The
space is

(3.17) su(2) = {X € My(C) | XT = —X, Tr(X) = 0}.
Its generators are J, Jy, J. and its commutation relation is
(3.18) [Ji, Jj] = iheijkjk 5

for €;;;, the Levi-Civita tensor.

While we leave the proof of the commutation relation, we prove that su(2) as
defined in 3.16 is the Lie algebra of SU(2).

Proof. SU2) = {U € My(C) | UIU = I, detU = 1}. Let ~(t) C SU(2) with
~(0) = I and set

X: )| e TSUR) = su(2).

=&,

Differentiating v(t)Ty(t) = I at t = 0 gives XT + X = 0, hence XT = —X. Differ-
entiating det v(t) = 1 and using Jacobi’s formula yields Tr(X) = 0. Therefore
su(2) = {X € My(C) | XT = —X, Tr(X) = 0}.

(]

Given the importance of SO(n) groups in physics, we also record their Lie alge-
bras (without proof).

Definition 3.19. The Lie algebra so(n) is the space of n x n real, skew-symmetric
matrices:

so(n) ={X € M,(R) | X7 = —-X}.
This algebra corresponds to the infinitesimal generators of the orthogonal group
SO(n), which preserve the Euclidean norm on R™. Its dimension is %, and the
Lie bracket is the matrix commutator [X,Y] = XY — Y X.
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Physically, s0(3) generates the familiar rotation group in three-dimensional space,
and its commutation relations match those of angular momentum operators:

[Ji, Jj] = ieiijk .

3.3. Exponential Map and Generators. In most field theories, basic symme-
tries are represented by Lie groups (global or local), acting on fields or states via
transformations generated infinitesimally by elements of the associated Lie algebra.
The exponential map reconstructs finite transformations from these generators.

Definition 3.20. Let G be a Lie group and g = T.G its Lie algebra. The expo-
nential map is a smooth map

exp:g— G

which takes X € g to the group element exp(X) on the one-parameter subgroup
generated by X: if v(t) is the integral curve with v(0) = e and 4(0) = X, then

exp(tX) = A(t).
In matrix Lie groups such as GL(n,R), U(n), or SU(n), this coincides with the
usual matrix exponential
exp(X) = o
k=0

Thus exp defines one-parameter subgroups and moves from infinitesimal (alge-
braic) data to finite (group-theoretic) transformations.

By Noether’s theorem, symmetries correspond to conserved quantities and act
via unitary operators built from generators. If {T®} are generators and €® real
parameters, a group element near the identity is

U(&) = exp(ieT™),
acting on states or fields as

p(x) = U(€) p(x) -
The Lie algebra encodes commutators and structure constants; the exponential map
builds the finite symmetry transformations.

Example 3.21 (Generators via derivatives). In practice (QM/QFT), generators
are obtained as derivatives at the identity:

T := ih iU(&) ,
@ &=0

for a smooth parameterization U(&) € G. For a rotation about the z-axis by angle
0,

) exp (260, ) 4),

where J, lies in s50(3); exponentiation yields the finite rotation.

Example 3.22 (The Lie group SU(2) and its exponential map). SU(2) is the
group of 2 X 2 complex unitary matrices with unit determinant and its Lie algebra
is
su(2) = {X € Ma(C) | XT = —X, Tr(X)=0}.
A convenient basis is )
T, = %m (i=1,2,3),
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with Pauli matrices o;, obeying
(T3, Tj] = €Tk -
Any g € SU(2) near the identity can be written as

g(0,n) = exp (zg i - 6') .

SU(2) is a double cover of SO(3): a 27 rotation acts as —1 on spin-3 states.
In gauge theory (e.g. the electroweak sector), SU(2) x U(1) and its exponential
parametrization determine the allowed gauge transformations and their action on

matter and gauge fields.

3.4. Representations of Lie Groups. A representation of a Lie group realizes
abstract group elements as concrete linear transformations on vector spaces. In
physics, representations determine how fields—scalars, spinors, vectors—transform
under symmetry operations: e.g., particles in the fundamental of SU(2), gauge
bosons in the adjoint, etc.

Definition 3.23. A representation of a Lie group G on a finite-dimensional
vector space V over a field K (typically R or C) is a smooth group homomorphism

p:G— GL(V)
preserving the group structure: p(gh) = p(g)p(h) and p(e) = idy. If p is injective,

it is faithful. In a chosen basis, p(g) is a matrix acting on V' by multiplication.

Representations are the language of symmetry in field theory: scalars trans-
form trivially, spin—% fields under fundamental representations (e.g. of SU(2) or
SL(2,C)), and gauge fields in the adjoint. In constructing a Lagrangian, the rep-
resentation fixes how each field transforms under gauge transformations and hence
how invariance is maintained.

Example 3.24 (Trivial representation). Define p(g) = idy for all g € G. Physi-
cally, this corresponds to fields invariant under the symmetry (true scalars under
rotations).

Example 3.25 (Standard representation). Let G = GL(n,K) and V = K". Then
G acts on column vectors by

p(g)(v) =g-v (g€ GL(n), veK").

For SU(2), this is the spin-3 (fundamental) representation on two-component
spinors.

Example 3.26 (Adjoint representation). For a € G, define conjugation Ad,(g) =
aga~!'. Differentiating at the identity gives a representation on the Lie algebra g,

Ad,:g— g,

the adjoint representation. In gauge theory, gauge bosons transform in the
adjoint (e.g. the three W’s in SU(2) form a triplet).

Example 3.27 (Adjoint representation of SU(2)). With the basis

Tl = 50—17 T2 = 50—23 T3 = 5037
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and g = diag(e’®, =) € SU(2), the adjoint action is
Ad,(T) = gTg ™t
yielding
Ady(Th) = cos(2¢) T1 + sin(2¢) T,
Ady(Tp) = —sin(2¢) Ty + cos(2¢) Ta,
Ady(Ts) = Ts.
In the ordered basis {T}, Tz, T3},

cos(2¢) sin(2¢) 0
Ady, = [ —sin(2¢) cos(2¢) 0] € SO(3),
0 0 1

so the adjoint of SU(2) is the standard three-dimensional rotation representation

of SO(3).

From basic ones, one can construct new representations via direct sums, tensor
products, exterior powers, and duals. For SU(2),
L ® 1 01
2 2 ’
decomposing into a singlet and a triplet, is ubiquitous in particle physics.

Definition 3.28. Two representations p : G — Aut(V) and p: G — Aut(V) are
equivalent if there exists an isomorphism 7" : V' — V such that

Top(g)=p(g)oT forall ged.

Understanding how fields transform under G is fundamental for writing consis-
tent Lagrangians and couplings. Next, we connect representations to fiber bundles
and local gauge symmetry, where fields are sections of vector bundles associated to
principal bundles via a given representation.

3.5. Actions of Lie groups on manifolds. The notion of a Lie group acting
on a manifold is central to gauge theory and differential geometry. It allows us to
describe how symmetries move points in space, how fibers in a bundle are related,
and how physical fields transform under local gauge transformations.

Definition 3.29. Let G be a Lie group and M a smooth manifold. A (left) action
of G on M is a smooth map

o:GxM—=M, (g9,p)—0(g,p):=g-p

such that:
(1) e-p=pfor all p € M (identity acts trivially),
(2) g1-(g92-p) = (g192) -p for all g1,g> € G and p € M (compatibility).

This abstract definition captures what it means for a Lie group to “move” points
around a manifold. In gauge theory, the Lie group G acts on the fibers of a principal
bundle, and the structure of that action determines the global geometry of the gauge
field.

Example 3.30. The general linear group GL(n,R) acts naturally on R™ by matrix
multiplication:
g-x=gx forge GL(n), v €R"
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Example 3.31. The rotation group SO(3) acts on the 2-sphere S? C R? via:
R-#=Ri for Re SO(3), 7€ 52

This action is smooth, preserves the metric structure, and encodes the geometric
symmetries of the sphere.

Example 3.32. The group S' = {e?’} acts on R? by rotating the vectors in R?

by an angle 6 through:
i (x) _ [(cos® —sind) (x
€ y)  \sinf cosf Y

This is the geometric origin of the U(1) gauge symmetry in electromagnetism.

Definition 3.33. An action o : G x M — M is said to be:

e Transitive if for all p;, ps € M, there exists g € G such that g - p; = ps.

e Free if the only group element fixing any point is the identity: if g-p=1p
for some p, then g = e.

e Effective if the only element acting trivially on all of M is the identity: if
g-p=p for all p, then g =e.

These conditions play key roles in bundle theory. For instance, in a principal
G-bundle, the group G acts freely and transitively on each fiber, making the fiber
look like a copy of G itself. The total space then becomes a geometric object built
from the orbits of this group action.

One could rightfully ask why this matters in physics. In geometric gauge theory,
the symmetry group G acts on the fiber of a principal bundle P — M, where M
is the base spacetime manifold. The requirement that this action be smooth, free,
and transitive ensures that we can consistently define local trivializations, parallel
transport, and gauge transformations. The fields of a gauge theory (e.g., vector
potentials, matter fields) live in associated bundles derived from this group action
via representations, which we introduced in the previous section.

4. DIFFERENTIAL TOPOLOGY & GEOMETRY

Manifolds are topological spaces that are locally homeomorphic to R™ but not
necessarily globally. Charts, fibres, bundles etc provide a language to think glob-
ally about the manifold. Gauge theories in physics are naturally described in the
language of fibre bundles. There’s a wide range of literature on the topic from a
physical perspective such as [1, 2, 3, 9]

4.1. (Co)Tangent Bundles.

Definition 4.1. A tangent bundle T'M over a m—manifold M is the collection of
tangent spaces at every point p of the manifold:

(4.2) T™ = U T,M = {(p, Xp)lp € M, X, € T,M}
peM

where M is called the base space.
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Fix a coordinate chart (U;,z*) on M. A point p € U; has coordinates z*(p).
Any tangent vector at p can be written

0
4.3 V=V — .
(1) @ (5) |
So an element of the restricted tangent bundle TU; := UpeUi T, M is recorded by
the pair (p, V'), or in coordinates by (x“(p), Ve (p)) Because U; is diffeomorphic to

an open set in R™, and V* provides an m-tuple of real numbers, we get a coordinate
identification

(4.4) TU; 2 U; x R™ =~ R™ x R™.

so TU; is locally a 2m-dimensional manifold. Intuitively: each point in T'U; splits
into two pieces of data — the base point p and a vector V living in the tangent
space at p.

This local splitting suggests a natural map that “forgets the vector” and remem-
bers only the base point: the projection.

Definition 4.5. A projection is a surjection 7 : TU; — U;, such that for any point
u € TU;, w(u) is a point p € U; at which the vector is defined. However, information
about the vector is lost under the projection.

Definition 4.6. A fibre at p is obtained through 7=*(p) = T, M. T,,M is this fibre
in question.

We can think of the tangent bundle as all these fibres T, M “stacked” over their
base points and smoothly interwoven across overlapping coordinate patches. What
makes the stacking consistent is how the components of a vector change when you
change coordinates.

Suppose two charts (U;,2") and (Uj,Z") overlap at p. Write the same vector
V € T, M in each coordinate basis:

(4.7) V=V <8iu>pf/"<£u)p.

By the chain rule,

- or”
v _ "
(4.8) \%4 E (p)V
The matrix
y oY
(4.9) G"ulp) = 5 (P)

is invertible because we are changing between coordinate systems. Thus G¥,(p) €
GL(m,R). These matrices, defined on chart overlaps, are the transition functions
that tell us how to glue the trivial pieces U; x R™ and U; x R™ together. The
collection of all such linear changes of coordinates forms the structure group of the
tangent bundle: GL(m,R)

Given a vector space V on R one can take its dual space
(4.10)
V' = {w V= ]R|w(a1X1 + asXo) = yw(X1) + aqw(Xs) for X; € V and o; € R}

This dual space is also a vector space.
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Definition 4.11. The dual vector space Ty M of the tangent space T),M is the
cotangent space. And the collection of the cotangent spaces is the cotangent bundle,
which has a manifold structure:

(4.12) ™M= |J ;M
pEM
Before moving to fiber bundles we lastly introduce the concepts of push-forward

and pull-back induced by a smooth map f : M — N between two smooth manifolds.
This map induces a push-forward of tangent vectors:

(4.13) fo: T,M — Tj(,) N
defined, for g € C*°(N), by
(4.14) fe(Xp)(g) = Xp(go f)

and often denoted by df), in literature for reasons to do with differential forms. On
the other hand, it also induces a pull-back of the cotangent space

(4.15) I T;‘(p)N - T,M
defined, for wy,) € Ty, N, by
(4.16) ([ (W) Xp) = Wiy, [+ (Xp))

4.2. Principal Fibre Bundles. Principal bundles are the natural geometric set-
ting for describing gauge fields. In physics, they formalize the notion of internal
symmetries at each point in spacetime and provide the structure on which connec-
tions (gauge potentials) and curvatures (field strengths) live. We begin with the
rigorous definition and structural properties of principal bundles, then discuss their
local description, morphisms, and role in gauge theory.

Definition 4.17. Let G be a Lie group and M a smooth manifold. A principal
G-bundle over M is a quadruple (P, 7, M, G), where:

(1) P is a smooth manifold called the total space,
(2) m: P — M is a smooth surjective submersion called the projection,
(3) There exists a smooth right action R : P x G — P, R(p,g) = p- g, such
that:
(a) The action is free: if p- g =p, then g =¢e € G,
(b) The action is fiber-preserving: =(p - g) = 7(p),
(c) The action is transitive on fibers: for every p,p’ € 7=1(x) C P, there
exists a unique g € G such that p’ =p- g,
(4) P is locally trivial: for each € M, there exists an open neighborhood
U C M and a diffeomorphism (called a local trivialization)

¢y N U) = UxG

such that m = pry o ¢y and the right G-action corresponds to right multi-
plication on the G-factor:

du(p-g) = (n(p),hg), if pu(p) = (7(p),h).

Remark 4.18. The total space P encodes both the base manifold M (e.g. space-
time) and the internal symmetry group G. The fibers 7=1(x) = G model the set of
gauge-equivalent configurations at each spacetime point.
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Example 4.19 (Trivial Principal Bundle). Let M be any smooth manifold and G
a Lie group. The product manifold P = M x G with projection 7 : (x,g) — x is a
principal G-bundle, with right G-action given by:

(fﬂ,g) h= (I’,gh)

This is called the trivial bundle M x G. Every fiber 77(x) = G, and global
trivializations exist.

Transition Functions and Bundle Atlases. Given a cover {U,;}ic; of M and local
trivializations ¢; : 7~1(U;) — U; x G, the local trivializations are related on overlaps
by transition functions

gij : Ul N Uj — G
defined by the requirement that for all z € U; N Uj, and p € 71 (z),

¢i(p) = (x,9i5(x) - h), where ¢;(p) = (z,h).
The cocycle conditions hold:
gi(@) =€, gij(x) = gji(x)™",  gi;(@)gjr(x)gri(x) =€ on Uy NU; N Ug.
Example 4.20 (Nontrivial U(1)-Bundle over S?). Let P = S3, M = §?, and
G = U(1). The Hopf fibration
7.8 = §?

defines a nontrivial principal U(1)-bundle. Locally, it is trivializable, but globally it
is topologically nontrivial. This bundle plays a central role in the theory of magnetic

monopoles, where the field strength corresponds to the curvature of a connection
on this bundle.

Definition 4.21. A bundle atlas is a collection {(U;, #;)} of local trivializations
such that the associated transition functions {g;;} satisfy the cocycle conditions.

Definition 4.22 (Morphisms and Gauge Transformations). Let (P, 7w, M,G) and
(P',7', M,G) be principal G-bundles. A morphism is a smooth map f : P — P’
satisfying 7’ o f = 7 and f(p-g) = f(p) - g- An automorphism of P is called a
gauge transformation.

Example 4.23. Let P = M x G. Then every smooth map v : M — G defines a
gauge transformation:

fy(@,9) = (2,7(x)g).
This illustrates how gauge transformations correspond to local group-valued func-
tions. An explicit application of this will be outlined in section 5 on Gauge Field
Theories

Sections and Triviality. A (local) section s : U — P satisfies 7 o s = idy. A global
section exists iff the bundle is trivial. In terms of trivializations, a local section s
corresponds to a map s(z) = gf)i_l(x, e). If global s exists, we can write P = M x G.
Associated Bundles. Given a left G-manifold F', the associated bundle is:

E=PxgF:=(PxF)/~ (p-9,f)~pg-f)
This is a fiber bundle over M with typical fiber F.

Example 4.24. Let p: G — GL(V) be a representation. Then E = P x¢ V is a
vector bundle. Sections of F represent matter fields in gauge theory.
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Classification. Principal G-bundles over M are classified (up to isomorphism) by
Cech cocycles or homotopy classes of maps M — BG, where BG is the classify-
ing space. For example, principal U(1)-bundles are classified by H?(M;Z), which
encodes the quantized magnetic flux.

Remark 4.25. In physics, such classifications correspond to topologically distinct
field configurations — for instance, magnetic monopoles, instantons, or theta-vacua
— which are often labeled by characteristic classes.

4.3. Elements of Riemannian Geometry. On a Riemannian manifold (M, g),
a connection encodes differentiation of vector fields and leads to curvature.

Definition 4.26. (Linear connection) A connection is a map
V:X(M)x X(M) = X(M), (X,Y)— VxY,

such that for all f,h € C>°(M) and X,Y,Z € X(M), the space of smooth vector
fields on M:

(1) VixqnyZ = fVxZ+hVyZ (linearity in the first slot),

(2) Vx(Y+2Z)=VxY +VxZ (additivity in the second),

3) Vx(fY)=X(/)Y + fVxY (Leibniz rule).

In local coordinates (z*), the Christoffel symbols I'  are defined by
Va,0a =14, 0,,
and for X = X*0,,Y =Y"0,,
VxY = XH(0,Y* +T2,Y") D

Along a curve (t) = (z!(t),...,2"(t)), the covariant derivative is
DX dxe

4.2 — = tH 06, XY ) Oa.

(4.27) 7 (dt + "Iy, >8

A vector field X is parallel along ~ i = 0; given X (0) there is a unique parallel

transport along .

DX
f dt

Definition 4.28. (Levi-Civita connection) On (M, g) there is a unique connection
V that is metric-compatible and torsion-free:

Z(g(X,Y)) =g(VzX,Y)+g(X,VzY), VxY - VyX =[X,Y].
Equivalently, in coordinates, I', =T'# .
Geodesics are curves whose tangents are parallel transported: % =0, ie.
@ + Ty, et = 0.
Definition 4.29. (Riemann curvature) The curvature of a connection V is
R(X,Y)Z :=VxVyZ - VyVxZ —Vxy|Z,
which is C'*°-linear in each slot and antisymmetric in X, Y.
In coordinates,
R(0,,0,) 0a = R oy 05, R oy = 0,0, — 0T + 10,10, — 10,7,
Contractions yield the Ricci tensor and scalar curvature:
R, =R, R:=g¢""R,,.

If R, = Ag,, for some constant A, then (M, g) is an Einstein manifold.
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Example 4.30. In GR, the Einstein field equations read

81G
R;w - %Rg,uv + Ag;w = CTT,M/»
linking curvature to stress—energy. We use only the geometric ingredients above.

4.4. Differential Forms and De Rham Cohomology Group. Differential forms
provide a natural and powerful language for calculus on smooth manifolds, espe-
cially in contexts involving integration, flux, and topological invariants. In gauge
theory, they are essential: connection one-forms represent gauge potentials, curva-
ture two-forms encode field strengths, and characteristic classes are defined using
closed differential forms whose cohomology classes capture global features of gauge
bundles.

Definition 4.31. A differential r-form on a smooth m-dimensional manifold M
is a rule that assigns to each point p € M an antisymmetric multilinear map

wp : TyM x - xT,M = (T,M)" —R.

That is, w, takes r tangent vectors at p and returns a real number, changing sign
when two arguments are exchanged.

Equivalently, one can describe an r-form as a smooth section of the bundle
A"T* M, the r-th exterior power of the cotangent bundle:

weQ (M) :=T(M,A"T*M).

Definition 4.32. The wedge product A of r one-forms is the totally antisymmetric
tensor product

(4.33)  dztt Adat? A ANdat = Z sgn(P) dzHP® A dxh P A LA dah e
PeS,
The wedge product of one-forms is alternating (vanishes if an index repeats) and
is linear in each dx*.

We denote the vector space of r-forms at p € M by Q) (M). An element w €
Q,(M) can be expanded as

1

(4.34) W= = Wy g, A2 N AP AN T
7!
where wy, u,...u, is totally antisymmetric. There are (T) choices of (u1,...,ur),
thus
M T m! 3 T 3 m—-r
(435) dim Qp(M) = m, dim QP(M) = dlme (.2\4)7

and if » > m the dimension is 0.

Definition 4.36. The exterior product of a g-form and an r-form A : Qf(M) x
Q, (M) — Q4+ (M) is given by

(4.37)

1
(w I C)(’Ula ) Uq-‘r’l‘) = W Z SgH(P) W(UP(I)v cry UP(q)) C(UP(‘I+1)7 ey UP(Q+T))a
" PESy4r

for v; € T,M. If r + ¢ > m, then w A ( = 0. With this product define
Q, (M) = Qg(M) @Q})(M) @© -0 QN (M),
the graded algebra of all differential forms at p.
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Definition 4.38. The exterior derivative d, (commonly d) is a map Q"(M) —
QrT1(M) whose action on (4.34) is

1
(4.39) dyw = ] (%) dz” NdzHt A - AdaFr
satisfying:
(1) d®> =0,

(2) d(wAn) =dwAn+ (—1)kw Adny for w € QF(M),
(3) If f € C*°(M), then df is the usual differential.
Example 4.40. We look at familiar examples in 3-space and the action of d on
them:
o wy = f(z,y,2) — dwg= %daﬁ— g—idgﬂ— %dz.
o w =wydrtwydy+w,dz = dwi = (%‘;y —%)dm/\dy—f—(%ﬁz - a{;‘;y)dy/\

dz + (85’; - 85"; )dz A dx.

Lemma 4.41.
(4.42) d*=d,1d, = 0.

Proof. For w as in (4.34), d?w is a sum of terms with a symmetric second derivative
contracted with an antisymmetric wedge dz* A dz”, hence vanishes. O

Example 4.43. In electromagnetic theory, the four-potential A(¢, A) is a 1-form
A = A,dz* and the field tensor F' = dA is a 2-form. The Bianchi identity o\ F},, +
OuF, 5+ 0,F, =0is just dF = d*A =0 by Lemma 4.41.

Definition 4.44. The de Rham complex is the sequence induced by d,.:

(4.45) 05 Q0(M) 2 Q' (M) &5 ... L2t gm(ar) ey g,
where 7 is the inclusion map.

Proposition 4.46.

(4.47) imd, C kerd,4.

Definition 4.48. A closed r-form is an element of ker d,.; i.e. w € Q"(M) is closed
if dw = 0.

Definition 4.49. An exact r-form is in imd,_1; i.e. w is exact if 3 an (r — 1)-form

1) such that w = dip.

Definition 4.50. The de Rham cohomology group is the quotient space ker d,. /im d,_1:
ker(d : Q" (M) — Q" TY(M))

4.51 Hig(M) = .

(451) (M) = S 100 & (D)

It is a vector space whose elements are equivalence classes of closed r-forms modulo

exact ones.

Remark 4.52. These cohomology groups are topological invariants of M. That
is, if M = N (diffeomorphic), then HY; (M) = HX.(N). They reflect the global
structure of the manifold and will later classify global features of field configurations
and gauge bundles.

Example 4.53 (Cohomology of S'). Let M = S'. Then H{z(S') 2 R (constant
functions), and Hlg (S') 2 R, generated by df, the angular 1-form.
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In the spirit of moving between the spaces of differential forms we are also led
into the notion of an interior product.

Definition 4.54. The interior product ix : Q"(M) — Q"1 (M), where X € X (M)
and w € Q"(M), is defined as
(4.55) ixw(X1, o, Xpm1) =w(X, X1, .0, X q).
Example 4.56. In Cartesian R? coordinates:
te, (dz N dy) = dy, ie, (dx A dy) = 0.
We note that the Lie derivative of a form as defined in Section 3.2 is most

efficiently written in the language of the interior product.

Proposition 4.57. For a one-form w = w,dz*,
(458) EXw = (dZX + iXd)w.

We wrap up the section with a remark on the importance of differential forms
in physics.
Remark 4.59. In physics, differential forms are not just a language but a necessity:
e The potential A is a 1-form; the field strength is F' = dA, a 2-form.
In Yang—Mills, A becomes a Lie algebra—valued 1-form, and F' = dA+AAA.
The Bianchi identity dF = 0 is a constraint that follows from d? = 0.

The quantization of flux (as in Dirac monopoles) is related to the fact that
[F] € H2z (M) may represent a nontrivial cohomology class.

4.5. Characteristic Classes. The curvature two-form F associated to a connec-
tion A on a principal bundle encodes local geometric information about the field.
But gauge fields can also possess global, topological features—properties that per-
sist under smooth deformations and are not visible through local curvature alone.
These features are captured by characteristic classes.

Formally, characteristic classes are elements of the cohomology ring of the base
manifold M, constructed from invariant polynomials in F. In general, characteristic
classes do not classify principal bundles by themselves. Isomorphism classes of prin-
cipal G-bundles over M correspond to homotopy classes of maps [M, BG], where
BG is the classifying space of G. Ouly in special cases such as G = U(1), where
BU(1) ~ CP* = K(Z,2,does this correspondence reduce to integral cohomology.

Physically, characteristic classes often correspond to quantized observables like
magnetic charge or instanton number: quantities distinguishing inequivalent topo-
logical sectors of a gauge theory.

Let P — M be a principal G-bundle with connection A and curvature F €
O2(M,g). Given an invariant polynomial P : g — R, the Chern-Weil homomor-
phism assigns to P the closed form P(F) € Q2*(M). This form represents a
cohomology class

(4.60) [P(F)] € HIZ(M),

which is independent of the choice of connection A, and depends only on the bundle
P. These classes are the characteristic classes of the bundle.

For example, in the case of a U(1)-bundle, the first Chern class is given by

(4.61) ¢ = [;ﬂf} € Hig(M),
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and its integral over a closed 2-surface ¥ C M yields a quantized value:

i
4.62 —F cZ.
(4.62) e
This is the geometric origin of charge quantization in abelian gauge theory. The
same mechanism underlies Dirac monopoles and quantized flux in electromag-
netism.

In non-abelian gauge theory, higher-order characteristic classes arise from symmet-
ric invariant polynomials such as

Tr(FAF) or Te(FAFAF),

which yield the second and third Chern classes, respectively. Their integrals over 4-
or 6-dimensional manifolds are topological invariants of the gauge field, independent
of local deformations. For example, in SU(2) gauge theory over a 4-manifold M,
the integral

(4.63) k= # /M Te(F A F)

defines a topological charge labeling sectors of the gauge field configuration space.
This integer k is the second Chern number and it plays a central role in classifying
instanton solutions—objects we will touch on in the next section.

Characteristic classes thus provide a link between geometry, topology, and physics.
They account for the global structure of gauge fields and often control observable
phenomena such as quantization conditions, anomaly cancellation, tunneling am-
plitudes in path integrals... Many physically meaningful gauge configurations (e.g.,
instantons) are best understood through the lens of these topological invariants.

5. GAUGE FIELD THEORY

In 2.3 we looked at a number of Abelian and non-Abelian gauge theories from
a physics lens with little to no connection to the bundle language. More thorough
treatment is in [1, 5, 7]. In this section, we make an attempt as making some
of these correspondences explicit starting with U(1) gauge theory and Yang-Mills
which we tackled before then moving to Dirac Monopoles and Instantons.
The mathematical reader who elected to skip sections 3 and 4 and is only interested
in looking at the Gauge Field Theory section is therefore strongly encouraged to
look at 2.3 beforehand.

5.1. U(1) Gauge Theory. We discussed Maxwell’s theory in 2.3 as an abelian
U(1) gauge theory. In this section, we make an attempt at formulating that in the
slightly fancier language that we developed thus far.

Maxwell’s theory is often introduced through the familiar electric and magnetic
fields E and B. Yet these six scalar components can be collected into a single
geometric object: a two-form that emerges naturally from the language of principal
bundles and connections. We begin by specifying the bundle data:

(1) Base space. Minkowski spacetime M = R13  which is contractible.
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(2) Structure group. G = U(1), a compact, one-dimensional Abelian Lie
group. Its Lie algebra is u(l) = iR, so we distinguish the real vector
potential A,, from the Lie-algebra—valued one—form

A=iA,da" € Q'(M,u(1)).
Since M is topologically trivial, every principal U(1)-bundle over M is isomor-
phic to the direct product
P~ M xU(1).
Consequently, a single global connection A suffices to describe the gauge poten-
tial everywhere on spacetime.
The curvature (or field strength) is the two—form

(5.1) F=dA=17F, da" Andz",
with
Fuv = (0, 4y — 0,4,).

Because U(1) is Abelian, no commutator term appears in (5.1). Exactness of F
implies
(5.2) dF =0 <= 9,Fu. =0,
the exterior—calculus version of Faraday’s flux law and the absence of magnetic
monopoles. Note that we have set F,,, = iF), so that F),, is the usual real elec-
tromagnetic field tensor. Writing coordinates x# = (¢, x%), the spatial components
of F},, reproduce the three-vectors

E; = Fy;, B; = LeijuFj.

Equation (5.2) then splits into V-B = 0 and V x E+9;B = 0. Gauge invariance
forbids any quantity but the curvature in the action. The unique Lorentz- and
gauge-invariant functional with mass dimension four is

1 1
—7/ F,“,F‘“’d‘lx:—f/ F A*F,
4 M 4 M

where * is the Hodge dual defined by the spacetime metric. Varying (5.3) with
respect to the connection gives

(5:3) SulA] =

(5.4) 6SM:—/ d+* FASA —  dxF=0.
M

In components,
O F" =0,
equivalently V-E = 0 and VxB—9;E = 0. Together with (5.2), these four relations
constitute the vacuum Maxwell equations. A striking feature of this formulation is
the separation of Maxwell’s equations into two purely geometric identities,

(5.5) dF =0,
and two dynamical equations determined by the variational principle,
(5.6) dxF =0.

The former reflect the topology of the bundle (here trivial), while the latter
encode the local propagation of the gauge field. In the presence of a conserved
current J* one merely replaces (5.4) by

(5.7) d« F = x*J,
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retaining gauge covariance and charge conservation (d * J = 0). We can now look
at an explicit usage of the geometric formalism to perform a gauge transformation

Example 5.8. Let P = M x U(1) be the trivial principal bundle for electromag-
netism, and let A € Q'(M;u(1)) be a local connection one-form (i.e., the gauge
potential).

Let v : M — U(1) be a smooth map, i.e., a local gauge transformation. Since
U(1) = {e"@®)}, we can write

A(z) = ).

This defines a gauge transformation of the bundle via
fy(@.9) = (z,7(z)g) -
At the level of the connection, this induces the transformation:
A= A= A+idf.
Remark 5.9. This matches the familiar electromagnetic gauge transformation:
Au(z) = Au(x) + 0,0(z).

Hence, gauge transformations of the principal bundle induce the local gauge
transformations of the connection seen in physics. In the non-abelian case (e.g.,
Yang—Mills, which will be discussed soon), the transformation law becomes

A A =gAg~' +gdg™", g(z) €G.

In summary, casting electromagnetism as a U(1) gauge theory elevates the vector
potential to a connection A € Q'(M,u(1)), unifies E and B into the curvature
two—form F, and derives Maxwell’s equations from a single action principle that
is manifestly Lorentz— and gauge—invariant. This geometric viewpoint not only
streamlines classical theory but also sets the stage for non—Abelian generalisations,
topological constructions, and ultimately the quantisation of gauge fields.

5.2. Yang—Mills Theory. Let us work on flat Euclidean space R* equipped with
its standard metric g,,, = 0,,,. Let the gauge group be G = SU(2), and consider a
principal G-bundle P(R?*, G). Since R? is contractible, the bundle is topologically
trivial: P = R* x G. This triviality guarantees the existence of a global section and
thus a globally defined gauge potential.

5.2.1. The Gauge Potential and Field Strength. A connection on P is described by
a Lie-algebra-valued 1-form A € Q!(R*, su(2)), called the gauge potential. In a local
trivialization:

(5.10) A = A} ()T, dz*,

where {T,} form a basis of su(2) obeying [Ty, Tp] = €apcle, and p=1,...,4.
The associated curvature (field strength) is the Lie algebra—valued 2-form

(5.11) F=dA+ ANA=}F,,(z)da" Ndz”,
with components
(5.12) Fur = OpAy — 0 A, + [A, Ay = F T

This 2-form satisfies the non-Abelian Bianchi identity:
(5.13) DF =dF +[AF] =0,
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which reflects the geometric statement that the curvature of a connection satisfies
a generalized version of V- B = 0.

5.2.2. Geometric Setup. Let 2 denote the affine space of all connections on P,
modeled on the vector space Q' (M, ad P). The gauge group G = Aut(P) acts on 2
via

A A9 = gAg™ + gdg™, g: M —G.

The physically meaningful field configurations live in the quotient space /G, known
as the moduli space of connections.
The curvature transforms covariantly:

F > F9=gFg ",

and thus the gauge-invariant quantity used to construct dynamics is built from
traces over powers of F.

5.2.3. Yang-Mills Action and Equations of Motion. The Yang—Mills action is:
1 1 4 y
where the Hodge star is defined using g,.,,, and the trace is taken in the fundamental

representation, normalized as Tr(7T,T}) = %(5@;).
Varying the connection A — A + §.A and integrating by parts, we find

(5.15) 0SvyMm = %/TY((&A AN D*]:),

which yields the Yang—Mills equation:
(5.16) DxF =0,
a second-order PDE for the connection 1-form A. In local coordinates, this becomes:

(5.17) VEFL, + €abe AP F, = 0.

5.2.4. Functional and Topological Viewpoint. We interpret the action as a func-
tional:

SYMZQl—HR,

with gauge-invariance Sym[A] = Sym[AY]. Solutions to the Yang—Mills equa-
tions correspond to critical points of this functional. However, 2/G is typically
an infinite-dimensional orbifold with rich topology. In four dimensions, the space

of connections breaks into distinct topological sectors labeled by:
1

(5.18) [ / TH(F A F) € Z.

R4

= 8n2

This quantity is a characteristic class—the second Chern number—indicating that
the curvature carries topological information. The Yang—Mills action satisfies the
bound:

82
Sym[A] > 97|k\7

which is saturated by special solutions called instantons. We turn to them next.
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5.3. Instantons. (as self-dual connections)
In four Euclidean dimensions, the Hodge star operator squares to the identity
on 2-forms: #*x = 1, so the curvature 2-form F can be decomposed as:

F=Fr+F, with F*:=1(FLxF),

where F* is the self-dual part and F~ the anti-self-dual part.
A connection A is called (anti-)self-dual if its curvature satisfies:

(5.19) F=4xF.
Such connections automatically satisfy the Yang—Mills equation, since:
D+« F=4+DF =0,

by the Bianchi identity.
The Yang—Mills action can be rewritten using the self-dual/anti-self-dual decom-
position then minimized:

1
SYM[A]:E/T‘r(]‘—-‘r/\*]:-‘r‘f']:_/\*]:_)

1 _
=57 [ (IFT P +1771) dto
1 8?2
(5.20) > — /Tr(fAf)' - L2|k\.
g g
Equality is achieved when F~ = 0 or F* = 0. Thus, instantons are absolute

minima of the Yang—Mills functional in their topological sector.
As a side note beyond our scope in this paper, the set of self-dual connections
modulo gauge is known as the instanton moduli space:

(5.21) My, = {A €A Fy = +Fy4, with instanton number k} /G.

This space has finite dimension (given by the Atiyah—Singer index theorem) and
rich geometric structure. For example, for G = SU(2), the dimension of My, is
8k — 3. These moduli spaces are crucial in Donaldson theory and related areas of
differential geometry.

Instantons are non-perturbative, localized, finite-action configurations. In quan-
tum field theory, they contribute to the path integral with weight e=5¥M  and
are responsible for phenomena like tunneling between vacua, anomalous symmetry
breaking (e.g., U(1)4 anomaly in QCD), and non-trivial vacuum structure.

They embody the deep link between geometry, topology, and quantum physics:
self-duality is a geometric condition, but its consequences are physical, observable,
and even measurable.

5.4. Dirac Monopoles. The Dirac monopole provides a physically motivated ex-
ample where the electromagnetic potential A cannot be defined globally, despite
the field strength F being globally smooth and closed. This signals a nontrivial
topology in the underlying principal bundle, characterized by the first Chern class.

To set this up, consider the magnetic field of a point monopole at the origin in
R3. Removing the origin, the base manifold becomes M = R3\ {0} = S? x R, . We
want to define a U(1)—connection over M whose curvature F satisfies

1
5.22 — F = Z
( ) 27 S2 ne ’
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so that the total magnetic charge is quantized.

Remark 5.23. If 7 = d.A for a globally defined 1-form A, then by Stokes’ theorem,
the integral of F over any closed surface must vanish. Hence, nonzero magnetic
charge implies A cannot be globally defined, and the U(1)-bundle is nontrivial.

We then do a patchwise construction where we cover S? with two open sets:
Un = S?\ {South Pole}, Us = S* \ {North Pole}.

Define local connections Ay, Ag on each patch such that

F=dAny =dAs on Uy NUsg.
On the overlap Uy N Ug, the two potentials differ by a gauge transformation:

An = Ag + dA, A:UvNUs = R/27Z.
The transition function g = e’ defines a map
g:UnNUs — U(1),

and its winding number classifies the U(1)-bundle.

Definition 5.24. The first Chern class ¢;(P) € H%(S? Z) ~ Z of the bundle is

defined by
1
Cl(P) = %/SZ ]:,

and represents the magnetic charge in units of the Dirac quantum.

Example 5.25 (Dirac Quantization Condition). Suppose Ay = ;= (1 — cos®) dg,
defined away from the south pole, and Ag = — = (1 + cos ) d¢, defined away from
the north pole. Then

AN—AS:%M,

which implies a transition function g(¢) = ¢*9%/2™ with winding number n = S
Z. Thus, the magnetic charge is quantized:

g € 27Z.

This construction illustrates how nontrivial topology obstructs the existence of
a global potential, even in an abelian theory. The topology of the bundle enforces
quantization of the field—linking geometry, gauge invariance, and physical observ-
ables in a deep way.

5.5. Dictionary of Equivalences. The mathematical structures introduced in
this paper provide a geometric framework for understanding gauge theories. We
conclude by summarizing key correspondences between geometric objects and their
physical interpretations in the general setting of gauge theories.

In geometric terms, spacetime is a smooth manifold M and the internal symme-
try is a Lie group G. A principal G-bundle 7 : P — M encodes the local gauge
structure, and choosing a local section (trivialization) is a gauge choice. A connec-
tion 1-form w on P pulls back to the local gauge potential A = s*w € QY(M,g).
Its curvature F = dA + A A A is the field strength, and matter fields (sections of
associated bundles) are differentiated by the covariant derivative D = d + [A, -].

Gauge transformations ¢ : M — G act by A +— g~ ' Ag+g~'dyg, F g tFg,
while holonomy along loops gives gauge-invariant Wilson observables. Global struc-
ture is captured by characteristic classes (e.g. for U(1), the first Chern class is
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c1 o« [F]) and by the instanton number k = gty [Tr(F A F), which classifies
sectors and quantizes charges. Physically distinct configurations are connections
modulo gauge (the moduli of gauge fields).

This dictionary makes explicit the bridge between the language of differential
geometry and the physics of gauge theories. In practice, this could be a good
starting point for modern treatments of higher—form and non-invertible symmetries,
anomaly inflow, and dualities.
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